
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issue 5 May 2016, Page No. 16643-16646

Ancy Nevil.S, IJECS Volume 05 Issue 5 May 2016 Page No.16643-16646 Page 16643

Optimized cloud migration using reliabilty framework

 Ancy Nevil.S, Kavitha Priya . C.J

1 Jeppiaar Institute of Technology

Chennai,India

ancys@jeppiaarinstitute.org

2
Jeppiaar Institute of Technology

Chennai,India
kavithapriyacj@jeppiaarinstitute.org

Abstract--- The on-demand use, high scalability, and low maintenance cost nature of cloud computing have attracted more and more

enterprises to migrate their legacy applications to the cloud environment. Although the cloud platform itself promises high reliability,

ensuring high quality of service is still one of the major concerns, since the enterprise applications are usually complicated and consist of a

large number of distributed components. Thus, improving the reliability of an application during cloud migration is a challenging and

critical research problem. To address this problem, we propose a reliability-based optimization framework, named RO Cloud, to improve the

application reliability by fault tolerance. RO Cloud includes two ranking algorithms. The first algorithm ranks components for the

applications that all their components will be migrated to the cloud. The second algorithm ranks components for hybrid applications that

only part of their components are migrated to the cloud. Based on the ranking result, optimal fault-tolerant strategy will be selected

automatically for the most significant components with respect to their predefined constraints. The experimental results show that by

refactoring a small number of error-prone components and tolerating faults of the most significant components, the reliability of the

application can be greatly improved.

Keywords—RO Cloud, Refactoring, Information Flow

Control(IFC)

I. Introduction

Cloud computing enables convenient, on-demand network

access to a shared pool of configurable computing resources.In

the cloud computing environment, the computing resources can

be provisioned to users on-demand, like the electricity grid

[21]. Startup companies can deploy their newly developed

Internet services to the cloud without the concern of upfront

capital or operator expense [3]. However, cloud computing is

not only for startups, its cost effective, high scalability and high

reliability features also attracted enterprises to migrate their

legacy applications to the cloud. Before the migration,

enterprises usually have the concern to keep or improve the

application reliability in the cloud environment [26] [4]. Thus,

reliability based optimization when migrating legacy

applications to the cloud environment is becoming an urgently

required research problem [9]. In traditional software reliability

engineering, there are four major approaches to improve

system reliability: fault prevention, fault removal, fault

tolerance, and fault forecasting. When turning to the cloud

environment, since the applications deployed in the cloud are

usually removal techniques are not sufficient [23]. Another

approach for building reliable systems is software fault

tolerance, which is to employ functionally equivalent

components to tolerate faults.

Although the cloud platform is flexible and can provide

resources on-demand, there is still a charge for using the cloud

components [19]. At the same time, legacy applications usually

involve a large number of components, so it will be expensive

to provide redundancies for each component [15]. To reduce

the cost so as to assure highly reliability in a limited budget

during the migration of legacy applications to cloud, an

efficient reliability-based optimization framework is needed.

II. Related work

Legacy applications usually involve a large number of

components, so it will be expensive to provide redundancies

for each component [10]. To reduce the cost so as to assure

highly reliability in a limited budget during the migration of

legacy applications to cloud, an efficient reliability-based

optimization framework is needed. In the previous work, FT

Cloud is proposed to improve the reliability of newly

developed cloud applications, which identifies the most

significant components depending on the structure information

and expert knowledge of critical components[25]. Compared

with newly developed applications, the reliability-based

optimization of legacy applications has the following

difficulties:

The failure rate of different components in a legacy application

can vary [29]. For example, some components in the legacy

application are implemented by out-dated technology and have

not been well maintained. These components can have great

impact on application reliability. But they may not be selected

as significant component by FT Cloud, since FT Cloud only

mailto:angelinjoseph10@gmail.com
mailto:kavithapriyacj@jeppiaarinstitute.org

DOI: 10.18535/ijecs/v5i5.51

Ancy Nevil.S, , IJECS Volume 05 Issue 5 May 2016 Page No.16643-16646 Page 16644

employs structure information and does not take component

failure rate information into consideration [20] [14].

FT Cloud needs expert knowledge to manually designate

critical components. However, the migration team may not be

the creator of the legacy application [1]. So it will be difficult

for them to manually list the critical components. Furthermore,

the number of legacy applications as well as the number of

components in these applications is large, it is thus impractical

to manually identify critical components [6].

