
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 5 May, 2013 Page No. 1692-1694

Sumeet H. Pardeshi, IJECS Volume 2 Issue 5 May, 2013 Page No. 1692-1694 Page 1692

AUTOMATED ASSESSMENT SYSTEM FOR SOURCE CODE

Sumeet H. Pardeshi, Amit M. Morvekar, Hemkant B. Gangurde, Mahesh D. Gangode
(amit.morvekar05@gmail.com)

(sumeet.pardeshi.online@gmail,com),

(mahesh.gangode@gmail.com)

(gangurde.hemkant@gmail.com)

Dissertation under the supervision of Prof. Jyoti R. Mankar and Prof. Dr. Shirish S. Sane

at K. K. Wagh Institute of Engineering Education and Research, Nashik, Maharashtra, India.

ABSTRACT

Generally programming contests are managed, monitored and judged manually which tends to be a major defect, thus leading

contest to be more time consuming and complex to judge. The proposed project aims at developing a system wherein the

participants can login to an online system and upload their codes and automated system will judge their programs. Judge aspect

and Participant aspect are the two main views of system. Students can work on problem, compile their solutions and submit them

to the online system. They will get the feedback about the code whether it is acceptable or specific error specifications if any.

Judges can view the current status of code submission and rankings accordingly, which they can use to evaluate the work.

Automated Assessment System for Source Code (AASSC) aims at providing fair evaluation of source codes be in programming

contest, or online practical exams held as a part of university curriculum. Unlike other competitive products in market, which rank

contest based on timing and number of submissions only, proposed system uses some benchmarking metrics for analysis of code

and thus yielding a fair outcome. Plagiarism by students is the biggest emerging threat which this proposed system tries to tackle.

System aims at identifying the plagiarized source code, thus leading to a more fair evaluation and helping to improve the quality of

programming among the students.

KEYWORDS

Plagiarism, Static Analysis of Code, Source Code Benchmarking, Object Oriented Metrics.

INTRODUCTION

The Computer Based Assessment (CBA) systems are, currently,

extremely useful tools in education, helping to reduce the

distance between students and teachers and providing better

methods for monitoring the learning process. These systems can

play a particularly important role in programming courses, due to

students needing to solve a large number of exercises while

learning from their practice.

The overall learning process can be improved by the use of an

automated tool, since it can present to the students the feedback

they need to refine their programming skill. Moreover, teachers

will benefit from not having to grade each assignment manually

and replying with individual feedback, in addition to easing the

process of making assessments.

GOALS

The main goal of this dissertation is the development of a system

for the automatic evaluation of assignments and contests

concerning programming in Computer Engineering Education.

Using the advanced modules implemented in the system, it is

possible to outline the static analysis of code, detect plagiarised

code, evaluate the software metrics for the submitted code,

resulting into a more intuitive system for training as well as self

learning of programming skills.

RELATED WORK

Computer Based Assessment (CBA) systems are used in a

number of universities around the world. Two other CBA

systems were analysed in order to explore their functionalities

and implementation methods: Mooshak and XLX [1]. Of the two

automated judging systems taken into account: Mooshak and

XLX, the former is the basis of the developed system.

Concerning more specifically the plagiarism detection, some

existing tools were studied in order to analyse the performance of

different algorithms: SIM, MOSS, YAP3 and JPlag [4].

METHODOLOGY

A strategic methodology was followed in the implementation of

the system. Its details are described in the following sections:

5.1. Integration of Advanced Functionalities in CBA System

Following the conclusions obtained from the analysis of the

previously stated CBA systems, external tools and algorithms,

mailto:amit.morvekar05@gmail.com
mailto:sumeet.pardeshi.online@gmail,com

Sumeet H. Pardeshi, IJECS Volume 2 Issue 5 May, 2013 Page No. 1692-1694 Page 1693

the advanced modules to be developed and their specifications

were clearly identified as follows:

 Plagiarism detection: the main requirement of this tool is to

generate a list of potential plagiarists given a submission list.

The available methods for the implementation of this

module are the integration of an external tool and the manual

implementation of plagiarism detection algorithm such as

Sherlock, since it provides the best results overall and there

is a large amount of documentation on its variations and

finally heuristic determination of the policy of plagiarism-

detection;

 Software Code Benchmarking: The aim is to evaluate

codes based upon certain predefined software metrics. The

term software metrics is used as a collective term to describe

a wide range of activities concerning measurements of

source code.

