

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 7 July, 2014 Page No. 7203-7212

D.S. Ruhela
1 IJECS Volume 3 Issue 7.Month July 2014 page no. 7203-7212 Page 7203

Complexity & Performance Analysis of Parallel Algorithms of Numerical Quadrature

Formulas on Multi Core system Using Open MP
D.S. Ruhela

1
 and R.N.Jat

 2

1 Department of Computer Application, S.M.L. (P.G.) College, Jhunjhunu (Raj.)
12Department of Mathematics, University of Rajasthan, Jaipur

E-mail:1dsruhela@yahoo.com, 2khurkhuria_rnjat@yahoo.com

Abstract:

Analysis of an algorithm is to determine the amount of resources such as time and storage necessary to

execute it. The efficiency or complexity of an algorithm is based on the function relating the input length to

the number of operations to execute the algorithm. In this paper, the computational complexities and

execution time for sequential and parallel algorithms used Numerical Quadrature Formulas on Multi Core

system Using Open MP are analyzed.To find the integral value of various function using Trapezoidal Rule,

Simpson 1/3 Rule, Simpson’s 3/8 Rule, Boole’s Rule.We have to calculate estimated execution time taken

by the programs of sequential andparallel algorithms and also computed the speedup. Accuracy of

thequadrature formulas has been found in the order- Simpson’s three-eighth rule > Simpson’sone-third rule

> Boole’s rule > Trapezoidal rule.

Keywords: Complexity of Algorithms, Sequential and parallel execution time,OpenMP

1 Introduction

The field of numerical analysis predates the invention

of modern computers by many centuries. Linear

interpolation was already in use more than 2000 years

ago. Many great mathematicians of the past were

preoccupied by numerical analysis, as it obvious from

the names of important algorithms like Newton's

method, Lagrange interpolation polynomial, Gaussian

elimination, or Euler's method (Burden et. all 2000),

To facilitate computations by hand, large books were

produced with formulas and tables of data such as

interpolation points and function coefficients (Gilat et.

all 2004), MATLAB, (Hildebrand et. all 1974). Using

these tables, often calculated complexity and error out

to 16 decimal places or more for some functions, one

could look up values to plug into the formulas given

and achieve very good numerical estimates of some

functions. The canonical work in the field is the NIST

publication edited by Abramowitz and Stegun

(Abramowitz et. all 1972),a 1000-plus page book of a

very large number of commonly used formulas and

functions and their values at many points. The function

values are no longer very useful when a computer is

available, but the large listing of formulas can still be

very handy. The mechanical calculator was also

developed as a tool for hand computation. These

calculators evolved into electronic computers in the

1940s, and it was then found that these computers were

also useful for administrative purposes. But the

invention of the computer also influenced the field of

numerical analysis, since now longer and more

complicated calculations could be done. Numerical

quadrature is another name for numerical integration,

which refers to the approximation of an integral ∫f(x)dx

of some function f(x) by a discrete summation Σwi

f(xi) over points xi with some weights wi. There are

D.S. Ruhela
1 IJECS Volume 3 Issue 7.Month July 2014 page no. 7203-7212 Page 7204

many methods of numerical quadrature corresponding

to different choices of methods such as Gaussian

quadrature, (Gil et. All 2007), with varying degrees of

accuracy for various types of functions f(x). Popular

methods use one of the Newton–Cotes formulas (like

the midpoint rule or Simpson's rule) or Gaussian

quadrature. These methods rely on a "divide and

conquer" strategy, whereby an integral on a relatively

large set is broken down into integrals on smaller sets.

