

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 6 June, 2013 Page No. 1900-1908

Tincy Rani, IJECS Volume2 Issue6 June, 2013 Page No.1900-1908 Page 1900

COMPARISON OF DIFFERENT UML TOOL: - TOOL APPROACH

Tincy Rani, Sushil Garg

CES Dept, RIMT-IET, CSE Dept, RIMT-IET.

Tisha11sep@yahoo.com,sushilgarg70@yahoo.com

Abstract :-

The Unified Modeling Language (UML) is becoming widely used for software and database modeling, and has been

accepted by the Object Management Group as a standard language for object-oriented analysis and design. In This

paper We compare different UML tool and there Pros & Cons with case study

.

1. Introduction :-

UML is a general purpose modeling language. It

was initially started to capture the behavior of

complex software and non software system and

now it has become an OMG standard. UML

provides elements and components to support the

requirement of complex systems. UML follows the

object oriented concepts and methodology. So

object oriented systems are generally modeled

using the pictorial language.UML diagrams are

drawn from different perspectives like design,

implementation, deployment etc.At the conclusion

UML can be defined as a modeling language to

capture the architectural, behavioral and structural

aspects of a system.Objects are the key to this

object oriented world. The basic requirement of

object oriented analysis and

design is to identify the object efficiently. After

that the responsibilities are assigned to the objects.

Once this task is complete the design is done using

the input from analysis. The UML has an

important role in this OO analysis and design, The

UML diagrams are used to model the design. So

the UML has an important role to play.

2. Argo Tool:-

ArgoUML was conceived as a tool and environment

for use in the analysis and design of object-oriented

software systems. ArgoUML is free and open source

UML modeling

software. It supports all UML diagram like class

diagram, use case diagram, activity diagram, sequence

diagram and deployment diagram.

ArgoUML was written in a java. This makes any

platform with java 5 or java 6. Argo tool generate XMI

files. XMI is a standard file format for UML designs

[2]. That will be supported by other tool like SD

Metrics tool.

2.1 Feature of ArgoUML:-

2.1. 1 UML Diagram support:- The following

diagram types are supported by AgroUML:-

 Class diagram

 State chart diagram

mailto:Tisha11sep@yahoo.com,sushilgarg70@yahoo.com
http://en.wikipedia.org/wiki/Pros_%26_Cons

Tincy Rani, IJECS Volume2 Issue6 June, 2013 Page No.1900-1908 Page 1901

 Activity diagram

 Use Case diagram

 Collaboration diagram

 Deployment diagram

 Sequence diagram

2.1. 2 XMI Support: - XMI is an xml based

exchange format between UML tools. ArgoUML uses

this as standard saving mechanism so that easy

interchange with other tools and compliance With

open standards are secured. Additionally, exporting the

model to XMI is possible. XMI Version 1.0 was used

for UML 1.3. ArgoUML 0.20 imports the UML 1.4

formats XMI 1.1 and 1.2. [3]

2.1. 3 Code Generation:-ArgoUML provides code

generation for java, c++, c#, PHP4 and PHP5. Other

languages may be added since the code generation is a

modular framework. The java code generation works

with the java reverse engineering to provide basic

round-trip engineering.

Reverse Engineering:-ArgoUML provides a modular

reverse engineering framework. Currently java source

code is provided by default and there are modules for

java jar and class file import.

2.1. 4 Diagram editing:-ArgoUML supports many

diagrams editing feature that help you edit UML

diagrams.

2.1. 5 Internationalization:-ArgoUML Internationali

–zation to American English, British English, French,

German, Italian, Portuguese, Spanish, Russian,

Norwegian Bokmal and Chinese.

2.1. 6 Several diagram export formats:-Diagrams can

be saved as GIF, PNG, PostScript, Encapsulated PS,

XMI, PGML and SVG.

2.2 Example of ArgoUML: - Argo tool contains

ArgoUML.jar, gef.-0.9.c jar, manifest.mf, nsuml.jar,

xerces.jar etc file. Figure 1 show the class diagram of

customer’s order which is made in Argo tool.

 Figure1:-Class diagram of customer’s order

2.3 Pros:-

 ArgoUML includes a number of features

[1] that supports the cognitive needs object-

oriented software designers and architects.

 ArgoUML supports open standards

extensively- UML, XMI, SVG, OCL and

other.

 ArgoUML is a 100% Pure Java application.

This allows ArgoUML to run on all platforms

for which a reliable port of java2 platform is

available.