Some applications may be restricted by enterprise security

polices and only part of their components can be migrated to

the cloud. The component ranking and fault-tolerant strategy

selection algorithms should take these hybrid applications into

consideration [30].

For these two reasons, FTCloud is not sufficient for improving

the reliability of legacy applications. We need to take

advantage of all materials of the legacy applications at hand,

such as application logs, source code, etc. to automatically

identify the components whose failures have great impact on

the application reliability [11]. Then provide backups for them

using redundant resources in the cloud to improve the

application reliability [17]. Based on this idea, we proposed

Reliability-based Optimization in Cloud environment

(ROCloud), which is a component ranking framework based on

historical information to identify the significant components

that have great impact on application reliability, and suggest

optimal fault tolerance strategies automatically [8]. ROCloud

can help the designer optimize legacy application design to get

a more reliable and robust cloud application effectively and

efficiently [24].

III. System model

Systems design is the process of defining the

architecture, components, modules, interfaces, and data for

a system to satisfy specified requirements. Systems design

could be seen as the application of systems theory to product

development [22]. There is some overlap with the disciplines

of systems analysis and systems engineering.

1) Authentication And Authorization

 Authentication and Authorization process are the required

processes to Verifying the User Originality and Appropriate

Session Activities of the Registered User. For strong

authorization use biometric application.

2) Optimization Framework

Reliability optimization framework, which includes three

phases:

 i) Legacy application analysis,

 ii) Automated significance ranking,

 iii) Fault tolerance strategy selection.

Fig 1: Framework for system design

The processes of each phase are as follows:

Both structure and failure information is extracted

during the legacy application analysis phase. The structure

information extraction consists of two sub processes:

component extraction and invocation extraction. The failure

information including failure rate and failure impact are

collected from the execution logs and test results of the legacy

application. Components with a failure rate higher than the

threshold will be re-factored, and their reliability properties

will be updated. A component graph is built for the legacy

application based on the structure as well as the failure

information. In the automated significance ranking phase, two

algorithms are proposed for ordinary applications that can be

migrated to public cloud and hybrid applications that need to

be migrated to hybrid cloud, respectively [12].The

performance, overhead, and cost of various fault tolerance

strategy candidates are analyzed and the most suitable fault

tolerance strategy is selected for each significant component

based on its predefined constraint.

a. Legacy Application Analysis

The structure information includes components and

the invocation information. The components are extracted from

legacy applications by source code and documentation analysis

[7]. The invocation information such as invocation links and

invocation frequencies can be identified from application trace

logs. Source codes and documentations are useful

supplementary materials in addition to trace logs. All the

information are represented in a component graph [16]. The

main optimization goal is reliability, so a more straightforward

way is employed to determine which components should be re-

implemented: components with failure rates greater than a

threshold [28]. The selection of the threshold is dependent on

project budget and the target application failure rate, since

extra development and testing effort is required for component

reimplementation. After refactoring, the component failure

rates will be estimated based on test results, and the component

reliability property dataset will be updated.

b. Automated Significance Ranking

Based on the component graph, two component

ranking algorithms are proposed in this section. The first

algorithm ranks components for ordinary applications where all

their components can be migrated to the cloud. The second

algorithm rank components for hybrid applications which can

be partly moved to the cloud [13]. In a distributed application,

DOI: 10.18535/ijecs/v5i5.51

Ancy Nevil.S, , IJECS Volume 05 Issue 5 May 2016 Page No.16643-16646 Page 16645

the failures of the components which are frequently invoked by

many other components tend to have greater impact on the

system compared with the components which are rarely

invoked by others.

Thus these components are considered to be more

important from the reliability aspect and should be ranked at

the front of component list [5]. Inspired by the Page Rank

algorithm, we propose an algorithm to calculate the

significance value of each component of the migratory

application employing the component invocation relationships

and reliability properties. Based on the component graph and

component reliability information, the component ranking

algorithm includes the following steps:

1) Initialize by randomly assigning a numerical value
between 0 and 1 to each component in the
component graph.