In higher dimensions, where these methods become

prohibitively expensive in terms of computational

effort, one may use Monte Carlo or quasi- Monte

Carlo methods or, in modestly large dimensions, the

method of sparse grids. More accurate integration

formulas with smaller truncation error can be obtained

by interpolating several data points with higher-order

interpolating polynomials. For example, the fourth

order interpolating polynomial P4(t) between five data

points leads to the Boole's rule of numerical

integration. The Boole's rule has the global truncation

error of order O(h
6
). However, the higher-order

interpolating polynomials often do not provide good

approximations for integrals because they tend to

oscillate wildly between the samples (polynomial

wiggle). As a result, they are seldom used past Boole's

rule. Another popular numerical algorithm is used

instead to reduce the truncation error of numerical

integration. This is Romberg integration based on the

Richardson extrapolation algorithm In numerical

analysis, the Newton–Cotes formulas are a group of

formulas for numerical integration (also called

quadrature) based on evaluating the integrand at n+ 1

equally spaced point. Newton–Cotes formulas can be

useful if the value of the integrand at equally-spaced

points is given. If it is possible to change the points at

which the integrand is evaluated, then other methods

such as Gaussian quadrature(Gil et. All 2007),

(William 1988), and (Roland Bulirsch, 1980) are

probably more suitable. It is assumed that the value of

a function f is known at equally spaced points xi, for i

= 0, , n. There are two types of Newton–Cotes

formulas, the "closed" type which uses the function

value at all points, and the "open" type which does not

use the function values at the endpoints. The closed

Newton- Cotes formula (Josef et. All 1980), (Atkinson

et. All 1989) and (Douglas, 2000)of degree n is stated

as where xi = hi + x0, with h (called the step size) equal

to (xn − x0)/n. The wi are called weights. As can be

seen in the following derivation the weights are

derived from the Lagrange basis polynomials. This

means they depend only on the xi and not on the

function f. Let L(x) be the interpolation polynomial in

the Lagrange form for the given data points (x0, f(x0)),

…, (xn, f(xn)), then The open Newton–Cotes formula

of degree n is stated as A Newton–Cotes formula of

any degree n can be constructed. However, for large n

a Newton–Cotes rule can sometimes suffer from

catastrophic Runge's phenomenon where the error

grows exponentially for large n. Methods such as

Gaussian quadrature and Clenshaw–Curtis quadrature

with unequally spaced points (clustered at the

endpoints of the integration interval) are stable and

much more accurate, and are normally preferred to

Newton–Cotes. If these methods cannot be used,

because the integrand is only given at the fixed equi-

distributed grid, then Runge's phenomenon can be

avoided by using a composite rule, as explained in next

section.

The current multi-core architectures have

become popular due to performance, and efficient

processing of multiple tasks simultaneously. Today’s

the parallel algorithms are focusing on multi-core

systems. The design of parallel algorithm and

performance measurement is the major issue on multi-

core environment. If one wishes to execute a single

application faster, then the application must be divided

into subtask or threads to deliver desired result.

Numerical problems, especially the solution of linear

D.S. Ruhela
1 IJECS Volume 3 Issue 7.Month July 2014 page no. 7203-7212 Page 7205

system of equation have many applications in science

and engineering. This paper describes and analyzes the

parallel algorithms for computing the solution of dense

system of linear equations, and to approximately

compute the value of _ using OpenMP interface. The

performances (speedup) of parallel algorithms on

multi-core system have been presented. The

experimental results on a multi-core processor show

that the proposed parallel algorithms achieves good

performance (speedup) compared to the sequential.

We have calculated the complexity of definite

integral by dividing the interval of integration [.2 1.4

1] into 10 to 1000000 equal parts in trapezoidal rule,

Simpson’s 1/3 rule, Simpson’s 3/8 rule Boole’s Rule

and Wedles Rule by developing computer programs in

Visual C++ language. Error in the values of integral

calculated by quadrature formulas is minimum when

upper limit is in the neighborhood of zero and lower

limit is .2. Accuracy of the quadrature formulas has

been found in the order- Simpson’s three-eighth rule >

Simpson’s one-third rule > Boole’s rule > Trapezoidal

rule>Weddle’s Rule.

We have to calculate estimated execution time

taken by the programs of sequential and parallel

algorithms and also computed the speedup. We find

Sequential Execution and Parallel Execution Time,

Compare and Analyze Result.

