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Abstract--- The on-demand use, high scalability, and low maintenance cost nature of cloud computing have attracted more and more 

enterprises to migrate their legacy applications to the cloud environment. Although the cloud platform itself promises high reliability, 

ensuring high quality of service is still one of the major concerns, since the enterprise applications are usually complicated and consist of a 

large number of distributed components. Thus, improving the reliability of an application during cloud migration is a challenging and 

critical research problem. To address this problem, we propose a reliability-based optimization framework, named RO Cloud, to improve the 

application reliability by fault tolerance. RO Cloud includes two ranking algorithms. The first algorithm ranks components for the 

applications that all their components will be migrated to the cloud. The second algorithm ranks components for hybrid applications that 

only part of their components are migrated to the cloud. Based on the ranking result, optimal fault-tolerant strategy will be selected 

automatically for the most significant components with respect to their predefined constraints. The experimental results show that by 

refactoring a small number of error-prone components and tolerating faults of the most significant components, the reliability of the 

application can be greatly improved. 

 

Keywords—RO Cloud, Refactoring, Information Flow 

Control(IFC) 

I. Introduction 

Cloud computing enables convenient, on-demand network 

access to a shared pool of configurable computing resources.In 

the cloud computing environment, the computing resources can 

be provisioned to users on-demand, like the electricity grid 

[21]. Startup companies can deploy their newly developed 

Internet services to the cloud without the concern of upfront 

capital or operator expense [3]. However, cloud computing is 

not only for startups, its cost effective, high scalability and high 

reliability features also attracted enterprises to migrate their 

legacy applications to the cloud. Before the migration, 

enterprises usually have the concern to keep or improve the 

application reliability in the cloud environment [26] [4]. Thus, 

reliability based optimization when migrating legacy 

applications to the cloud environment is becoming an urgently 

required research problem [9]. In traditional software reliability 

engineering, there are four major approaches to improve 

system reliability: fault prevention, fault removal, fault 

tolerance, and fault forecasting. When turning to the cloud 

environment, since the applications deployed in the cloud are 

usually removal techniques are not sufficient [23]. Another 

approach for building reliable systems is software fault 

tolerance, which is to employ functionally equivalent 

components to tolerate faults.  

Although the cloud platform is flexible and can provide 

resources on-demand, there is still a charge for using the cloud 

components [19]. At the same time, legacy applications usually 

involve a large number of components, so it will be expensive 

to provide redundancies for each component [15]. To reduce 

the cost so as to assure highly reliability in a limited budget 

during the migration of legacy applications to cloud, an 

efficient reliability-based optimization framework is needed. 

II. Related work 

Legacy applications usually involve a large number of 

components, so it will be expensive to provide redundancies 

for each component [10]. To reduce the cost so as to assure 

highly reliability in a limited budget during the migration of 

legacy applications to cloud, an efficient reliability-based 

optimization framework is needed. In the previous work, FT 

Cloud is proposed to improve the reliability of newly 

developed cloud applications, which identifies the most 

significant components depending on the structure information 

and expert knowledge of critical components[25]. Compared 

with newly developed applications, the reliability-based 

optimization of legacy applications has the following 

difficulties: 

The failure rate of different components in a legacy application 

can vary [29]. For example, some components in the legacy 

application are implemented by out-dated technology and have 

not been well maintained. These components can have great 

impact on application reliability. But they may not be selected 

as significant component by FT Cloud, since FT Cloud only 
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employs structure information and does not take component 

failure rate information into consideration [20] [14]. 

FT Cloud needs expert knowledge to manually designate 

critical components. However, the migration team may not be 

the creator of the legacy application [1]. So it will be difficult 

for them to manually list the critical components. Furthermore, 

the number of legacy applications as well as the number of 

components in these applications is large, it is thus impractical 

to manually identify critical components [6]. 

Some applications may be restricted by enterprise security 

polices and only part of their components can be migrated to 

the cloud. The component ranking and fault-tolerant strategy 

selection algorithms should take these hybrid applications into 

consideration [30].  