 ArgoUML is an open source product,

 Which allows extending or customizing.

 2.4 Cons:-

 Not fully supports UML 2.0.

 Can’t Undo! Developers of argoUML must be

so optimistic that people (especially Software

Developers) never do mistakes.

 Written in Java, so run comparatively

slower than starUML.

 Lack of formatting options.

3. StarUML: - StarUML is an open source

project to develop fast, flexible, extensible,

featureful, and freely-available UML/MDA

platform running on Win32 platform. The goal

of the StarUML project is to build software

Tincy Rani, IJECS Volume2 Issue6 June, 2013 Page No.1900-1908 Page 1902

modeling tool and also platform that is a

compelling replacement of commercial UML

tools such as Rational Rose, Together and so

on.

a. Features of StarUML:-

i. Accurate UML standard model: - StarUML

strictly adheres to the UML standard

specification specified by the OMG for software

modeling. Considering the fact that the results of

design information can reach 10 years or more

into the future, dependence on vendor-specific

irregular UML syntax and semantics can be

quite risky. StarUML maximizes itself to order

UML 1.4 standard and meaning, and it accepts

UML 2.0 notation on the basis of robust Meta

model.

ii. Open software model format: - Unlike many

existing products that manage their own legacy

format models inefficiently, StarUML manages

all files in the standard XML format. Codes

written in easy-to-read structures and their

formats can be changed conveniently by using

the XML parser. Given the fact that XML is a

world standard, this is certainly a great

advantage, ensuring that the software models

remain useful for more than a decade.

iii. True MDA support: - StarUML truly supports

UML Profile. This maximizes extensibility of

UML, making modeling of applications possible

even in areas like finance, defense, e-business,

insurance, and aeronautics. Truly Platform

Independent Models (PIM) can be created, and

Platform Specific Model (PSM) and executable

codes can be automatically generated in any

way.

iv. Applicability of methodologies and platforms:

- StarUML manipulates the approach concept,

creating environments that adapt to any

methodologies/processes. Not only the

application framework models for platforms like

.NET and J2EE, but also basic structures of

software models (e.g. 4+1 view-model, etc.) can

be defined easily.

v. Excellent extensibility: - All functions of the

StarUML tools are automated according to

Microsoft COM. Any language which supports

COM (Visual Basic Script, Java Script, VB,

Delphi, C++, C#, VB.NET, Python, etc.) can be

used to control StarUML or develop integrated

Add-In elements.

vi. Software model verification function: - Users

can make many mistakes during software

modeling. Such mistakes can be very costly if

left uncorrected until the final coding stage. In

order to prevent this problem, StarUML

automatically verifies the software model

developed by the user, facilitating early

discovery of errors, and allowing more faultless

and complete software development.

vii. Useful Add-Ins: - StarUML includes many

useful Add-INS with various functionalities: it

generates source codes in programming

languages and converts source codes into

models, imports Rational Rose files, exchanges

modeling information with other tools using

XMI, and supports design patterns. These Add-

Ins offer additional reusability, productivity,

flexibility and interoperability for the modeling

information.

3.2 Example of StarUML: - StarUML is mostly

written in Delphi. However, StarUML is multi-

lingual project and not tied to specific

programming language, so any programming

languages can be used to develop StarUML. (For

example, C/C++, Java, Visual Basic, Delphi,

JScript, VBScript, C#, VB.NET ...). . Figure 2

show the class diagram of customer’s order

which is made in StarUML tool.

Tincy Rani, IJECS Volume2 Issue6 June, 2013 Page No.1900-1908 Page 1903

 Figure 2 Class diagram of customer’s order

3.3 Pros:-

 Supports most of the diagrams specified in UML

2.0.

 Very rich feature set and formatting options.

 Ability to generate source code from the UML

diagram.

 Reverse engineer the existing code into UML

diagrams.

 Supported languages: C++, C# and Java.

 Fast load time/execution time compared with other

UML tools.

 Familiar Visual Studio like user interface.

 Supports exporting diagrams into JPG / XMI

formats.

3.4 Cons of StarUML:-

 Does not support exporting diagrams into SVG

format.

4. Umbrello Tool :-

Umbrello UML Modeller is a UML diagram tool that

can support you in the software development process.