2 Programming in OpenMP

An OpenMP Application Programming

Interface (API) was developed to enable shared

memory parallel programming. OpenMP API is the set

of compiler directives, library routines,

andEnvironment variables to specify shared-memory

parallelism in FORTRAN and C/C++

programs(Barbara et. all 2008). It provides three kinds

of directives: parallel work sharing, data environment

and synchronization to exploit the multi-core,

multithreaded processors. The OpenMP provides

means for the programmer to: create teams of thread

for parallel execution, specify how to share work

among the member of team, declare both shared and

private variables, and synchronize threads and enable

them to perform certain operations exclusively

(Barbara et. all 2008). OpenMP is based on the fork-

and-join execution model, where a program is

initialized as a single thread named master thread

(Barbara et. all 2008). This thread is executed

sequentially until the first parallel construct is

encountered. This construct defines a parallel section

(a block which can be executed by a number of threads

in parallel). The master thread creates a team of

threads that executes the statements concurrently in

parallel contained in the parallel section. There is an

implicit synchronization at the end of the parallel

region, after which only the master thread continues its

execution (Barbara et. all 2008).

3 Creating an OpenMP Program

OpenMP’s directives can be used in the

program which tells the compiler which instructions to

execute in parallel and how to distribute them among

the threads (Barbara et. all 2008). The first step in

creating parallel program using OpenMP from a

sequential one is to identify the parallelism it contains.

This requires finding instructions, sequences of

instructions, or even large section of code that can be

executed concurrently by different processors. This is

the important task when one goes to develop the

parallel application. The second step in creating an

OpenMP program is to express, using OpenMP, the

parallelism that has been identified (Barbara et. all

2008). A huge practical benefit of OpenMP is that it

can be applied to incrementally create a parallel

program from an existing sequential code. The

developer can insert directives into a portion of the

program and leave the rest in its sequential form. Once

the resulting program version has been successfully

compiled and tested, another portion of the code can be

parallelized. The programmer can terminate this

D.S. Ruhela
1 IJECS Volume 3 Issue 7.Month July 2014 page no. 7203-7212 Page 7206

process once the desired speedup has been obtained

(Barbara et. all 2008).

4.Performance of Parallel Algorithm

The amount of performance benefit an

application will realize by using Open MP

depends entirelyon the extent to which it can be

parallelized. Amdahl’s law specifies the maximum

speed-up thatcan be expected by parallelizing

portions of a serial program [8]. Essentially, it

states that themaximum speed up (S) of a

program is

S = 1/ (1-F) + (F / N)

Where, F is the fraction of the total serial

execution time taken by the portion of code that

can beparallelized and N is the number of

processors over which the parallel portion of the

code runs.The metric that have been used to

evaluate the performance of the parallel algorithm

is the

Speedup [8]. It is defined as

Sp = T1 / TP

Where, T1 denotes the execution time of

the best known sequential algorithm on single

processormachine, and Tp is the execution time

of parallel algorithm onIn other word, speedup

refers to how much the parallel algorithm is faster

than the csequential algorithm. The linear or ideal

speedup is obtained.

5. Proposed Methodology

 Calculation: to find the integral value of

various function using following methods:

(A) Trapezoidal Rule

(B) Simpson 1/3 Rule

(C) Simpson’s 3/8 Rule

(D) Boole’s Rule

6.Trapezoidal Rule:

We learned that the definite integral

() () ().
b

a
f x F b F a can be evaluated from the

anti-derivative we learned that the definite integral

area between the curves of f(x) and the x-axis.

That is the principle behind the numerical

integration we divide the distance from x=a to x=b

into vertical strips and add the area of these

strips.

1

() 1/ 2(1)
xi

xi
f x dx fi fi xi xi

 we will

usually write h=(xi+1-xi) for the width of interval.

6.1. Algorithm

1. Read a,b,n

2. Set h=(b-a)/n

3.Set sum=[f(a)+f(b)]/2

4 for i=1 to n-1

i. Set

sum=sum+f(a+i*h)

5. End for

6. Set Integral=h/2*sum

7 write Integral

6.2. Counting Primitive Operation
1. Reading the value of variable Read a,b,n

contributes three unit of count.

