

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume - 3 Issue - 8 August, 2014 Page No. 7748-7763

Prof. (Ms) A. B. Shikalgar
1
 IJECS Volume 3 Issue 8 August, 2014 Page No.7748-7763 Page 7748

Adaptive Constructive Algorithm for Artificial Neural Networks

Prof. (Ms) A. B. Shikalgar
1
, Prof. (Mrs) A. N. Mulla

2
, Prof. T. A. Mulla

3

1
Department of Computer Science and Engineering,

Dr. J. J. Magdum College of Engineering, Jaysingpur, India.

annu.shikalgar@gmail.com
2
Department of Computer Science and Engineering,

Annasaheb Dange College of Engg. and Technology, Ashta, India

mulla.anis@gmail.com
3

Department of Information Technology,

Dr. J. J. Magdum College of Engineering, Jaysingpur, India.

mullatahseen@gmail.com

Abstract: The artificial neural networks (ANNs) generalization ability is greatly dependent on their architectures. For a given

problem constructive algorithms provide an attractive automatic way of determining a near-optimal ANN architecture. Many

algorithms have been proposed in the literature and shown their effectiveness. In automatically determining ANN architectures

our research work aims at developing a new constructive algorithm (NCA). NCA puts emphasis on architectural adaptation and

functional adaptation in its architecture determination process as in most previous studies are determining ANN architectures. It

uses a constructive approach to determine the number of hidden layers in an ANN and of neurons in each hidden layer. NCA

trains hidden neurons in the ANN by using different training sets that were created by employing a similar concept used in the

boosting algorithm, so as to achieve functional adaptation. The purpose of using different training sets is to encourage hidden

neurons to learn different parts or aspects of the training data so that the ANN can learn the whole training data in a better way. In

the research the convergence and computational issues of NCA are analytically studied. The experimental result in the research

shows that, NCA can produce ANN architectures with fewer hidden neurons and better generalization ability compared to existing

constructive and non constructive algorithms.

Keywords: NCA, ANN, Constructive approach, Functional adaptation.

1. Introduction

earning from data with complex non-local relations and

multimodal class distribution for widely used

classification algorithms is still being researched. Even if

accurate solution is found with complex classifying function,

it may not be able to generalize to other situations. Artificial

neural networks are biologically inspired models of

computation. They are networks with elementary processing

units called neurons massively interconnected by trainable

connections called weights. ANN algorithms involve training

the connections weights through systematic mathematical

algorithms. Learning in ANN has two objectives:

determining the optimal network topology and calculating

weights by providing known outputs. The generalization

ability of artificial neural networks (ANNs) is greatly

dependent on their architectures. There are various classes of

algorithms to determine the ANN architectures such as

constructive, pruning, constructive-pruning and evolutionary

algorithms. Thus, the problem of architecture determination

for an ANN can be formulated as an optimization process.

The solution of this optimization problem is the “complete”

topological information of the ANN consisting the number of

hidden layers and number of neuron nodes in each hidden

layer.

Our research work aims at exploring the constructive

algorithms to determine the complete topological

information and some particular weight values of an ANN.

This approach would be based on combining architectural

adaptation with functional adaptation in one scheme. It starts

adaptation with a minimal ANN architecture and the whole

L

http://www.ijecs.in/
mailto:annu.shikalgar@gmail.com
mailto:mulla.anis@gmail.com3

Prof. (Ms) A. B. Shikalgar
1
 IJECS Volume 3 Issue 8 August, 2014 Page No.7748-7763 Page 6159

training data. As adaptation progresses, NCA gradually adds

hidden neurons or hidden layers to the ANN and excludes

the examples of training data that are already learned. NCA’s

emphasis on architectural adaptation and functional

adaptation can improve the performance of an architecture

determination process [2].

2. Need of Work

Many types of neural network models have been proposed

for function approximation (pattern classification and

regression problems). Among them the class of multilayer

feed-forward neural networks (FNN’s) is the most popular

due to the flexibility in structure, good representational

capabilities (universal approximators), and large number of

available training algorithms. In general, the learning

accuracy, the generalization ability and training time of

supervised learning in FNN’s depend on various factors such

as chosen network architecture (number of hidden nodes and

connection topology between nodes), the choice of activation

function for each node, the choice of the optimization

method and the other training parameters (like learning rate,

initial weights etc.). The architecture of the network is either

fixed empirically prior to training or is dynamically adjusted

during training of the network for solving a specific problem.

If the chosen network architecture is not appropriate for the

fixed size network, then under-fitting or over fitting takes

place.