For these two reasons, FTCloud is not sufficient for improving 

the reliability of legacy applications. We need to take 

advantage of all materials of the legacy applications at hand, 

such as application logs, source code, etc. to automatically 

identify the components whose failures have great impact on 

the application reliability [11]. Then provide backups for them 

using redundant resources in the cloud to improve the 

application reliability [17]. Based on this idea, we proposed 

Reliability-based Optimization in Cloud environment 

(ROCloud), which is a component ranking framework based on 

historical information to identify the significant components 

that have great impact on application reliability, and suggest 

optimal fault tolerance strategies automatically [8]. ROCloud 

can help the designer optimize legacy application design to get 

a more reliable and robust cloud application effectively and 

efficiently [24]. 

 

III. System  model 

Systems design is the process of defining the 

architecture, components, modules, interfaces, and data for 

a system to satisfy specified requirements. Systems design 

could be seen as the application of systems theory to product 

development [22]. There is some overlap with the disciplines 

of systems analysis and systems engineering. 

1) Authentication And Authorization 

 Authentication and Authorization process are the required 

processes to Verifying the User Originality and Appropriate 

Session Activities of the Registered User. For strong 

authorization use biometric application.  

2) Optimization Framework 

Reliability optimization framework, which includes three 

phases: 

 i)   Legacy application analysis, 

 ii) Automated significance ranking,  

 iii) Fault tolerance strategy selection. 

 

 

Fig 1: Framework for system design 

The processes of each phase are as follows:  

Both structure and failure information is extracted 

during the legacy application analysis phase. The structure 

information extraction consists of two sub processes: 

component extraction and invocation extraction. The failure 

information including failure rate and failure impact are 

collected from the execution logs and test results of the legacy 

application.  Components with a failure rate higher than the 

threshold will be re-factored, and their reliability properties 

will be updated. A component graph is built for the legacy 

application based on the structure as well as the failure 

information. In the automated significance ranking phase, two 

algorithms are proposed for ordinary applications that can be 

migrated to public cloud and hybrid applications that need to 

be migrated to hybrid cloud, respectively [12].The 

performance, overhead, and cost of various fault tolerance 

strategy candidates are analyzed and the most suitable fault 

tolerance strategy is selected for each significant component 

based on its predefined constraint. 

a. Legacy Application Analysis 

The structure information includes components and 

the invocation information. The components are extracted from 

legacy applications by source code and documentation analysis 

[7]. The invocation information such as invocation links and 

invocation frequencies can be identified from application trace 

logs. Source codes and documentations are useful 

supplementary materials in addition to trace logs. All the 

information are represented in a component graph [16]. The 

main optimization goal is reliability, so a more straightforward 

way is employed to determine which components should be re-

implemented: components with failure rates greater than a 

threshold [28]. The selection of the threshold is dependent on 

project budget and the target application failure rate, since 

extra development and testing effort is required for component 

reimplementation. After refactoring, the component failure 

rates will be estimated based on test results, and the component 

reliability property dataset will be updated. 

b. Automated Significance Ranking 

Based on the component graph, two component 

ranking algorithms are proposed in this section. The first 

algorithm ranks components for ordinary applications where all 

their components can be migrated to the cloud. The second 

algorithm rank components for hybrid applications which can 

be partly moved to the cloud [13]. In a distributed application, 
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the failures of the components which are frequently invoked by 

many other components tend to have greater impact on the 

system compared with the components which are rarely 

invoked by others.  

Thus these components are considered to be more 

important from the reliability aspect and should be ranked at 

the front of component list [5]. Inspired by the Page Rank 

algorithm, we propose an algorithm to calculate the 

significance value of each component of the migratory 

application employing the component invocation relationships 

and reliability properties. Based on the component graph and 

component reliability information, the component ranking 

algorithm includes the following steps: 

1) Initialize by randomly assigning a numerical value 
between 0 and 1 to each component in the 
component graph. 

