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Abstract: A Binary multiplier is an integral part of the arithmetic logic unit (ALU) subsystem found in many processors. Floating Point 

Arithmetic is extensively used in the field of banking, tax calculation, currency conversion, and other financial areas including broadcast, 

musical instruments, conferencing, and professional audio. Many of these applications need to solve sparse linear systems that use fair 

amounts of matrix multiplication. 

The objective of this thesis is to design and implement single precision (32-bit) floating-point cores for multiplication. The multiplier 

conforms to the IEEE 754 standard for single precision. The IEEE Standard for Binary Floating Point Arithmetic (IEEE 754) is the most 

widely used standard for floating point computation, and is followed by many CPU and FPU implementation. The standard defines formats 

for representing floating point numbers (including negative zero and denormal numbers) and special values (infinites and NaNs) together 

with a set of floating point operation that operate on these values. It also specifies four rounding modes and five exceptions.  

In this thesis, I have used VERILOG as a HDL and Xilinx ISE has been synthesized on same tool. Timing and correctness properties were 

verified. Instead of writing Test- Benches & Test-Cases we used Wave-Form Analyzer which can give a better understanding of Signals & 

variables and also proved a good choice for simulation of design. In order to perform floating point multiplication a VERILOG program is 

realized. The fixed-point design is extended to support floating-point multiplication by adding several components including exponent 

generation, rounding, shifting, and exception handling. 
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1. General 

 
Many p eo p le  consider floating-point arithmetic an esoteric 

subject.  This is rather surprising because floating-point is 

ubiquitous in computer systems.  Almost every language has a 

floating-point data type; computers from PC’s to 

supercomputers have floating-point accelerators; most 

compilers will be called upon to compile floating-point 

algorithms from time to time; and virtually every operating 

system must respond to floating-point exceptions such as 

overflow. There are some aspects of floating point that have a 

direct impact on designers of computer systems. It begins 

with  background on floating-point representation and 

rounding error, continues with a discussion of the IEEE 

floating-point  standard,  and  concludes  with  numerous  

examples  of  how  computer builders can better support 

floating-point.[1] 

 

Every computer has a floating point processor or a dedicated 

accelerator that fulfills the requirements of precision using 

detailed floating point arithmetic. The main applications of 

floating points today are in the field of medical imaging, 

biometrics, motion capture and audio applications, including 

broadcast, conferencing, musical instruments and professional 

audio.  Their importance can be hardly over emphasized 

because the performances of computers that handle such 

applications are measured in terms of the number of floating 

point operations they perform per second. [2] 

 

2. Introduction 
 

There are several ways to represent real numbers on 

computers. Fixed point places a radix point somewhere in the 

middle of the digits, and is equivalent to using integers that 

represent portions of some unit. For example, one might 

represent 1/100ths of a unit; if you have four decimal digits, 

you could represent 10.82, or 00.01. Another approach is to 

use rational, and represent every number as the ratio of two 

integers. [18] 
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Floating-point representation - the most common solution - 

basically represents reals in scientific notation.  Scientific 

notation represents numbers as a base number and an 

exponent. For example, 123.456 could be represented as 

1.23456 × 10
2
. In hexadecimal, the number 123.abc might be 

represented as 1.23abc × 16
2
. 

 

Floating-point solves a number of representation problems.  

Fixed-point has a fixed window of representation, which 

limits it from representing very large or very small 

numbers. Also, fixed-point is prone to a loss of precision 

when two large numbers are divided. 

 

Floating-point,  on  the  other  hand,  employs  a  sort  of  

"sliding  window"  of  precision appropriate  to  the  scale  of  

the  number.  This allows it to represent numbers from 

1,000,000,000,000 to 0.0000000000000001 with ease. 

 

3. IEEE 754 Floating Point Standard 
 

IEEE 754 floating point standard is the most common 

representation today for real numbers on computers. The 

IEEE (Institute of Electrical and Electronics Engineers) has 

produced a Standard to define floating-point representation 

and arithmetic. Although there are other representations, it is 

the most common representation used for floating point 

numbers. The standard brought out by the IEEE come to be 

known as IEEE 754. The IEEE Standard for Binary Floating-

Point Arithmetic (IEEE 754) is the most widely- used 

standard for floating point computation, and is followed by 

many CPU and FPU implementations.[1]   The   standard   

defines   formats   for   representing   floating-point numbers 

including negative numbers and  denormal numbers special 

values i.e. infinities and NAN’s together with a set of floating-

point operations that operate on these values. It also specifies 

four rounding modes which are round to zero, round to 

nearest, round to infinity and round to even and five 

exceptions including when the exceptions occur, and what 

happens when they do occur.  Dealing with fixed-point 

arithmetic will limit the usability of a processor. If 

operations on numbers with fractions (e.g. 10.2445), very 

small numbers (e.g. 0.000004), or very large numbers (e.g. 

42.243x10
5

) are required, then a different one representation is 

in order is the floating-point arithmetic.[14] The floating point 

is utilized  as the binary point is not fixed, as is the case in 

integer (fixed-point) arithmetic. In order to get some of the 

terminology out of the way, let us discuss a simple floating-

point number, such as -2.42x10
3

. The '-' symbol indicates the 

sign component of the number, while the '242' indicate the 

significant digits component of the number, and finally the '3' 

indicates the scale factor component of the number. It is 

interesting to note that the string of significant digits is 

technically termed the mantissa of the number, while the scale 

factor is appropriately called the exponent of the number. 

