

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 9 September 2014 Page No. 7966-7967

Parase Dipali B, IJECS Volume 3 Issue 9 September, 2014 Page No.7966-7967 Page 7966

Enhancement in the neighbor-based diskless

checkpointing approach

Parase Dipali B
1
, Dr Mrs Apte S S

2
, Shegadar A R

3

1 Solapur University, Walchand Institute Of Technology, Solapur,Computer Science Department

Akkalkot Road, Solapur, Maharashtra,India

deepali.parase@rediffmail.com
2 Solapur University, Walchand Institute Of Technology, Solapur,Computer Science Department

Akkalkot Road, Solapur, Maharashtra,India

headcse@gmail.com

3 Solapur University, BIGCE college of engineering, Solapur,Computer Science Department

Kegaon, Solapur, Maharashtra,India

amrutashegadar8887@gmail.com

Abstract: In this paper we are providing a solution for the stable storage requirement in the disk-based system. Fault tolerant is very

essential for distributed and parallel systems. To handle multiple processor failure here, we are using a diskless checkpointing approach. In

that we are enhancing the neighbor-based approach. Instead of storing checkpoint in the stable storage we are storing it in peer processor’s

main memory. To overcome the memory overhead we use a parity technique.

Keywords: diskless checkpointing, parity technique, neighbor based, XOR

1. Introduction

In a disk based system when we are using checkpointing

approach the checkpoint is to be stored onto the stable storage.

As number of checkpoint increases the disk overhead also

increases, which degrade the system’s performance. To

overcome this we use diskless checkpointing approach. There

are various methods available for implementation of diskless

checkpointing approach. Among that in this paper we are

discussing neighbor-based diskless checkpointing approach [2].

1.1 Neighbor based diskless checkpointing

In neighbor based diskless checkpointing approach each

processor stores its checkpoint on its peer processor’s memory.

Dedicated checkpoint processor is not needed here. Here, we

assign each processor a set of peer processor’s for storing their

checkpoint it is called as checkpoint storage node (CS). The

processor itself responsible for storing checkpoint from other

processors. Set of such processors are called checkpoint

coverage node (CC)[1]. Each processor stores checkpoint into

memory so problem of memory overhead occurs. To overcome

this problem we apply parity technique. Whenever processor

stores checkpoint into its memory it performs the XORing of

own local copy of checkpoint with the received copy of the

checkpoint i.e. parity-based diskless checkpointing technique

[3]. There is no need for dedicated checkpoint processor.

 When processor failure occurs, the failed processor is

recovered from one of its checkpoint storage node. Condition

here is that all nodes in checkpoint coverage nodes assigned for

particular node in checkpoint storage node should take

participate for recovering the failed processor’s checkpoint. In

this way a processor failure recovery can be performed.

2. Implementation

2.1 Design of CS

First design checkpoint coverage node (CC) and checkpoint

storage nodes (CS). All CSi’s and CCi’s have the same size

implies that load balance can be achieved for all the processors

in the system. The number of processors should participate into

our paper are 5. This can be calculated by using partial sum

restricted sequence (PSR sequence) as follows-

 A sequence of r positive integers ; ; . . . ; is defined

as a partial sum restricted sequence (or PSR sequence)if there

exists no l,m, p, and q, 0 ≤ l ≤ m < p ≤ q ≤r-1, for

which = . It is given in Table 1 below.

Table 1: Minimum n and One Possible PSR Sequence for k =2 to 5

k Possible

Minimum d Minimum n

2 1 1 5

3 1,2 3 11

4 1,3,2 6 20

5 1,3,5,2 11 35

In the above Table 1 n is number of processors, k is size of CS

and CC, d is sum of PSR sequence. The total number of n

http://www.ijecs.in/

Parase Dipali B, IJECS Volume 3 Issue 9 September, 2014 Page No.7966-7967 Page 7967

processors in the system is n=3d + 2. In our project we are

allowing k=2 i.e. minimum 2 simultaneous failures can be

allowed. So, the according to Table 5.1 value of d is 1. Hence,

n= (3*1) +2=5. Therefore, we are considering 5 processors

system. Here, we have to form a cyclic chain [4]. It is having

one element common in respective CS’s. Suppose we allow

processor failure up to 2 i.e. k=2 then the assignment of CS and

CC’s for processors P0,P1,P2,P3,P4 is shown in Table2 below.

 Table 2: List of CS and CC’s for k=2 and n=5

Processor

(Slave id)

CS CC

P0 {P1,P2} {P3,P4}

P1 {P2,P3} {P4,P0}

P2 {P3,P4} {P0,P1}

P3 {P4,P0} {P1,P2}

P4 {P0,P1} {P2,P3}

2.1 Working

We use a distributed or parallel system. Here, we take an

application called MAT. This application performs a matrix

multiplication. We are having two matrices of size 4000*4000.

Consider, we are allowing simultaneous k processor failures in

our system. For example k=2. So we require number of

processors equal to 5. To work in parallel we divide the task of

multiplication among processors. After dividing each processor

performs its computations. A row is taken as a checkpoint.

While performing computation each processor stores its

checkpoint into own memory as local copy. Also sends its

checkpoint to nodes in CS. While storing checkpoint each

processor performs XORing of own and received checkpoint

hence calculate parity. Therefore only parity is stored into

memory. So memory consumption problem is removed here.

 If one of the processor failures occurs, then at least one of

the node in CS should remains alive. And all CC’s of that CS

node including failed node should take participate in

calculating checkpoint for failed processor. Here we are storing

previous checkpoint as well as current checkpoint for the

system. While recovering first previous checkpoint is made

nullify using XORing with calculated parity. After this take

checkpoints from all of its CC’s including failed processor.

Perform XORing with current copy of checkpoint and calculate

checkpoint for the failed processor.

3. Conclusion

This study addresses diskless checkpointing issues in a

distributed or parallel computing environment and presents a

new approach to enhancing neighbor-based schemes to tolerate

multiple failures. The proposed scheme is unique in that it only

uses simple XOR operations for checkpointing and failure

recovery and does not require dedicated checkpoint processors.

This method allows checkpoint related operations to be evenly

distributed among all processors, achieving good load balance.

We have proposed that our approach works for k simultaneous

failures. But right now it works for only one processor at a

time. In future we will try for k simultaneous failures at a time.

4. References

[1] Ge-Ming Chiu, Member, IEEE Computer Society, and-

Ferng Chiu, “A New Diskless Checkpointing Approach

for Multiple Processor Failures”,IEEE transactions on

dependable and secure computing, vol. 8, no. 4,

july/august 2011

[2] Z. Chen, G.E. Fagg, E. Gabriel, J. Langou, T. Angskun,

G. Bosilca,and J. Dongarra, “Fault Tolerant High

Performance Computing by a Coding Approach,” Proc.

ACM Symp. Principles and Practice of Parallel

Programming (PPoPP ’05), pp. 213-223, June 2005.

[3] J.S. Plank, Y. Kim, and J. Dongarra, “Fault-Tolerant

Matrix Operations for Networks of Workstations Using

Diskless Checkpointing,” J. Parallel Distributed

Computing, vol. 43, no. 2, pp. 125-138, 1997.

[4] Z. Chen, G.E. Fagg, E. Gabriel, J. Langou, T. Angskun,

G. Bosilca,and J. Dongarra, “Fault Tolerant High

Performance Computing by a Coding Approach,” Proc.

ACM Symp. Principles and Practice of Parallel

Programming (PPoPP ’05), pp. 213-223, June 2005.

	PointTmp

