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Abstract—This paper present a probabilistic generative model for learning semantic parsers from ambiguous supervision. Our approach 

learns from natural language sentences paired with world states consisting of multiple potential logical meaning representations. It 

disambiguates the meaning of each sentence while simultaneously learning a semantic parser that maps sentences into logical form. 

Compared to a previous generative model for semantic alignment, it also supports full semantic parsing. 
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I. INTRODUCTION 

 

An important application of natural language processing is the 

interpretation of human instructions. The ability to parse 

instructions and perform the intended actions is essential for 

smooth interactions with a computer or a robot. Some recent 

work has explored how to map natural-language instructions 

into actions that can be performed by a computer (Branavan et 

al. 2009; Lau, Drews, and Nichols 2009). In particular, we 

focus on the task of navigation (MacMahon, Stankiewicz, and 

Kuipers 2006; Shimizu and Haas 2009; Matuszek, Fox, and 

Koscher 2010; Kollar et al. 2010; Vogel and Jurafsky 2010). 

The goal of the navigation task is to take a set of  

naturallanguage directions, transform it into a navigation plan 

that can be understood by the computer, and then execute that 

plan to reach the desired destination. Route direction is a 

unique form of instructions that specifies how to get from one 

place to another and understanding them depends heavily on 

the spatial context. The earliest work on interpreting route 

directions was by linguists (Klein 1982; Wunderlich and 

Reinelt 1982). While this domain is restricted, there is 

considerable variation in how different people describe the 

same route. Below are some examples from our test corpus of 

instructions given for the route shown in Figure 1:Paper 

proposed a semantic parser that is not restricted to a predefined 

ontology. Instead, we use distributional semantics to generate 

the needed part of an on-the-fly ontology. Distributional 

semantics is a statistical technique that represents the meaning 

of words and phrases as distributions over context words 

(Turney and Pantel, 2010; Landauer and Dumais, 1997). In 

particular, Chen and Mooney (2008) introduced the problem of 

learning to sportscast by simply observing natural language 

commentary on simulated Robocup robot soccer games. The 

training data consists of natural language (NL) sentences 

ambiguously paired with logical meaning representations 

(MRs) describing recent events in the game extracted from the 

simulator. Most sentences describe one of the extracted recent 

events; however, the specific event to which it refers is 

unknown. Therefore, the learner has to figure out the correct 

matching (alignment) between NL and MR before inducing a 

semantic parser or language generator. Based on an approach 

introduced by Kate and Mooney (2007), Chen and Mooney 

(2008) repeatedly retrain both a supervised semantic parser and 

language generator using an iterative algorithm analogous to 

Expectation Maximization (EM). However, this approach is 

somewhat ad hoc and does not exploit a well-defined 

probabilistic generative model or real EM training. 

 

 
 

 

Figure 1: This is an example of a route in our virtual world. 

The world consists of interconnecting hallways with varying 

floor tiles and paintings on the wall (butterfly, fish, or Eiffel 
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Tower.) Letters indicate objects (e.g. ’C’ is a chair) at a 

location 

For example, in probabilistic logic, the synonymy relation 

between “man” and “guy” is represented by: 8x. man(x) , 

guy(x) | w1 and the hyponymy relation between “car” and 

“vehicle” is: 8x. car(x) ) vehicle(x) | w2 where w1 and w1 are 

some certainty measure estimated from the distributional 

semantics. For inference, we use probabilistic logic 

frameworks like Markov Logic Networks (MLN) (Richardson 

and Domingos, 2006) and Probabilistic Soft Logic (PSL) 

(Kimmig et al., 2012). They are Statistical Relational Learning 

(SRL) techniques (Getoor and Taskar, 2007) that combine 

logical and statistical knowledge in one uniform framework, 

and provide a mechanism for coherent probabilistic inference. 

We implemented this semantic parser (Beltagy et al., 2013; 

Beltagy et al., 2014) and used it to perform two tasks that 

require deep semantic analysis, Recognizing Textual 

Entailment (RTE), and Semantic Textual Similarity (STS). 

