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ABSTRACT 

Network administrators are always faced with numerous challenges of identifying threats and in 

retrospect, securing the organization’s network. The classical approach of identifying the vulnerability in the 

network is by using commercially developed tools that do not take into cognisance vulnerability interaction 

between network elements and their behavioral pattern.Therefore, network administrators have to take a 

hollistic methods to identify vulnerability interrelationships to be captured by an attack graph which will 

help in identifying all possible ways an attacker would have access to critical resources. The objective 

therefore is to design an attack graph–based approach for analyzing security vulnerabilities in enterprise 

networks, implement and evaluate performance of the approach. 

This work proposes an attack graph network security analyser based. The attack graph directly 

illustrates logical dependencies among attack goals and configuration information. In the attack graph, a 

node in the graph is a logical statement and an edge in the graph is represented by causality relation between 

network configurations and an attacker’s potential privileges. The benchmark is just a collection of Datalog 

tuples representing the configuration of the synthesized networks, the graph generation CPU time was 

compared to Sheyner attack graph toolkit. The result in the graph shows the comparison of the graph 

builder CPU time for the case of a fully connected network and 5 vulnerabilities per host which shows 

Sheyner’s tools grows exponentially.Some important contributions of this work include establishing an 

attack graph–based approach for enterprise networks security analysis that can  capture  generic  security  

interactions and specify security relevant configuration information. 

KEYWORDS: Datalog, CERT/CC, FW,  webServer, workStation, fileServer.

 

1.1 INTRODUCTION 

 

The increased dependent  and reliance of networks 

by enterprise cannot be over emphasized. The 

external as well as the internal, threats that are 

continually faced by these enterprises have always 

increased phenomenally. Network security 

administrators are always faced with numerous 

challenges of identifying these threats and in 

retrospect, securing the organization’s network. 

The classical approach of identifying the 

vulnerability of each element in the network is by 

using commercially developed tools that do not 

take into cognisance vulnerability interaction 

between network elements. Additionally, it has to 

identify the behavioral pattern of individual 

elements in the network. Therefore, network 

administrators have to take a more proactive and 

hollistic approach to identify vulnerability 

interrelationships and possible interaction to be 

captured by an attack graph which would help in 

identifying all possible ways in which an attacker 

would have access to critical resources in the 

network. 

Statistically, network administrators are most 

often faced with challenges as a result of software 

vulnerabilities on network hosts. For over 20 

years, there have been an ever-growing number of 
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security vulnerabilities discovered in software and 

information systems. According to the statistics 

published by CERT/CC in (2013); a central 

organization for reporting security incidents, the 

numbers of reported vulnerabilities have grown 

considerably in the last 10 years. It is expected 

that the rate at which new software vulnerabilities 

emerge will continue to increase, in the 

foreseeable future. With thousands of new 

vulnerabilities discovered each year, maintaining 

100% patch level is untenable and sometimes 

undesirable for most organizations, while in many 

cases patches come right after vulnerability 

reports (William et al., 2000).    

2.1 MATERIALS AND METHOD 

The systems require PC’s with the following 

minimum configurations:  The performance of 

the MulVAL scanner on a Linux 9 host (kernel 

version 2.4.20-8) was measured. The CPU B940 

is an Intel(R) Pentium(R) processor with 4.0GB 

RAM. 40GB hard disk drive, A VGA monitor, A 

standard keyboard, a mouse and a converter/UPS 

to provide protection to the systems from excess 

power source. 

The system is to be loaded with a unix/ linux 

software or the internetworks operating system of 

the Microsoft software and other relevant 

softwares. 

There should also be an internet connection of 

atleast 3G internet link. 

Routers and firewalls with different specifications 

are needed for the serial connections and can also 

be used for the LAN connections. 

Switches, hubs, repeaters, bridges and vlans used 

in various connections are to be configured as 

appropriate to provide smooth communication. 

Fibre optic cables, coaxial cables, STP cables 

UTP cables and various specifications of CAT 5 

cables are needed to provide straightthrough 

cables, crossover cables and the rollover cables 

where applicable. 

VSAT with a c-band is needed to direct 

communication with the satellite or the service 

provider. 

3.1 SYSTEM DESING 

A logical attack graph is a di-graph and 

can be represented in the form of tree with a 

possible cross links between nodes. Figure 3.1 

shows both the graph representation of a logical 

attack graph.  There are two kinds of nodes in the 

graph; the derivation node and the fact node. The 

derivation node is represented as a rectangle and 

the fact node is represented as a circle/small star.  

There are also two kinds of fact node; the 

primitive fact node represented as a solid small 

star and the derived fact node is represented as a 

circle with a number inserted or encribed inside. 

Every fact node in a logical graph is label with a 

logical statement in a form of a predicate applied 

in its argument.  The root node is the attack goal; 

in the example it is 

exeCode(attacker,workstation,root) meaning “the 

attacker can execute arbitrary code as user root on 

machine workstation” Every derivation node is 

label with an interaction rule that is used for the 

derivation step.  