The general form of the representation is the following: 

 

 (-1) 
S
* M * 2

E 
(1) 

 

Where 

S represents the sign bit, 

M represents the mantissa and 

E represents the exponent 

 

4. FLOATING POINT ARITHMETIC 

The IEEE Standard for Binary Floating-Point Arithmetic 

(IEEE 754) is the most widely- used standard  for  floating-

point computation, and is followed by many CPU and FPU 

implementations.[1] The standard defines formats for 

representing floating-point number (including ±zero and 

denormals) and special values (infinities and NaNs) together 

with a set  of  floating-point  operations  that  operate  on  

these  values.  It also specifies four rounding modes and 

five exceptions. 

 

IEEE 754 specifies four formats for representing floating-

point values: single-precision (32-bit), double-precision (64-

bit), single-extended precision (≥ 43-bit, not commonly 

used) and double-extended precision (≥ 79-bit, usually 

implemented with 80 bits). Many languages specify that IEEE 

formats and arithmetic be implemented, although sometimes it 

is optional. For example, the C programming  language, 

which pre-dated IEEE 754, now allows but does not require 

IEEE arithmetic (the C float typically is used for IEEE single-

precision and double uses IEEE double-precision).[18] 

 

5. Single Precision Floating Point Numbers 
 

The single-precision number is 32 bit wide. The single-

precision number has three main fields that are sign, 

exponent and mantissa. The 24-bit mantissa (the leading 

one is implicit) can approximately represent a 7-digit decimal 

number, while an 8-bit exponent to an implied base of 2 

provides a scale factor with a reasonable range. Thus, a total of 

32 Bit is needed for single-precision number representation. 

To achieve a bias equal to 2
n−1

− 1 is added to the actual 

exponent in order to obtain the stored exponent. This equals 

127 for an eight-bit exponent of the single-precision format. 

The addition of bias allows the use of an exponent in the 

range from −127 to +128, corresponding to a range of 0-255 

for single precision number. The single-precision format 

offers a range from 2
−127

 
to 2

+127

, which is equivalent to 10
−38

 

to 10
+38

 

 

Sign: 1-bit wide and used to denote the sign of the number i.e. 

0 indicate positive number and 1 represent negative number. 

Exponent: 8-bit wide and signed exponent in excess-127 

representation. 

Mantissa: 23-bit wide and fractional component. 

 

 
Figure 1: Single-precision floating-point number 

representation 

 

The excess-127 representation mentioned when discussing the 

exponent portion above, is utilized to efficiently compare the 

relative sizes of two floating point numbers. Instead of storing 

the exponent (E) as a signed number, we store its unsigned 

integer representation (E’ = E +127). This gives us a range for 
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E’ of 0 <= E’ <= 255. While the 0 and 255 end values are 

used to represent special numbers (exact 0, infinity and 

denormal numbers), the operating range of E0 becomes 1 <= 

E’<=" 254, thus, limiting the range of E to -126<= E <= 127. 

In double-precision numbers, an excess-1023 representation is 

utilized. 

 

6. Ranges Of Floating-Point Numbers 
 

Table 1.1: Effective Range of single precision and double 

precision float numbers 

 

 

7. Floating Point Multiplication 
 

Given two FP numbers n1 and n2, the product of both, denoted 

as n, can be expressed as: 

 n = n1 × n2 

 = (-1) 
S1

. p1. 2 
E1 

× (-1) 
S2

. p2.2 
E2

 

 = (-1) 
S1+S2

. (p1.p2). 2 
E1+E2

                     (2) 

 

This means that the result of multiplying two FP numbers can 

be described as multiplying their significands and adding their 

exponents.[14] The resultant sign S is S1 +S2, the resultant 

significand p is the adjusted product of p1. p2 and the 

resultant exponent E is the adjusted E1+E2+bias. In order 

to perform floating-point multiplication, a simple algorithm is 

realized: 

 Add the exponents and subtract 127. 

 Multiply the mantissas and determine the sign of 

 the result. 

 Normalize the resulting value, if necessary. 

 

 

 

 

8. Number Representation Using Single 

Precision Format 

Let us try and represent the decimal number (-0.75)10 in IEEE 

floating-point format. First of all, we notice that (-0.75)10 = (-

3/4)10.  
 

In binary notation, we have (-0.11)2 = (-0.11)2×2
0
 = (-1.1)2×2

-1
 

Referring to equation (2), we can represent our number as: 

(-1)
1
  *  (1  +  .100000000000000000000002)  *  2

126-127

 
Thus,  our  single-precision representation of the 

number is given as 

(10111111010000000000000000000000)2,where The sign bit 

is  (1)2,for negative numbers; The exponent is (01111110)2, 

to represent (126)10, The mantissa is 

(10000000000000000000000)
2
, to represent the fractional 

part (.1)2. 

 

9. Conclusion 
 

Single precision floating point multiplier is designed and 

implemented using xil inx in this p a p e r .  The designed 

multiplier conforms to IEEE 754 single precision floating 

point standard. In this implementation exceptions (like 

invalid, inexact, infinity, etc) are considered. In this 

implementation rounding modes like round to positive 

infinity, round to negative infinity, round to zero and round 

to even. The designed is verified using fpu_test test bench. 

The design is also verified for overflow and underflow cases. 
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