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Abstract—The rapid growth of wireless content access implies the need for content placement and 

scheduling at wireless base stations. We study a system under which users are divided into clusters based on 

their channel conditions, and their requests are represented by different queues at logical front ends. 

Requests might be elastic (implying no hard delay constraint) or inelastic (requiring that a delay target be 

met). Correspondingly, we have request queues that indicate the number of elastic requests, and deficit 

queues that indicate the deficit in inelastic service. Caches are of finite size and can be refreshed periodically 

from a media vault. We consider two cost models that correspond to inelastic requests for streaming stored 

content and real-time streaming of events, respectively. We design provably optimal policies that stabilize 

the request queues (hence ensuring finite delays) and reduce average deficit to zero [hence ensuring that the 

quality-of-service (QoS) target is met] at small cost. We illustrate our approach through simulations. 

Index Terms—Content distribution network (CDN), delay-sensitive traffic, prediction, quality of service 

(QoS), queueing. 

I. INTRODUCTION 

THE PAST few years have seen the rise of smart 

handheld wireless devices as ameans of content 

consumption. Content might include streaming 

applications in which chunks of the file must be 

received under hard delay constraints, as well as file 

downloads such as software updates that do not have 

such hard constraints. The core of the Internet is 

well provisioned, and network capacity  

 

 

 

constraints for content delivery are at the media 

vault (where content originates) and at the wireless 

access links at end-users. Hence, a natural location 

to place caches for a content distribution network 

(CDN) would be at the wireless gateway, which 

could be a cellular base station through which users 

obtain network access. Furthermore, it is natural to 

try to take advantage of the inherent broadcast 

nature of the wireless medium to satisfy multiple 

users simultaneously. 

 
Fig. 1. Wireless content distribution. A media vault 

is used to place content in caches at wireless BSs, 

which can broadcast content. Users are grouped into 

clusters, each of whose requirements are aggregated 

at FEs. 

An abstraction of such a network is illustrated in 

Fig. 1. There are multiple cellular base stations 

(BSs), each of which has a cache in which to store 

content. The content of the caches can be 
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periodically refreshed through accessing a media 

vault. We divide users into different clusters, with 

the idea that all users in each cluster are 

geographically close such that they have statistically 

similar channel conditions and are able to access the 

same base stations. Note that multiple clusters could 

be present in the same cell based on the dissimilarity 

of their channel conditions to different base stations. 

The requests made by each cluster are aggregated at 

a logical entity that we call a front end (FE) 

associated with that cluster. The front end could be 

running on any of the devices in the cluster or at a 

base station, and its purpose is to keep track of the 

requests associated with the users of that cluster. 

The following constraints affect system operation: 1) 

the wireless network between the caches to the users 

has finite capacity;2) each cache can only host a 

finite amount of content;and 3) refreshing content in 

the caches from the media vault incurs a cost.Users 

can make two kinds of requests, namely: 1) elastic 

requests that have no delay constraints, and 2) 

inelastic requests that have a hard delay constraint. 

Elastic requests are stored in a request queue at each 

front end, with each type of request occupying a 

particular queue. Here, the objective is to stabilize 

the queue, so as to have finite delays. For inelastic 

requests, we adopt the model proposed in [2] 

wherein users request chunks of content that have a 

strict deadline, and the request is dropped if the 

deadline cannot be met. The idea here is to meet a 

certain target delivery ratio, which could be 

something like ―90% of all requests must be met to 

ensure smooth playout.‖ Each time an inelastic 

request is dropped, a deficit queue is updated by an 

amount proportional to the delivery ratio.We would 

like the average value of the deficit to be zero. 

In this paper, we are interested in solving the joint 

content placement and scheduling problem for both 

elastic and inelastic traffic in wireless networks. In 

doing so, we will also determine the value of 

predicting the demand for different types of content 

and what impact it has on the design of caching 

algorithms. 