For better generalization performance and lesser training

time, neither too small nor too large network architecture is

desirable. We need sufficient number of trainable parameters

(weights, biases and parameters associated with activation

function) to capture the unknown mapping function from

training data.

3. New Constructive Algorithm (NCA)

NCA is used to determine the complete topological

information of feed-forward ANN architectures with sigmoid

hidden neurons. Each hidden layer of such architecture

receives signals from all preceding layers (i.e., the input plus

the preceding hidden layers), whereas the output layer

receives signals from all hidden layers (see Fig. 1). The

reason for using these particular traversal paths for signals is

to facilitate a fair comparison with previous work. In fact,

NCA has no constraint on the type of ANNs. The feed-

forward ANNs do not have to be strictly layered, fully

connected between adjacent layers, or be of any other

connectivity. They may also contain hidden neurons with

different activation functions.

3.1 Overview of NCA

 Unlike most previous studies on determining ANN

architectures, NCA puts emphasis on architectural adaptation

and functional adaptation in its architecture determination

process. It uses a constructive approach to determine the

number of hidden layers in an ANN and of neurons in each

hidden layer. To achieve functional adaptation, NCA trains

hidden neurons in the ANN by using different training sets

that were created by employing a similar concept used in the

boosting algorithm. The purpose of using different training

sets is to encourage hidden neurons to learn different parts or

aspects of the training data so that the ANN can learn the

whole training data in a better way.

Our research work aims at exploring the constructive

algorithms to determine the complete topological

information and some particular weight values of an ANN.

This approach would be based on combining architectural

adaptation with functional adaptation in one scheme. It starts

adaptation with a minimal ANN architecture and the whole

training data. As adaptation progresses, NCA gradually adds

hidden neurons or hidden layers to the ANN and excludes

the examples of training data that are already learned. NCA’s

emphasis on architectural adaptation and functional

adaptation can improve the performance of an architecture

determination process.

3.2 Objectives of NCA

 To understand the working and application of

Neural network

 To explore the architecture of Neural Network

topologies

 To implement the new constructive algorithm for

automatically determining in the architecture

parameters of neural network.

Prof. (Ms) A. B. Shikalgar
1
 IJECS Volume 3 Issue 8 August, 2014 Page No.7748-7763 Page 6160

Pt m

p=1 i=1

 To test the NCA algorithm using suitable dataset

and application based on classification and

approximation problems

 To observe the effect of each parameters of

architecture of neural network

3.3 Steps of NCA

Fig 1: Steps in NCA

Step 1) Create Initial ANN architecture: Choose a minimal

ANN architecture with three layers: 1) an input

layer; 2) a hidden layer; and 3) an output layer. The

number of neurons in the input and output layers is

the same as the number of inputs and outputs of a

given problem, respectively. Initially, the hidden

layer contains one neuron. Randomly initialize all

connection weights of the ANN within a small

range. Label the hidden layer and its neuron with C

and I, respectively.

Step 2) Create a Training set: Create a new training set for

the I-labeled hidden neuron of the C-labeled hidden

layer. Note that NCA does not create any training set

for the first I-labeled hidden neuron of the first C-

labeled hidden layer. The original training set is

considered here as the new training set for this hidden

neuron.

Initial and final training:

Step 3) Train the I-labeled hidden neuron of the C-labeled

hidden layer on the new training set using the back

propagation (BP) learning algorithm for a certain

number of training epochs. The number of training

epoch’s τ is specified by the user. We call this

training phase as the initial partial training for the I-

labeled hidden neuron.

Step 4) Check the termination criterion for stopping the

ANN construction process. If this criterion is

satisfied, go to Step 11). Otherwise, continue.

Step 5) Compute the ANN error E on the training set. If this

error reduces by a predefined amount _1 after training

for τ epochs, go to Step 3). It is assumed that training

is progressing well and further training is necessary.

Otherwise, continue. E is calculated as

E = 100 ∑ ∑ (Yi(p) – Zi(p))
2

Where, Omax and Omin are the maximum and minimum values

of the output coefficients in a problem representation, Pt is

the number of examples in the training set, and m is the

number of output neurons. The value for Omax and Omin could

be same as the maximum and the minimum target values

respectively, i.e., 1 and 0, for classification problems.

Step 6) Add a small amount of noise to all input and output

connection weights of the I-labeled hidden neuron of

the C-labeled hidden layer. Gaussian distribution with

a mean of zero and a variance of one is used to add a

small amount of noise. It is worth mentioning that

NCA adds noise to the connection weights of any I-

labeled hidden neuron only once. Train the I-labeled

hidden neuron using BP for τ epochs. We call this

training phase as the final partial training for the I-

labeled hidden neuron.