2) Compute the significance value for a component ci
by:

With the above approach, the significance values of

the components can be calculated by considering the

application structure information, the invocation relationships,

and the knowledge of component reliability properties in

combination [27]. A component with a larger significant value

is considered to be more significant. The failures of these

significant components will have great impact on other

components and thus tend to cause application failures.

c. Fault Tolerance Strategy Selection

Software fault tolerance is widely adopted for critical

systems. At the same time, a cloud platform also provides

approaches such as virtual machine restart, virtual machine

migration, etc. to improve components reliability [18]. By

employing these techniques to provide functionally equivalent

components, the component failures can be tolerated and thus

the overall system reliability can be increased.

IV. Experimental results

Cloud computing is becoming a mainstream aspect of

information technology. A number of tasks have been carried

out on cloud computing, including virtualization resource

provision and monitoring privacy and trust service level

agreement, storage management, data consistency and

replication, etc. In recent years, research investigations have

been conducted on migrating legacy applications to cloud

environment presented a case study of migrating enterprise IT

system to IaaS cloud, which illustrated the benefits and major

concerns of cloud migration surveyed various approaches for

moving legacy system to SOA environment, including

wrapping, replacement, etc. We focused on the procedure of

migration, strategies on legacy system modernization and

methods to improve the cloud platform’s reliability, and

focuses on the re-design phase during the migration and

proposes an optimization framework to improve the cloud

application’s reliability.

The limitations are Automatically ranking components

for legacy applications becomes important, which can aid the

designer to optimize the application .The high scalability

feature of the cloud makes redundant components easier be

obtained. Thus, software fault tolerance becomes a feasible

approach to improve the application reliability. At the same

time, approaches provided by the cloud platform can also help

to build reliable cloud applications.

The main idea of this framework is first to identify

significant components whose failures can have great impact on

application reliability based on the application structure

information and components reliability properties, and then

provide fault-tolerant mechanism for these components to

improve application reliability.RO Cloud includes two ranking

algorithms.

The first algorithm ranks components for the
applications that all their components can be migrated to the
cloud. The second algorithm ranks components for hybrid
applications that only part of their components can be migrated
to the cloud. We conduct extensive experiments to evaluate the
impact of significant components and their reliability properties
on the reliability of the migrated application using reliability
information of real world Web services.

The advantages are automatically ranking components

for legacy applications becomes important, which can aid the

designer to optimize the application. Optimization of the

applications based on RO framework makes it more Reliable.

Since the critical components are ranked first, the fault

tolerance is provided completely, as these critical components

all optimized before migration.

V. Conclusion

The reliability-based design optimization framework

for migrating legacy applications to the cloud environment

framework consists of three parts: legacy application analysis,

significant component ranking and automatic optimal fault-

DOI: 10.18535/ijecs/v5i5.51

Ancy Nevil.S, , IJECS Volume 05 Issue 5 May 2016 Page No.16643-16646 Page 16646

tolerant strategy selection. Two algorithms are proposed in the

ranking phase: the first ranks components for the applications

where all the components can be migrated to the cloud; the

second ranks components for the applications where only part

of the components can be migrated to the cloud. In both

algorithms, the significance value of each component is

calculated based on the application structure, component

invocation relationships, component failure rates, and failure

impacts. A higher significance value means the component

imposes higher impact on the application reliability than others.

After finding the most significant components, an optimal fault-

tolerant strategy can be selected automatically with respect to

the time and cost constraints. The experimental results show

that ROCloud1 and ROCloud2 outperform other approaches

and can greatly improve the application reliability. In RO

Cloud, each component is considered as independent and the

fault-tolerant strategy selection is carried out on component

basis. In the future, we will study the fault tolerance of

interrelated components. In addition, RO Cloud uses the ratios

of component failure to application failure to measure the

failure impact of components. While the relationship between

component failures and application failures can be

complicated, more sophisticated models will be investigated in

the future work.

VI. future work

Considering more factors when computing the weights

of invocations links. Taking the constraint factors such as cost

into consideration during the ranking phase, and letting the

designer know intuitively which components can make the

biggest improvement while cost the least. More experimental

analysis on the impact of incorrect prior knowledge such as

invocation frequencies and component failure rates.

(1) REFERENCES

[1] D. Denning, Cryptography and Data Security. Addison-Wesley
Longman,1982.

[2] Biba, “Integrity considerations for secure computer systems,”
MITRE Co., technical report ESD-TR 76-372, 1977.

[3] R. Wu, G.-J. Ahn, H. Hu, and M. Singhal, “Information flow
control in cloud computing,” in CollaborateCom, 2010.