A. Related Work 

The problem of caching, and content scheduling has 

earlier been studied for onlineWeb caching and 

distributed storage systems. A commonly used 

metric is a competitive ratio of misses, assuming an 

adversarial model. Examples of work in this context 

are [3]–[5]. Load balancing and placement with 

linear communication costs is examined in [6] and 

[7]. Here, the objective is to use distributed and 

centralized integer programming approaches to 

minimize the costs. However, this work does not 

take account for network capacity constraints, delay-

sensitive traffic, or wireless aspects. The techniques 

that we will employ are based on the literature on 

scheduling schemes. Tassiulas et al. proposed the 

MaxWeight scheduling algorithm for switches and 

wireless networks in their seminal work [8]. They 

proved that this policy is throughput-optimal and 

characterized the capacity region of the single-hop 

networks as the convex hull of all feasible 

schedules. Various extensions of this work that 

followed since are [9]–[12]. These papers explore 

the delays in the system for single downlink with 

variable connectivity, multirate links, and multihop 

wireless flows. However, these do not consider 

content distribution with its attendant question of 

content placement. Closest to our work is [13], 

which, however, only considers elastic traffic and 

has no results on the value of prediction. 

 

 

B. Main Results 

In this paper, we develop algorithms for content 

distribution with elastic and inelastic requests. We 

use a request queue to implicitly determine the 

popularity of elastic content. Similarly, the deficit 

queue determines the necessary service for inelastic 

requests. Content may be refreshed periodically at 

caches. We study two different kinds of cost models, 

each of which is appropriate for a different content 

distribution scenario. The first is the case of file 

distribution (elastic) along with streaming of stored 

content (inelastic), where we model cost in terms of 

the frequency with which caches are refreshed. The 

second is the case of streaming of content that is 

generated in real-time, where content expires after a 

certain time, and the cost of placement of each 

packet in the cache is considered. 

• We first characterize the capacity region of the 

system and develop feasibility constraints that any 

stabilizing algorithm must satisfy. Here, by stability 

we mean that elastic request queues have a finite 

mean, while inelastic deficit values are zero on 

average. 

• We develop a version of the max-weight 

scheduling algorithm that we propose to use for joint 

content placement and scheduling. We show that it 

satisfies the feasibility constraints and, using a 

Lyapunov argument, also show that it stabilizes the 

system of the load within the capacity region. As a 

by-product, we show that the value of knowing the 
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arrival rates is limited in the case of elastic requests, 

while it is not at all useful in the inelastic case. 

• We next study another version of our content 

distribution problem with only inelastic traffic, in 

which eachcontent has an expiration time. We 

assume that there is a cost for replacing each expired 

content chunk with a fresh one. For this model, we 

first find the feasibility region and, following a 

similar technique to [14], develop a joint content 

placement and scheduling algorithm that minimizes 

the average expected cost while stabilizing the 

deficit queues. 

• We illustrate our main insights using simulations 

on a simple wireless topology and show that our 

algorithm is indeed capable of stabilizing the 

system. We also propose two simple algorithms, 

which are easily implementable, and compare their 

performance to the throughput-optimal scheme. 

II. SYSTEM MODEL 

Consider the content distribution network depicted 

in Fig. 1. There is a set of base stations  and each 

base station is associated with a cache. The caches 

are all connected to a media vault that contains all 

the content. The users in the system are divided into 

clusters based on their geographical positions, and 

we let     denote the set of these clusters. Also, as 

discussed in the Introduction, there are front ends in 

each cluster, also denoted n€N whose purpose is to 

aggregate requests from the users. Time is slotted, 

and we divide time into frames consisting of D time-

slots. Requests are made at the beginning of each 

frame. There are two types of users in this system—

inelastic and elastic—based on the type of requests 

that they make. Requestsmade by inelastic 

usersmust be satisfied within the frame in which 

they were made. Elastic users do not have such a 

fixed deadline, and these users arrive, make a 

request, are served, and depart. 

The base stations employ multiple access schemes 

(e.g.,OFDMA), and hence each base station can 

support multiple simultaneous unicast transmissions, 

as well as a single broadcast transmission. It is also 

possible to study other scenarios (e.g., multicast 

transmissions to subsets of users) using our 

framework.  