Omax - Omin

NPt

Prof. (Ms) A. B. Shikalgar
1
 IJECS Volume 3 Issue 8 August, 2014 Page No.7748-7763 Page 6161

Step 7) Check the termination criterion for stopping the

ANN construction process. If this

criterion is satisfied, go to Step 11). Otherwise,

continue.

Step 8) Compute E on the training set. If E is reduced by an

amount _1 after training τ epochs, go to Step 6) for

further training of the I-labeled hidden neuron.

Otherwise, freeze (keep fixed) the input and output

connection weights of the I-labeled hidden neuron,

remove the label of the I-labeled hidden neuron, and

continue.

Step 9) Add hidden layer? : Check the criterion for adding a

new hidden layer. If the criterion is not satisfied, add

a new neuron to the C-labeled hidden layer and go to

Step 2). Label the new neuron with I and initialize its

input and output connection weights with zero.

Otherwise, remove the label of the C-labeled hidden

layer and continue. The reason for initializing the

weights with zero is to start further training from the

previous error value.

Step 10) Add one hidden neuron and layer: Add a new

hidden layer with one neuron above the existing

hidden layer(s) of the ANN. Label the new hidden

layer with C and its neuron with I. Initialize the

input and output connection weights of the neuron

with zero and go to Step 2).

Step 11) The existing network a architecture is the final

ANN for the given problem.

4. Experimental Setup

The program is implemented in Maltab software with a

smart IDE. The experiment is carried using Matlab (R2011b)

on a single machine using with Windows 32-bit operating

system.

5. Performance Evaluation

5.1 Back Propagation Neural Network (BPNN)

BPNN is a method of training ANN, so as to minimize the

objective function. It reduces the number of parameters or

makes them adaptive.

5.2 Back Propagation Algorithm

Fig 2 : Back Propagation Algorithm

5.3 Performance of BPNN

Fig 3: BPNN performance

5.4 Performance of IRIS dataset

Prof. (Ms) A. B. Shikalgar
1
 IJECS Volume 3 Issue 8 August, 2014 Page No.7748-7763 Page 6162

Fig 4 : Performance of IRIS dataset

5.5 Performance of KRKP dataset

 Fig 5 : Performance of KRKP dataset

6. Results and Analysis

6.1 Analytical Results based on the results of Neural

Network achieved

After obtaining the Neural Network Parameters for the tested

dataset, the work has carried out in the direction to the test

the effect of number of epochs over the training results.

6.1.1 Error Rates on various Datasets

Following table indicates the results of the error rates for the

Iris and KrKp datasets taken over the scheme as follows

1. Iris Training Dataset – 90% . Testing Dataset – 10%

2. KrKp Training Dataset – 80%. Testing Dataset – 20%

Table 1 – Error Rates on various datasets

Name

of

Dataset

Training

Error

Rates

Testing

Error

Rates

Epochs

Considered

Iris 14.46 14.3 80

KRKP 9.94 18.63 20

The above extracts of results are taken into consideration

with fixed number of epochs as mentioned in the table. But

the results are calculated as an average of 100 runs of the

program execution.

Fig 6 : Graph for Different Datasets v/s Error Rates

6.1.2 Reduction in Error with increase in number of

epochs.

We can also analyze the system on the basis of Increase in

number of epochs. If we increase the number of epochs and

train the system in an effective manner it is observed that the

error rate further reduces and reaches to its local minima.

This feature of Back propagation is proven on the NCA

Algorithm too by following results. The following results are

with a consideration of 100% dataset utilization for the sake

of training.

Table 2 – Reduction in errors

Number of

Epochs

IRIS KRKP

100 9.0202 9.8907

200 5.7275 6.4859

400 3.3741 4.1892

600 3.0026 3.3557

800 2.915 2.9401

1000 2.9224 2.6667

Fig 7 : Reduction in Error with increase in number of

epochs

0

5

10

15

20

IRIS KRKP

Er
ro

r
ra

te
s

Data sets

Training

Testing

0

2

4

6

8

10

12

100 200 400 600 800 1000

IRIS KRKP

Prof. (Ms) A. B. Shikalgar
1
 IJECS Volume 3 Issue 8 August, 2014 Page No.7748-7763 Page 6163

7. Conclusion

 A new constructive approach is used to automatically

determine ANN’s architecture in our research work.