[4] H. Hacig¨um¨us¸, B. Iyer, et al., “Executing SQL over encrypted
data in the database-service-provider model,” in Proc. 2002
ACM SIGMOD,pp. 216–227.

[5] J. Bacon, D. Evans, et al., “Big ideas paper: enforcing end-to-end
application security in the cloud,” in 2010 ACM/IFIP
Middleware.

[6] P. Mell and T. Grance, “The NIST definition of cloud
computing,2011.Available:http://csrc.nist.gov/publications/drafts
/800-145/ Draft-SP-800-145 cloud-definition.pdf

[7] I. Foster and C. Kesselman, The Grid 2: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann, 2003.

[8] P. Barham, B. Dragovic, et al., “Xen and the art of virtualization,”
in 2003 ACM SOSP.

[9] T. Ristenpart, E. Tromer, et al., “Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds,”pp.
199–212, in Proc.2009 ACM CCS.

 [10] Y. Zhang, A. Juels, et al., “Cross-VM side channels and their
use toextract private keys,” pp. 305–316 in Proc. 2012 ACM
CCS,.

[10] Y. Zhang, A. Juels, et al., “Cross-VM side channels and their use
to extract private keys,”pp. 305–316 in Proc. 2012 ACM CCS.

[11] A. Ganjali and D. Lie, “Auditing cloud management using
information flow tracking,” pp. 79–84, in Proc. 2012 ACM STC.

[12] D. Leinenbach and T. Santen, “Verifying the Microsoft Hyper-V
hypervisor with VCC,” pp. 806–809, in FM 2009: Formal
Methods. Springer LNCS 5850, 2009.

[13] M. Dalton, C. Kozyrakis, and N. Zeldovich, “Nemesis:
preventing authentication & access control vulnerabilities in web
applications,” in 2009 USENIX Security Symposium.

[14] D. E. Denning, “A lattice model of secure information flow,”
CACM, vol. 19, no. 5, pp. 236–243, 1976.

[15] A. Myers and B. Liskov, “Protecting privacy using the
decentralized label model,” ACM TOSEM, vol. 9, no. 4, pp.
410–442, 2000.

[16] J. Saltzer and M. Schroeder, “The protection of information in
computer systems,” Proc. IEEE, vol. 63, no. 9, pp. 1278–1308,
1975.

[17] C. S. Alliance, “Security guidance for critical areas of focus in
cloud computing,” 2011.

[18] J. A. Hall and S. L. Liedtka, “The Sarbanes-Oxley Act:
implications for large-scale IT outsourcing,” CACM, vol. 50, no.
3, pp. 95–100,2007.

[19] R. T. Mercuri, “The HIPAA-potamus in health care data
security,”CACM, vol. 47, no. 7, pp. 25–28, 2004.

[20] V. J. Winkler, Securing the Cloud: Cloud Computer Security
Techniques and Tactics. Elsevier, 2011.

[21] CNIL, “Summary of responses to the public consultation on
Cloud computing,” 2012.

[22] European Commission: Proposal for a General Data Protection
Regulation.2012/0011(COD), C7-0025/12, Brussels COM(2012)
11 final,2012.

[23] A. G. Araiza, “Electronic discovery in the cloud,” Duke Law &
Tech.Rev., 2011.

[24] S. Biggs and S. Vidalis, “Cloud computing: the impact on digital
forensic investigations,” pp. 1–6,in Proc. 2009 ICITST.

[25] M. Armbrust, A. Fox, et al., “Above the clouds: a Berkeley view
of cloud computing,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009.

[26] J. A. Goguen and J. Meseguer, “Security policies and security
models,” pp. 11–20, in Proc. 1982 IEEE SOSP.

[27] S. Bleikertz, A. Kurmus, et al., “Secure cloud maintenance:
protecting workloads against insider attacks,”pp.83–84, in Proc.
2012 ACM ASIACCS.

[28] D. Suciu, “SQL on an encrypted database: technical
perspective,” CACM, vol. 55, no. 9, pp. 102–102, 2012.

[29] D. Liu and S. Wang, “Query encrypted databases practically,”
pp. 1049–1051, in Proc. 2012 ACM CCS,.

[30] C. Cadar, D. Dunbar, and E. Dawson, “KLEE: unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in 2008 USENIX OSDI.

http://csrc.nist.gov/publications/drafts/800-145/
http://csrc.nist.gov/publications/drafts/800-145/