 

 

 

 

 

 

 

 

 

 

 

Fig 3.1: Graphical representation of logical 

attack graph 

 

 

 

 

 

 

 

 

 

 

 

r

0 

0 r

1 
2 

r2

a r2

b 

3 R

3 

4 

R

4 

5 

R

5 

6 r

6 

1 



DOI: 10.18535/ijecs/v5i5.33 
 

Saidu Isah Rambo, IJECS Volume 05 Issue 5 May 2016 Page No.16532-16538 Page 16534 

 

The edge in the graph represent the “depend on” 

relation. A fact node depends on one or more 

derivation node, each of which represent an 

application of an interaction rule that yield the 

fact; a derivation node depend on one or more fact 

nodes which together satisfies the precondition of 

a rule. Thus, a logical attack graph is a bipartite 

di-graph. The derivation nodes serves a medium 

between a facts and its ‘reasons’, i.e. how the fact 

becomes true. The derivation nodes directed from 

the fact node forms a disjunction. A derivation 

node represent a successful application of an 

interaction rule where all its preconditions are 

satisfied by its children. Therefore, the fact nodes 

directed from a derivation node forms a 

conjunction. 

 

 

3.2 Algorithm 

 

The proposed attack graph directly 

illustrates logical dependencies among attack 

goals and configuration information. The 

reasoning engine was modified so that besides a 

“true’ or “false” answer, a Prolog query also 

records an attack simulation trace as a side effect 

of the evaluation and translated into the following 

form: 

ExecCode (Attacker, Host, User)   :-  

networkservice (Host, Program, 

Protocol, Port, User) 

vulExists (Host,Vul ID, Program, 

remoteExploit, PrivEscalation), 

netAccess (Attacker, Host, Protocol, Port), 

assert_trace(because ( 

 ‘remote exploit of a server program’, 

 execCode(Attacker, Host, User) , 

[networkservice (Host, Program, 

        Protocol, Port, User), 

        vulExists (Host, Vul ID, Program, 

        remoteExploit, PrivEscalation), 

        netAccess (Attacker, Host,  

        Protocol, Port)])). 

 

A sub-goal is added, which calls the 

function assert_trace. When the evaluation of the 

rule succeeds, this function records the successful 

derivation into a trace file. In the attack graph, a 

node in the graph is a logical statement and an 

edge in the graph is represented by causality 

relation between network configurations and an 

attacker’s potential privileges. A logical attack 

graph was viewed as a derivation graph for a 

successful Prolog query. In Prolog query, there is 

a derivation node “and” node, where all it children 

are conjuncted. A derived fact node is an “or” 

node where all it children represent different ways 

to derive and the primitive fact node is a leaf node 

in the graph which represent a pieces of 

configuration information. 

 

Let (Nr, Np, Nd , Е, L, G)represents a 

logical attack graph, where Nr, Np, and Nd and G 

are sets of derivation nodes, primitive fact nodes, 

derived fact nodes and attacker’s goal respectively 

and are also referred to as disjoint nodes in the 

graph;Е   (Nr x (Np Ս Nd, )) Ս (Nd  x Nr), L is the 

mapping from a node to its label and G ϵ Nd is the 

attacker’s goal. Also, Let T, I, C, F represent the 

trace step terms (interaction rule, fact and 

conjunct) and attacker’s goal G,  interactionRule 

(a string associated with  interaction rule), 

conjunct (an instantiation fact or list of fact of 

interaction rule) and predicates (list of constant) 

respectively. A fact is primitive if it comes from 

the input to the MulVal-reasoning engine. A 

derived fact is the result of applying interaction 

rule iteratively on the input facts.   

The attack graph is obtained as follows:  
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Let Nr, Np, Nd , Е, L  ← 0; 

For each t ϵ Ƭ, the derivation node r is 

Nr ← Nr Ս {r}; 

L ← L Ս {r → I}; 

For n ϵ Nd suchthat L{n} = F then 

Е ← Е Ս {(n, r) 

Otherwise, a new fact node n is created as 

L ← L Ս {r → Fact}; 

Nd ← Nd Ս {n}; 

For each fact f in C 

For c ϵ (Np Ս Nd) such thatL(c) = f then 

Е ← Е Ս {(r, c)} 

Otherwise, a new fact node c is created as 

L ← LՍ {c → f} 

 

A logic attack graph can be constructed from the 

trace step information. Every trace step term 

becomes a derivation node in the attack graph. 

The fact field in the trace step becomes the node’s 

parent and the conjunct field becomes its children. 

The performance evaluation of the approach was 

based on the computational complexity of the new 

approach with the existing one. The generation of 

attack trace only introduces a constant time 

overhead for every successful Prolog engine 

derivation. 

3.3  Logical/automated attack-graph 

generation 

While attack trees generated by the meta-

interpreter serve the purpose of visualizing attack 

paths, the methodology also has several setbacks. 

Meta-interpreting; a prolog program is one order 

of magnitude slower than executing it directly in 

Prolog. Moreover, even if there is only a 

polynomial number of facts that can be derived by 

a Datalog program, the number of proof/attact 

trees generated could be exponential in the worst 

case. The XSB system includes a justifier program 

(Bernstein et al., 2000) that can compute evidence 

of derived literals while the program is running, 

thus eliminating the need for meta-interpreting 

and repeatation which might eventually result in 

looping. The evidence is stored in the Prolog 

database and can be extracted for visualization. 