NCA is used to focus more on complete architectural

adaptation and functional adaptation rather than only partial

architectural adaptation. For Ex. The proposed work of our

research determines not only the number of hidden neurons

in an ANN but also the number of neurons in each hidden

layer to achieve complete architectural adaptation. This work

freezes the connection weights of a previously added hidden

neuron and creates a new training set when a new neuron is

added to the ANN. For emphasizing on unsolved parts of the

training data a new training set is created. The hidden-layer-

addition criterion of NCA incorporates the functionality of

hidden neurons’ along with training error.

References

1. Islam, M.M.; Sattar, M.A.; Amin, M.F.; Xin Yao;

Murase, K.; , "A New Constructive Algorithm for

Architectural and Functional Adaptation of Artificial

Neural Networks," Systems, Man, and Cybernetics, Part

B: Cybernetics, IEEE Transactions on , vol.39, no.6,

pp.1590-1605, Dec. 2009

2. L. Ma and K. Khorasani, “Constructive feedforward

neural networks using Hermite polynomial activation

functions,” IEEE Trans. Neural Netw., vol. 16, no. 4, pp.

821–833, Jul. 2005

3. Kwok, T. Y.; Yeung, D. Y.: Constructive Algorithms for

Structure Learning in feedforward Neural Networks for

Regression Problems. IEEE Transactions on Neural

Networks, 8 (3), 1997, 630-645.

4. Fahlman, S. E.; Lebiere, C.: The cascade correlation

learning architecture. Advances in Neural Information

Processing System 2, D. S. Touretzky, Ed. CA: Morgan

Kaufmann, 1990, 524-277.

5. Ash, T.: Dynamic node creation in back-propagation

networks. Connection Science, vol. 1, no. 4, 1989, 365-

375.

6. Friedman, J. H.; Stuetzle, W.: Projection pursuit

regression. J. Amer. Statist. Assoc., vol. 76, no. 376,

1981, pp. 817-823.

7. Platt, J. : A resource-allocating network for function

interpolation. Neural Computation, vol. 3, 1991, pp. 213-

225.

8. Farlow, S. J. Eds.: Self-Organizing Methods in Modeling:

GMDH Type Algorithms, vol. 54 of Statistics: Textbooks

and Monographs. New York: Marcel Dekker, 1984.

9. Nabhan, T. M.; Zomaya A. Y. : Toward generating

neural network structures for function approximation.

Neural Networks, vol. 7, no. 1, 1994, pp. 89-90.

10. Subirats, J. L.; Jerez, J. M. ; Franco L. : A new

decomposition algorithm for threshold synthesis and

generalization of Boolean functions. IEEE Transaction on

Circuits and Systems I 55, 2008, pp. 3188-3196.

11. Fahlman, S. E.; Lebiere, C.: The cascade correlation

learning architecture. Advances in Neural Information

Processing System 2, D. S. Touretzky, Ed. CA: Morgan

Kaufmann, 1990, 524-277.

 Author Profile

Prof. (Ms.) A. B. Shikalgar – Perceived
BE degree in Information Technology

from Padmabhooshan Vasantraodada Patil

Institute of Technology, Budhgaon,
Shivaji University, Kolhapur, and

pursuing ME degree from same

University, Currently working as an
Assistant Professor in the Department of

Computer Science & Engineering, Dr.

J. J. Magdum College of Engineering,
Jaysingpur, Shivaji University, Kolhapur.

Research interests are in the field of

Cloud Computing and Artificial

Neural Network.

 Prof. (Mrs.) A. N. Mulla –

Perceived M.E. degree from

Walchand College of Engineering,

Sangli, Shivaji University,

Kolhapur. Currently working as an

Assistant Professor in the

Department of Computer Science

and Engineering, Annasaheb Dange

College of Engineering and

Technology, Ashta, Shivaji

University, Kolhapur. Research

interests are in the field of Image

Processing and Artificial Neural

 Network

Prof. T. A. Mulla– Perceived BE

degree in Information Technology

from Padmabhooshan Vasantraodada

Patil Institute of Technology,

Budhgaon, Shivaji University,

Kolhapur, and perceived M. Tech

degree in Computer Science &

Engineering from St. Mary’s College

of Engineering and Technology,

Hyderabad, Jawaharlal Nehru

Technological University, Currently

working as an Assistant Professor in

the Department of Information

Technology, Dr. J. J. Magdum

College of Engineering, Jaysingpur,

Shivaji University, Kolhapur.

Research interests are in the field of

Cloud Computing and Artificial

Neural Network.

	PointTmp