Note that while the Bernoulli process models an 

inelastic request for each user, the distribution of the 

requests over different content types can be chosen 

arbitrarily (e.g., following a Zipfslaw that captures 

the varied popularity of different types). Since there 

are limited resources in the system, all requests 

cannot be served. In order to provide enough service 

to each user, we need to decide on a minimum 

delivery ratio for inelastic users. The delivery ratio 

is the proportion of inelastic requests that are served, 

and hence the expected service required by user µ is 

nuyu, in which nu the minimum acceptable delivery 

ratio is. This model follows that of [2] and is 

consistent with the idea that streaming media can 

tolerate a fraction of chunk losses, but has hard 

delay constraints on the received chunks. 

We further assume that arrivals are independently 

and identically distributed over frames. An elastic 

request that does not get served during a frame will 

be enqueued and wait for the service during the next 

frames. However, we need to make sure that the 

request queue lengths in each cluster remain 

bounded as time passes so that the delay does not 

become unboundedly large. Furthermore, in order to 

ensure that these requests are not served with infinite 

periodicity, we assume that each must be served 

using a unicast transmission. This measure would 

imply that any particular elastic request does not 

have to wait arbitrarily long. 

In Section V, we explicitly model the reloading cost 

for a variation of our caching model. For this model, 

we assume the content of the caches expires and will 

not be useful at the end of each frame. However, 

placing each chunk in a cache induces a cost. 

Therefore, in order to reduce the cost, wemay 

occasionally choose to reload a cache partially and 

not utilize the whole available capacity. For this 

variation, we will only consider inelastic traffic, 

which is consistent with the idea of real-time 

streaming of live events. 

Table I summarizes the notations used in this paper. 

We will first study a pure elastic system in Section 

III,where the requests are served through wireless 

unicast channels between base stations and front 

ends. We will address the joint elastic-inelastic 

system in Section IV. 

III. PURE UNICAST ELASTIC SCENARIO 

In this section, we assume there are only requests for 

elastic content. As noted in Section II, these requests 

are to be served using unicast communications. For 

notational convenience, we assume that 

transmissions are between base stations and front 

ends, rather than to the actual users making the 

requests.We first 
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TABLE I 

SUMMARY OF NOTATION 

 
determine the capacity region, which is the set of all 

feasible requests. Note that this model, in which 

front ends have independent and distinct channels to 

the caches, differs from the previously studied wired 

caching systems (see, e.g., [13]) because the 

wireless channels are not always ON. Therefore, the 

placement and scheduling must be properly 

coordinated according to the channel states. 

 
 

 

denotes the expectation. Our objective is to provide 

placement and scheduling algorithms that can fulfill 

any set of strictly feasible requests. 
B. Value of Prediction 

 

The question is whether this information would help 

in designing a throughput-optimal caching and 

scheduling scheme. Using the capability to predict 

requests, we could potentially decide on the elastic 

content distribution scheme a priori. Notice that this 

is equivalent to solving (3) to find the appropriate 

joint distribution of the content placement and the 

service schedule. The solution would yield a set of 

caching and scheduling choices, and a probability 

with which to use each one based on channel 

realizations. While such an algorithm is very simple 

to implement, solving (3) for the set of schedules is 

quite hard. Consequently, we see that prediction of 

the elastic requests has limited value in the context 

of devising appropriate content distribution 

algorithms. We will see in Section IV that prediction 

is even less useful for the case of In elastic requests. 
C. Throughput-Optimal Scheme 
Since it is hard to realize an offline prediction, 

placement and scheduling scheme, we now study 

our system of elastic requests in a queueing context. 

The development here is similar to the traditional 

switch scheduling problem, as relevant to our model. 

We assume the elastic requests in cluster go through 

a set of request queues whose lengths at frame are 

denoted by for each content , and follow the 

dynamic. 
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which is negative for large enough queue length 

values qn,e ,and the Lyapunov theorem implies the 

stability of the request queues. 

In Section IV, we will see that the case of 

inelastic requests is different and the prediction has 

even less significance on the scheduling of the 

inelastic content distribution network. 

 
IV. JOINT ELASTIC-INELASTIC SCENARIO 

 p 

In this section, we study the general case where 

elastic and inelastic requests coexist in the system. 