According to test results (Bernstein et al., 2000), 

online justification only introduces 8% runtime 

overhead to the program, much better than meta-

interpretation. To avoid the exponential blow up 

of proof trees, an acyclic graph can be out-putted 

visualizing the logical relationships among 

derived literals. The size of such graphs is 

polynomial to the size of the program. For the 

attack graph generated to be more useful and user-

friendly attack graph generating software was 

developed.   

 

4.1 LOGICAL TRACE STEP 

 

Figure 4.4 shows the number of attack simulation 

trace steps, which is the inputed to the graph 

builder, is shown for the same set of test cases. 

For the worst case scenario, the number of trace 

steps is a quadratic function of the number of 

hosts. This verifies that Datalog evaluation inthe 

reasoning engine takes O(n2 ) derivation steps to 

complete. 

 

 

Figure 4.1: Graph representing trace steps 

 

4.2 CPU Usage 

Figure 4.1 shows the graph generation 

CPU time for each of the simulated analysis 
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problems of various sizes and topologies. The 

worst case is for a fully connected network. In 

this case the asymptotic CPU time is between 

O(n2 ) and O(n3 ), where n is the number of 

hosts. In Figure 4.2, it is noted that ideally the 

complexity is O(n2 ), if table look-up takes 

constant time. However, our implementation uses 

the simple “map” template in Java standard 

library and its look-up time depends on the size of 

the table. It is opined that after replacement with a 

custom-designed hash table implementation, the 

graph generation time would be near quadratic 

even for the worst case scenario. 

 

 

Figure 4.2: Graph generation CPU usage as a 

function of network size for several network 

topologies. 

 

4.3 RAM usage 

 

Figure 4.3 showsthe memory usage as a function 

of network size for the same four network 

topologies. The worst case here is again a fully 

connected network, which has a asymptotic 

memory usage slightly lower than O(n
2
). In the 

two biggest cases (1000 host for fully-connected 

and partitioned network), we almost exhausted 

the 1GB memory on the test machine. The 

memory usage for the “star” and “ring” topology 

are not identical, although the difference is not 

quite visible on logarithmic scale. 

 

Figure 4.3: Graph generation memory usage as 

a function of network size for several network 

topologies. 

 

Figure 4.4shows that the number of derived fact 

nodes in the attack graph grows linearly with the 

size of the network. An interesting case is the one 

for the “star” topology where the graph nodes 

remain constant regardless of the network size. 

This is because in that topology, the only attack 

path is from the attack machine to the hub, and 

then from the hub to the target machine.  

 

 

Figure 4.4: Graph representing derived facts 
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Figure 4.5 Showsthe attack graph 

generation CPU time is shown as a function of the 

network size for a fully connected network and for 

the number of vulnerabilities per host varied from 

1 to 100. It shows that vulnerability density has a 

bigger impact when the network size is small. As 

the network size grows the CPU time is 

dominated by the number of machines, and thus 

vulnerability density has a less visible impact. Our 

graph builder was directly compared to the 

Sheyner attack graph toolkit by running both tools 

with equivalent input data. The Sheyner attack 

graph toolkit was tested on a Pentium III-M CPU, 

256MB RAM, Fedora Core 1 LINUX operating 

system. 

 

Figure 4.5: Graph generation CPU time 

Figure 4.5: Graph generation CPU time for a fully 

connected network and number of vulnerabilities 

per host varying from 1 to 100. 

Figure 4.6 is a comparison of graph builder CPU 

time for the case of a fully connected network and 

5 vulnerabilities per host (note that only the Y axis 

is on logarithmic scale in this chart). From the 

diagram it is clear that the running time for 

Sheyner's tool grows exponentially. The growth 

trend for MulVAL is not obvious in this diagram 

because the running time is too short. But the 

difference between the two tools is obvious. 

 

Figure 4.6 Graph generation CPU time 

 

Figure 4.6Graph generation CPU time compared 

to Sheyner attack graph toolkit. Fully connected 

network and 5 vulnerabilities per host. 

 

5.0     CONCLUSION AND 

RECOMMENDATIONS 

 

5.1    CONCLUSION 

 

The ultimate objective of this paper is to The 

specific objectives are to: design an attack 

graph–based approach for analyzing security 

vulnerabilities in enterprise networks; 

andimplement and evaluate performance of the 

approach. 

 

5.2    RECOMMENDATIONS:      It is 

recommended that  It would be necessary for 

further study to be carried out in the areas of Also, 

the patching of machines in a network systems 

does not require rebooting the system. It would be 

an interesting research topic to study how to 

provide automatic and a heuristics as to what 

countermeasures to apply. This is beyond the 

scope of this dissertation and is left for further 

research work. 
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Finally, there is need to investigate precisely how 

to handle aggregates and negation in a distributed 

setting. It seems to be possible to incorporate 

well-known techniques to maintain states in the 

centralized setting into PSN
v
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