Especially during the analysis and design phases of

this process, UmbrelloUML Modeller will help you to

get a high quality product. UML can also be used to

document your software designs to help you and your

fellow developers.[4]

Having a good model of your software is the best way

to communicate with other developers working on the

project and with your customers. A good model is

extremely important for medium and big-size projects,

but it is also very useful for small ones. Even if you are

working on a small one man project you will benefit

from a good model because it will give you an

overview that will help you code things right the first

time.

UML is the diagramming language used to describing

such models. You can represent your ideas

in UML using different types of

diagrams. Umbrello UML Modeller 1.2 supports the

following types:

 Class Diagram

 Sequence Diagram

 Collaboration Diagram

 Use Case Diagram

 State Diagram

 Activity Diagram

 Component Diagram

 Deployment Diagram

4.2 Feature of Umbrello Tool :-

4.2.1 Copying objects as PNG images

Apart from offering you the normal copy, cut and

paste functionality that you would expect to copy

objects between different diagrams, Umbrello UML

Modeller can copy the objects as PNG pictures so that

you can insert them into any other type of document.

You do not need to do anything special to use this

feature, just select an object from a diagram (Class,

Actor, etc.) and

copy it (Ctrl-C, or using the menu), then open a

KWord document (or any program into which

you can paste images) and select Paste. This is a great

feature to export parts of your diagram as

simple pictures.

4.2.2 Exporting to an Image

You can also export a complete diagram as an image.

The only thing you need to do is select the diagram

you want to export, and then the option Export as

Picture from the Diagram menu.

Customer

+name = string
+location = string

<<create>>+send order()
+recevie order()

order

+date: integer
+number: integer

+conform()
+close()

normal order

+date: integer
+number: integer

+conform()
+close()
+dispatch()
+recevie()

special order

+date: integer
+number: integer

+conform()
+close()
+dispatch()

Tincy Rani, IJECS Volume2 Issue6 June, 2013 Page No.1900-1908 Page 1904

4.2.3 Printing

Umbrello UML Modeller allows you to print

individual diagrams. Press the Print button on the

application toolbar or selecting the Print option from

the File menu will give you a standard KDE Print

dialog from where you can print your diagrams.

4.2.4 Logical Folders

To better organize your model, especially for larger

projects, you can create logical folders in the Tree

View. Just select the option New! Folder from the

context menu of the default folders in the Tree View to

create them. Folders can be nested, and you can move

objects around by dragging them from one folder and

dropping them into another.

4.3 Example of Umbrello Tool (class diagram) :-

Class Diagrams show the different classes that make

up a system and how they relate to each other. Class

Diagrams are said to be “static” diagrams because

they show the classes, along with their methods and

attributes as well as the static relationships between

them: which classes “know” about which classes or

which classes “are part” of another class, but do not

show the method calls between them.

Umbrello UML Modeller showing a Class Diagram

A Class defines the attributes and the methods of a set

of objects. All objects of this class (instances of this

class) share the same behavior, and have the same set

of attributes (each object has its own set). The

term “Type” is sometimes used instead of Class, but it

is important to mention that these two are not the

same, and Type is a more general term.

In UML, Classes are represented by rectangles, with

the name of the class, and can also show the attributes

and operations of the class in two

other “compartments” inside the rectangle.

Visual representation of a Class in UML

Attributes[5]

In UML, Attributes are shown with at least their name,

and can also show their type, initial value and other

properties. Attributes can also be displayed with their

visibility:

 + Stands for public attributes

 # Stands for protected attributes

 - Stands for private attributes

Operations

Operations (methods) are also displayed with at least

their name, and can also show their parameters and

return types. Operations can, just as Attributes, display

their visibility:

 + Stands for public operations

 # Stands for protected operations

 - Stands for private operations

Templates

Classes can have templates, a value which is used for

an unspecified class or type. The template type is

specified when a class is initiated (i.e. an object is

created). Templates exist in modern C++ and will be

introduced in Java 1.5 where they will be called

Generics.

Class Associations

Tincy Rani, IJECS Volume2 Issue6 June, 2013 Page No.1900-1908 Page 1905

Classes can relate (be associated with) to each other in

different ways:[6]

Generalization

Inheritance is one of the fundamental concepts of

Object Oriented programming, in which a

class “gains” all of the attributes and operations of the

class it inherits from, and can override/modify some of

them, as well as add more attributes and operations of

its own.

In UML, a Generalization association between two

classes puts them in a hierarchy representing the

concept of inheritance of a derived class from a base

class. In UML, Generalizations are represented by a

line connecting the two classes, with an arrow on the

side of the base class.