 

II. RELATED WORK 

The conventional approach to learning semantic parsers (Zelle 

and Mooney, 1996; Ge and Mooney, 2005; Kate and Mooney, 

2006; Zettlemoyer and Collins, 2007; Zettlemoyer and Collins, 

2005; Wong and Mooney, 2007b; Lu et al., 2008) requires 

detailed supervision unambiguously pairing each sentence with 

its logical form. However, developing training corpora for 

these methods requires expensive expert human labor. Chen 

and Mooney (2008) presented methods for grounded language 

learning from ambiguous supervision that address three related 

tasks: NL–MR alignment, semantic parsing, and natural 

language generation. They solved the problem of aligning 

sentences and meanings by iteratively retraining an existing 

supervised semantic parser, WASP (Wong and Mooney, 2007b) 

or KRISP (Kate and Mooney, 2006), or an existing supervised 

natural-language generator, WASP (Wong and Mooney, 

2007a). During each iteration, the currently trained parser 

(generator) is used to produce an improved NL–MR alignment 

that is used to retrain the parser (generator) in the next iteration. 

However, this approach does not use the power of a 

probabilistic correspondence between an NL and MRs during 

training. On the other hand, Liang et al. (2009) proposed a 

probabilistic generative approach to produce a Viterbi 

alignment between NL and MRs. They use a hierarchical semi-

Markov generative model that first determines which facts to 

discuss and then generates words from the predicates and 

arguments of the chosen facts. They report improved matching 

accuracy in the Robocup sportscasting domain. However, they 

only addressed the alignment problem and are unable to parse 

new sentences into meaning representations or generate natural 

language from logical forms. In addition, the model uses a 

weak bag-of-words assumption when estimating links between 

NL segments and MR facts. Although it does use a simple 

Markov model to order the generation of the different fields of 

an MR record, it does not utilize the full syntax of the NL or 

MR or their relationship. Chen et al. (2010) recently reported 

results on utilizing the improved alignment produced by Liang 

et al. (2009)’s model to initialize their own iterative retraining 

method. By combining the approaches, they produced more 

accurate NL– MR alignments and improved semantic parsers. 

Motivated by this prior research, our approach combines the 

generative alignment model of Liang et al. (2009) with the   

generative semantic parsing model of Lu et al. (2008) in order 

to fully exploit the NL syntax and its relationship to the MR 

semantics. Therefore, unlike Liang et al.’s simple Markov + 

bag-of-words model for generating language, it uses a tree-

based model to generate grammatical NL from structured MR 

facts. 

 

III. BACKGROUND  

Logical Semantics: Logic-based representations of meaning 

have a long tradition (Montague, 1970; Kamp and Reyle, 

1993). They handle many complex semantic phenomena such 

as relational propositions, logical operators, and quantifiers; 

however, they can not handle “graded” aspects of meaning in 

language because they are binary by nature. Also, the logical 

predicates and relations do not have semantics by themselves 

without an accompanying ontology, which we want to replace 

in our semantic parser with distributional semantics. To map a 

sentence to logical form, we use Boxer (Bos, 2008), a tool for 

wide-coverage semantic analysis that produces uninterpreted 

logical forms using Discourse Representation Structures (Kamp 

and Reyle, 1993). It builds on the C&C CCG parser (Clark and 

Curran, 2004). Distributional Semantics Distributional models 

use statistics on contextual data from large corpora to predict 

semantic similarity of words and phrases (Turney and Pantel, 

2010; Mitchell and Lapata, 2010), based on the observation 

that semantically similar words occur in similar contexts 

(Landauer and Dumais, 1997; Lund and Burgess, 1996). So 

words can be represented as vectors in high dimensional spaces 

generated from the contexts in which they occur. Distributional 

models capture the graded nature of meaning, but do not 

adequately capture logical structure (Grefenstette, 2013). It is 

possible to compute vector representations for larger phrases 

compositionally from their parts (Landauer and Dumais, 1997; 

Mitchell and Lapata, 2008; Mitchell and Lapata, 2010; Baroni 

and Zamparelli, 2010; Grefenstette and Sadrzadeh, 2011). 

Distributional similarity is usually a mixture of semantic 

relations, but particular asymmetric similarity measures can, to 

a certain extent, predict hypernymy and lexical entailment 

distributionally (Lenci and Benotto, 2012; Kotlerman et al., 

2010).  

 

Markov Logic Network: Markov Logic Network (MLN) 

(Richardson and Domingos, 2006) is a framework for 

probabilistic logic that employ weighted formulas in firstorder 

logic to compactly encode complex undirected probabilistic 

graphical models (i.e., Markov networks). Weighting the rules 

is a way of softening them compared to hard logical 

constraints. MLNs define a probability distribution over 

possible worlds, where a world’s probability increases 

exponentially with the total weight of the logical clauses that it 

satisfies. A variety of inference methods for MLNs have been 

developed, however, their computational complexity is a 

fundamental issue. 