2) Compute the significance value for a component ci 
by:  

 

With the above approach, the significance values of 

the components can be calculated by considering the 

application structure information, the invocation relationships, 

and the knowledge of component reliability properties in 

combination [27]. A component with a larger significant value 

is considered to be more significant. The failures of these 

significant components will have great impact on other 

components and thus tend to cause application failures. 

c. Fault Tolerance Strategy Selection 

Software fault tolerance is widely adopted for critical 

systems. At the same time, a cloud platform also provides 

approaches such as virtual machine restart, virtual machine 

migration, etc. to improve components reliability [18]. By 

employing these techniques to provide functionally equivalent 

components, the component failures can be tolerated and thus 

the overall system reliability can be increased. 

 

 

IV. Experimental results 

Cloud computing is becoming a mainstream aspect of 

information technology. A number of tasks have been carried 

out on cloud computing, including virtualization resource 

provision and monitoring privacy and trust service level 

agreement, storage management, data consistency and 

replication, etc. In recent years, research investigations have 

been conducted on migrating legacy applications to cloud 

environment presented a case study of migrating enterprise IT 

system to IaaS cloud, which illustrated the benefits and major 

concerns of cloud migration surveyed various approaches for 

moving legacy system to SOA environment, including 

wrapping, replacement, etc. We focused on the procedure of 

migration, strategies on legacy system modernization and 

methods to improve the cloud platform’s reliability, and 

focuses on the re-design phase during the migration and 

proposes an optimization framework to improve the cloud 

application’s reliability.  

The limitations are Automatically ranking components 

for legacy applications becomes important, which can aid the 

designer to optimize the application .The high scalability 

feature of the cloud makes redundant components easier be 

obtained. Thus, software fault tolerance becomes a feasible 

approach to improve the application reliability. At the same 

time, approaches provided by the cloud platform can also help 

to build reliable cloud applications. 

The main idea of this framework is first to identify 

significant components whose failures can have great impact on 

application reliability based on the application structure 

information and components reliability properties, and then 

provide fault-tolerant mechanism for these components to 

improve application reliability.RO Cloud includes two ranking 

algorithms.  

The first algorithm ranks components for the 
applications that all their components can be migrated to the 
cloud.  The second algorithm ranks components for hybrid 
applications that only part of their components can be migrated 
to the cloud. We conduct extensive experiments to evaluate the 
impact of significant components and their reliability properties 
on the reliability of the migrated application using reliability 
information of real world Web services. 

The advantages are automatically ranking components 

for legacy applications becomes important, which can aid the 

designer to optimize the application. Optimization of the 

applications based on RO framework makes it more Reliable. 

Since the critical components are ranked first, the fault 

tolerance is provided completely, as these critical components 

all optimized before migration. 

 

 

 

 

V. Conclusion 

The reliability-based design optimization framework 

for migrating legacy applications to the cloud environment 

framework consists of three parts: legacy application analysis, 

significant component ranking and automatic optimal fault-
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tolerant strategy selection. Two algorithms are proposed in the 

ranking phase: the first ranks components for the applications 

where all the components can be migrated to the cloud; the 

second ranks components for the applications where only part 

of the components can be migrated to the cloud. In both 

algorithms, the significance value of each component is 

calculated based on the application structure, component 

invocation relationships, component failure rates, and failure 

impacts. A higher significance value means the component 

imposes higher impact on the application reliability than others. 

After finding the most significant components, an optimal fault-

tolerant strategy can be selected automatically with respect to 

the time and cost constraints. The experimental results show 

that ROCloud1 and ROCloud2 outperform other approaches 

and can greatly improve the application reliability. In RO 

Cloud, each component is considered as independent and the 

fault-tolerant strategy selection is carried out on component 

basis. In the future, we will study the fault tolerance of 

interrelated components. In addition, RO Cloud uses the ratios 

of component failure to application failure to measure the 

failure impact of components. While the relationship between 

component failures and application failures can be 

complicated, more sophisticated models will be investigated in 

the future work. 

VI. future work 

Considering more factors when computing the weights 

of invocations links. Taking the constraint factors such as cost 

into consideration during the ranking phase, and letting the 

designer know intuitively which components can make the 

biggest improvement while cost the least. More experimental 

analysis on the impact of incorrect prior knowledge such as 

invocation frequencies and component failure rates. 
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