Visual representation of a generalization in UML

Associations

An association represents a relationship between

classes, and gives the common semantics and structure

for many types of “connections” between objects.

Associations are the mechanism that allows objects to

communicate to each other. It describes the connection

between different classes (the connection between the

actual objects is called object connection, or link.

Associations can have a role that specifies the purpose

of the association and can be uni- or bidirectional

(indicates if the two objects participating in the

relationship can send messages to the other, of if only

one of them knows about the other). Each end of the

association also has a multiplicity value, which

dictates how many objects on this side of the

association can relate to one object on the other side.

In UML, associations are represented as lines

connecting the classes participating in the relationship,

and can also show the role and the multiplicity of each

of the participants. Multiplicity is displayed as a range

[min..max] of non-negative values, with a star (*) on

the maximum side representing infinite.

Visual representation of an Association in UML

Aggregation

Aggregations are a special type of associations in

which the two participating classes don't have an equal

status, but make a “whole-part” relationship. An

Aggregation describes how the class that takes the role

of the whole, is composed (has) of other classes, which

take the role of the parts. For Aggregations, the class

acting as the whole always has a multiplicity of one.

In UML, Aggregations are represented by an

association that shows a rhomb on the side of the

whole.

Visual representation of an Aggregation relationship

in UML

Composition

Compositions are associations that represent very

strong aggregations. This means, Compositions form

whole-part relationships as well, but the relationship is

so strong that the parts cannot exist on its own. They

exist only inside the whole, and if the whole is

destroyed the parts die too.

In UML, Compositions are represented by a solid

rhomb on the side of the whole.

Other Class Diagram Items

Class diagrams can contain several other items besides

classes.

Tincy Rani, IJECS Volume2 Issue6 June, 2013 Page No.1900-1908 Page 1906

Interfaces

Interfaces are abstract classes which means instances

can not be directly created of them. They can contain

operations but no attributes. Classes can inherit from

interfaces (through a realisation association) and

instances can then be made of these diagrams.

Datatypes

Datatypes are primitives which are typically built into

a programming language. Common examples include

integers and booleans. They can not have relationships

to classes but classes can have relationships to them.

Enums

Enums are a simple list of values. A typical example is

an enum for days of the week. The options of an enum

are called Enum Literals. Like datatypes they can not

have relationships to classes but classes can have

relationships to them.

Packages

Packages represent a namespace in a programming

language. In a diagram they are used to represent parts

of a system which contain more than one class, maybe

hundreds of classes.

5. Rational Rose:-

Rational Rose is a commercial case-tool software. It

supports two essential elements of modern software

engineering: component based development and

controlled iterative

development. Models created with Rose can be

visualized with several UML diagrams.

Rose also supports Round-Trip engineering with

several languages.

5.1 Why and where was Rational Rose used[7]

 The usage of Rational Rose was due to a subgoal of

the project Smart. The goal was to become familiar

with several products of Rational Software

Corporation. The retrieved knowledge was also used to

hold a presentation on this seminar about reverse

engineering.

Rational Rose was used as a case-tool in the project

Kahvinheitin where the idea was to

create a software for a microprocessor based coffee

maker. Project Kahvinheitin can be

considered as a subproject of the project Smart. In the

project Rose was used visually to create class-, state-

and packet diagrams. Rose’s Round-trip engineering

capabilities were also examined.

5.2 Example of Rational rose Tool:-

5.3 Pros:- Team Development[8]

 One of the main advantages of Rational Rose is that it

facilitates team development by providing full team

support. It easily allows users to work with their own

unique version of the model in their own workplace,

without moving from one place to another.

Development Process

 The software can easily be used throughout the whole

software development process, unlike other software.

Rose can be used at any stage during the development

process, as well as using it to help uncover and prevent

potential serious mistakes in the future.

Model Management

 Managing model changes is also made simple by

Rational Rose. Changes made to a model can be made

available to others by using a configuration

management and version control (CMVC) system.

This allows easy integration of changes into the model

without interfering with any developmental stage.

Tincy Rani, IJECS Volume2 Issue6 June, 2013 Page No.1900-1908 Page 1907

Legacy Problems

 Rational Rose addresses bad legacy problems; it lets

you go back and correct mistakes and flaws within the

legacy application. This is useful when facing software

that doesn’t fit the users’ needs.