 Static analysis of code quality: Although all metrics

covered in the analysis could be implemented, the general

rule of thumb is that as few metrics as possible should be

used to simplify the interpretation of the results. The key to

this module is evaluating the source code for an appropriate

number of metrics through the balance of quantity and

quality.

 Feedback level configuration: the feedback system is

currently limited, and can be improved by offering the

possibility to manually configure on a per exercise basis the

output to provide to the students. With the addition of the

static code analysis and software benchmarking module, the

feedback can be even further configured to display the

desired evaluation aspects.

 Support for assessment creation: The AASSC system

provides support for assessment creation featuring a test

creation as well as selection mechanism, where

administrator can create customized tests as well as select

the most appropriate one based on the intent of

implementing the assignment.

5.2. Implementation

A subset of the advanced modules outlined was implemented and

some functionalities of the analysed CBA systems were

extended. This implementation phase comprised the following

steps:

 Optimizing the AASSC CBA system: As expected, there

were some major setbacks while optimizing the program

assessment modules in prevoius CBA systems, probably

due to the addition of software benchmarking and static

code analysing module;

 Implementing the static code analysing module: This

functionality required the most effort, since it was

developed to support any extension of metrics and

programming languages and had the greatest number of

implementation steps. The McCabe’s cyclomatic

complexity [2], Space and Time complexities were the

primary focus. A set of style metrics, namely the ones used

in Submit! [4], were implemented as well;

 Adapting a plagiarism detection algorithm to the

system: Sherlock and C Code Plagiarism Detection

Algorithm (CCPDA[4]) were the algorithms of choice to be

implemented in the AASSC CBA system.

5.3. Results

The main achievements were the implementation and integration

of the two advanced modules covered in the other CBA systems’

analysis: static analysis of code quality and plagiarism detection.

Both of these modules were independently tested and details on

how to improve and extend them are provided. The development

of additional software metrics and the integration of more

programming languages were the focus of the static analysis

module. On the other hand, the plagiarism detection module

blesses the system with new grading interfaces, easing the

implementation of new plagiarism plugins or the improvement of

the current algorithm, Sherlock and CCPDA [4].

CONCLUSIONS
The goals of this dissertation is to compile a study on advanced

functionalities for CBA systems and implement a system, in

order to be ready to play an active role on the courses of

Computer Engineering Education. The system, with the

contribution of the advanced modules, should be able to help

reducing the amount of work needed for marking and grading

programming assignments as well as contests, by automating and

adding additional parameters to the assessment process. The

work developed in this thesis is flexible enough to be extended or

integrated in any other CBA system. This system can thus be

used in a real working environment, providing it is installed in

high capacity servers and the processing is carried out in

conducive environments.

FUTURE SCOPE

The System can prove to be a powerful tool for education in the

field of computer engineering and education. The future scope

for this application includes implementation of varioius modules

that would supplement the system for inclusion of more

programming languages like C# and Python, which are more

popular in today’s world of Internet. Also work can be done for

including the languages like SQL. The field of Plagiarism

detection remains to be the most complicated as well as the most

important module for this system in which lots of effort are

required as it is more of a topic of artificial intelligence rather

than a module which requires enormous coding effort.

REFERENCES

[1] João Cristóvão Xavier, “Computer-Based Assessment

System for E-Learning applied to Programming Education”.

Sumeet H. Pardeshi, IJECS Volume 2 Issue 5 May, 2013 Page No. 1692-1694 Page 1694

[2] Shyam R. Chidamber and Chris F.Kemerer, “A Metrics

Suite for Object Oriented Design” IEEE Transaction on

Software Engineering, June, 1994, pp. 476-492.

[3] Julien Rentrop, “Software Metrics as Benchmarks for

Source Code Quality of Software Systems”.

[4] N. Haritha, M. Bhavani, K. Thammi Reddy, International

Journal of Science and Advanced Technology (ISSN 2221-

8386), “C Code Plagiarism Detection System”, Volume 1

No 5, July, 2011, pp. 198-203.