Recall that the elastic requests are assumed to be 

served through unicast communications between the 

caches and front ends, while the base stations 

broadcast the inelastic contents to the inelastic 

users. We further assumed servers can employ 

OFDMA method to simultaneously transmit over 

their single broadcast and multiple unicast channels. 

Although these two types of traffic do not share the 

access medium, all the content must share the 

common space in the caches. Consequently, we 

require an algorithm that jointly solves the elastic 

and inelastic scheduling problems. In this section, 

we first determine the general capacity region of the 

system and then present our algorithm. 
A. Joint Elastic-Inelastic Capacity Region 

Note that each cache can broadcast at most D 

contents during a frame, hence we require 

 
The actual inelastic service, provided to user for 

content , depends not only on the channel states 

c
m

u(k) and the cache presence P
m

i(K), but also on 

whether there is a new (not expired)request for 

content (i.e.aui(k)=1). It should be straightforward to 

verify that the total actual inelastic service provided 

to user during frame is 

 

 
V. INELASTIC CACHING WITH CONTENT EXPIRY 

In this section, we study an inelastic caching 

problem where the contents expire after some time. 

In this new model, which is compatible with real-

time streaming of live events, we onlyconsider 

inelastic traffic and assume that the lifetime of an 

inelastic content is equal to the length of a frame. 

Hence, we can cache a content only for the duration 

of a frame after which the content will not be useful 

any longer. 

 
VI. SIMULATION 
In this section, we use MATLAB simulations of a 

wireless content distribution network to evaluate the 

performance of: 1) the proposed throughput-optimal 

algorithms; 2) a suboptimal decomposed scheme; 

and 3) a distributed greedy policy. 
TABLE II 

PERFORMANCE OF ALGORITHM 2 
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TABLE III 

PERFORMANCE OF ALGORITHM 4 

 
 

 
We saw, in Section IV, that a throughput-optimal 

scheme must jointly decide on elastic and inelastic 

scheduling and dynamically allocate the cache 

spaces to these two types of traffic based on the 

channel states and new request arrivals. This will 

result in a fairly complex optimization problem as in 

Algorithm 2. In Algorithm 4, we propose a simple 

(suboptimal)scheme that divides the cache spaces 

for different types of contenta priori. Following this 

static cache resource allocation, the scheduling of 

inelastic and elastic requests can be completely 

decomposed, and the (sub)optimal schedule can be 

found with less complexity.Note that, in general, 

finding the best fixed allocation of the cache 

capacities to elastic and inelastic traffic (i.e., and in 

Algorithm 4) is not straightforward and may be 

found using heuristic methods or by simulation. 

However, for the symmetric scenarios, in which the 

distributions of the requests are similar, it is straight 

forward to verify is sufficient for VE serving elastic 

requests. 
TABLE IV 

PERFORMANCE OF ALGORITHM 5 

 
TABLE V 

COST EFFECTIVE 

 
 

VII. CONCLUSION 

In this paper, we studied algorithms for 

content placement and scheduling in wireless 

broadcast networks. While there has been significant 

work on content caching algorithms, there is much 

less on the interaction of caching and networks. 

Converting the caching and load balancing problem 

into one of queueing and scheduling is hence 

interesting. We considered a system in which both 

inelastic and elastic requests coexist. Our objective 

was to stabilize the system in terms of finite queue 

lengths for elastic traffic and zero average deficit 

value for the inelastic traffic. We showed how an 

algorithm that jointly performs scheduling and 

placement in such a way that Lyapunov drift is 

minimized is capable of stabilizing the system. In 

designing these schemes, we showed that knowledge 

of the arrival process is of limited value to taking 

content placement decisions. We incorporated the 

cost of loading caches in our problem with 

considering two different models. In the first model, 

cost corresponds to refreshing the caches with unit 

periodicity. In the second model relating to inelastic 

caching with expiry, we directly assumed a unit cost 

for replacing each content after expiration. A max-

weight-type policy was suggested for this model, 

which can stabilize the deficit queues and achieves 

an average cost that is arbitrarily close to the 

minimum cost. 
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