Project Documentation

 Rational Rose allows the user to save on creating

additional project documentation by using the models

created in the software as a basis for design and

development. This is a good way to avoid poor

documentation practices. It includes ready-built

frameworks for different models, as well as a set of

reusable components. In addition, it provides templates

for creating new models, something that many users

enjoy.

Add-Ins

 One of the advantages of Rational Rose is the add-in

feature. This allows the user to install programming

languages in order to generate necessary codes.

Several add-ins can be installed, such as C++,

PowerBuilder, Forte, Java, Visual Basic, Oracle 8/9

and XML. Add-ins in the form of nonlanguage tools

can also be installed, such as the Microsoft Project. To

manage model changes, the add-in feature can be used

to install Rational’s ClearCase and Microsoft’s Visual

Source Cafe. A variety of add-ins are available, and

the great advantage is that the user can deactivate any

of the add-in features he does not need while working

on a model.

Configuration

 One of the great advantages about Rational Rose is

that the user can configure the interface and tailor the

application to suit her needs. Rose uses a graphical

user interface (GUI) that includes a browser, diagram

and document windows, as well as standard and

diagram toolbars. It always makes for a better work

environment when the user feels comfortable with her

interface and application.

5.4 Cons: -

 At first the tool seems to be quite complex.

 Some minor bugs were found.

 Separate tool had to be used (and learned) to

reverse-engineer files.

 Layout manager could have been a bit more

effective.

 Generated code was a bit obfuscated

6. Conclusion

In this paper we have described features of different

Uml Tool (Argo UML, Star UML, Umbrello, Rational

Rose) with case Study .

In Future we developed XMI Convertor tool and using

that Convertor tool we can Measure Coupling of UML

diagram.

7. References :-

.[1] Beck, K. and Johnson, R. Patterns generate architectures. Proc. European

Conf. on Object-Oriented Programming(ECOOP’94). Bologna, Italy. 1994.

 [2] Bonnardel, N. and Sumner, T. Supporting evaluation indesign: the

impact of critiquing systems on designers ofdifferent skill levels.

ActaPsychological. vol. 91. 1996. pp.221-244.

 [3] Chun, H. W. and Lai, E.M.-K. Intelligent critic system for architectural

design. Trans. Knowledge and DataEngineering. July 1997.

 [4] K. Toth, "Software Product Evolution in the Classroom," Proc.

American Soc. Eng. Education/PSW Conf., California State Univ., Fresno,

2002.

[5] K.C. Toth, "Simulating (Software) Product Evolution in the

Classroom," Proc. 6th Western Canadian Conf. Computing Education

(WCCCE 2001), Nelson, 2001, pp. 45&ndash,49.

[6] W.S. Humphrey, A Discipline for Software Engineering, Addison-

Wesley, 1995.

[7] http://www.rational.com/rose --Information on IBM Rational Rose,® A

commercial UML modeling tool.

[8] http://www.rational.com/xde --Information on IBM Rational XDE,® a

commercial UML modeling tool that is integrated with IBM's Eclipse

development platform.

[9] OMG Unified Modeling Language Specification, ver. 1.5, OMG

Unified Modeling Language Revision Task Force, Mar.

2003, www.omg.org/technology/documents/formal/uml.htm.

[10] Rational Rose Family, IBM/Rational Software Corp.,

2003,www.rational.com/products/rose/index.jsp.

[11] Rational XDE, IBM/Rational Software Corp.,

2003, www.rational.com/products/xde/index.jsp.

[12] S. Mellor and M. Balcer, Executable UML: A Foundation for Model-

Driven Architecture,Addison-Wesley, 2002.

Tincy Rani, IJECS Volume2 Issue6 June, 2013 Page No.1900-1908 Page 1908

[13] G. Sunyé, et al., "Using UML Action Semantics for Executable

Modeling and Beyond," Advanced Information Systems Eng.: 13th Int',l

Conf. (CAiSE 01), LNCS 2,068, Springer-Verlag, 2001, pp. 433-447.

[14] XSL Transformations (XSLT) Version

1.0, W3C, www.w3.org/TR/xslt, 2003.

[15] D. Milicev, "Domain Mapping Using Extended UML Object

Diagrams," IEEE Software, vol. 19, no. 2, Mar./Apr. 2002, pp. 90-97.

[16] Agrawal, G. Karsai and F. Shi, "A UML-Based Graph Transformation

Approach for Implementing Domain-Specific Model Transformations," to

be published in Int',l J. Software and Systems Modeling, 2003.

.