 

Probabilistic Soft Logic: Probabilistic Soft Logic (PSL) is 

another recently proposed framework for probabilistic logic 

(Kimmig et al., 2012). It uses logical representations to 

compactly define large graphical models with continuous 

variables, and includes methods for performing efficient 

probabilistic inference for the resulting models. A key 

distinguishing feature of PSL is that ground atoms have soft, 

continuous truth values in the interval [0, 1] rather than binary 

truth values as used in MLNs and most other probabilistic 

logics. Given a set of weighted inference rules, and with the 

help of Lukasiewicz’s relaxation of the logical operators, PSL 

builds a graphical model defining a probability distribution 

over the continuous space of values of the random variables in 
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the model. Then, PSL’s MPE inference (Most Probable 

Explanation) finds the overall interpretation with the maximum 

probability given a set of evidence. It turns out that this 

optimization problem is second-order cone program (SOCP) 

(Kimmig et al., 2012) and can be solved efficiently in 

polynomial time. Recognizing Textual Entailment Recognizing 

Textual Entailment (RTE) is the task of determining whether 

one natural language text, the premise, Entails, Contradicts, or 

not related (Neutral) to another, the hypothesis.  

 

Semantic Textual Similarity: Semantic Textual Similarity 

(STS) is the task of judging the similarity of a pair of sentences 

on a scale from 1 to 5 (Agirre et al., 2012). Gold standard 

scores are averaged over multiple human annotations and 

systems are evaluated using the Pearson correlation between a 

system’s output and gold standard scores.  

IV. APPROACH  

A semantic parser is three components, a formal language, an 

ontology, and an inference mechanism. This section explains 

the details of these components in semantic parser. It also 

points out the future work related to each part of the system.  

 

Generative Model 

Like Liang et al. (2009)’s generative alignment model, our 

model is designed to estimate P(w|s), where w is an NL 

sentence and s is a world state containing a set of possible MR 

logical forms that can be matched to w. However, our approach 

is intended to support both determining the most likely match 

between an NL and its MR in its world state, and semantic 

parsing, i.e. finding the most probable mapping from a given 

NL sentence to an MR logical form. 

Our generative model consists of two stages: 

• Event selection: P(e|s), chooses the event e in the world state 

s to be described. 

• Natural language generation: P(w|e), models the probability 

of generating natural-language sentence w from the MR 

specified by event e. 

 

Formal Language: first-order logic Natural sentences are 

mapped to logical form using Boxer (Bos, 2008), which maps 

the input sentences into a lexically-based logical form, in which 

the predicates are words in the sentence. For example, the 

sentence “A man is driving a car” in logical form is:  

 

 
 

 
 

We call Boxer’s output alone an uninterpreted logical form 

because predicates do not have meaning by themselves. They 

still need to be connected with an ontology. 

 

 

 
Algorithms and their dependencies in grambiguity 

 
input Navigation instructions and the corresponding 
navigation 
plans (e1, p1), . . . , (en, pn) 
output Lexicon, a set of phrase-meaning pairs 
1: main 
2: for n-gram w that appears in e = (e1, . . . , en) do 
3: for instruction ei that contains w do 
4: Add navigation plan pi to meanings(w) 
5: end for 
6: repeat 
7: for every pair of meanings in meanings(w) do 
8: Add intersections of the pair tomeanings(w) 
9: end for 
10: Keep k highest-scoring entries ofmeanings(w) 
11: until meanings(w) converges 
12: Add entries of meanings(w) with scores higher 
than threshold t to Lexicon 
13: end for 
14: end main 

V. CONCLUSION 

We have presented a novel system that learns a semantic parser 

for interpreting navigation instructions by simply observing the 

actions of human followers without using any prior linguistic 

knowledge or direct supervision.We demonstrated the need to 

model landmarks when executing longer, more complex 

instructions.We also introduced a plan refinement algorithm 

that fairly accurately infers the correct navigation plan 

specified in the instructions by using a learned 

semantic lexicon to remove extraneous information. Overall, 

our approach demonstrates an interesting and novel form of 

grounded language learning for a complex and useful task.  
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