2. Assigning values h= (b–a)/n contributes three

unit of count.

3. Set sum= [f (a) +f (b)]/2 contributes five unit of

count.

4. The body of loop executes n-1 times with count

five operations in loop. So 5(n -1) unit of count.

5. Step 6 requires two operations

6. Write integral contributes one operation.

To summarize, the number of primitive operations

t (n) executed by algorithm is at least.

t(n) = 3+3+5+5(n-1)+2+1

 =11+5n-5+3

t(n)=5n+9.

So the complexity of algorithm used for

Trapezoidal method is O (n). In fact, any

polynomial a
k
n

k
+a

k-1
n

k-1
……+a

0
 will always be O

(n
k
)

Using program in c for Trapezoidal Rule we find

the result for Integral of sin(x)-log(x)-exp(x) with

range .2 to 1.4 with no of intervals.

D.S. Ruhela
1 IJECS Volume 3 Issue 7.Month July 2014 page no. 7203-7212 Page 7207

S

.

N

o

No.

of

Inte

rval

s

Sequential

Execution time &

Difference

between Result

Parallel Execution

time & Difference

between Result

Perf

orm

ance

/Spe

ed

Up(s

)

Inte

gral

Erro

r/

Diffe

renc

e

Tim

e in

ms

Inte

gral

Erro

r/

Diffe

renc

e

Tim

e in

ms

Diffe

renc

e

1

.

10 4.05

845

2

0.00

009

8

.00

023

0

4.05

845

2

0.00

009

8

.00

019

6

1.17
346
9

2

.

100 4.05
102
4

0.00
009
4

.00
030
0

4.05
102
4

0.00
009
4

.00
025
7

1.16
731
5

3

.

200 4.05
096
7

0.00
001
7

.00
053
0

4.05
096
7

0.00
001
7

.00
022
6

2.34
513
3

4

.

300 4.05
095
6

0.00
000
6

.00
054
5

4.05
095
6

0.00
000
6

.00
047
6

1.14
495
8

5

.

400 4.05
095
3

0.00
000
3

.00
055
6

4.05
095
3

0.00
000
3

.00
050
8

1.09
448
8

6

.

500 4.05
095
1

0.00
000
1

.00
059
3

4.05
095
1

0.00
000
1

.00
051
2

1.15
820
3

7

.

600 4.05
095
0

0.00
000
0

.00
061
6

4.05
095
0

0.00
000
0

.00
059
8

1.03
01

8

.

700 4.05
094
9

-
0.00
000
1

.00
071
0

4.05
094
9

-
0.00
000
1

.00
058
2

1.21
993
1

9

.

800 4.05
094
9

-
0.00
000
1

.00
077
0

4.05
094
9

-
0.00
000
1

.00
061
6

1.25
1

0

900 4.05
094
9

-
0.00
000
1

.00
080
8

4.05
094
9

-
0.00
000
1

.00
071
5 1.13

007
1
1
.

100
0

4.05
094
9

-
0.00
000
1

.00
086
8

4.05
094
9

-
0.00
000
1

.00
074
8

1.16
042
8

1
2
.

100
00

4.05
094
9

-
0.00
000
1

.00
614
6

4.05
094
9

-
0.00
000
1

.00
379
4

1.61
992
6

1 100 4.05 - .06 4.05 - .05 1.24

3
.

000 094
9

0.00
000
1

427
1

094
9

0.00
000
1

165
0

435
6

Table-1 Performance comparison of Serial and Parallel

Algorithm fir integration of sin(x)-log(x)+exp(x)

7.Simpson's 1/3 Rule:

 The Trapezoidal rule is based on

approximating the function with a linear

polynomial. We can fit the function better if we

approximate it with a quadratic or a cubic

interpolation polynomial. Simpson rules are based

on this approximation. We get the Simpson 1/3

Rule by integrating the second degree Newton-

Gregory forward polynomial, which fits f(x) a x-

value of x0,x1,x2…. Which are evenly spaced a

distance h apart.

1

()
xi

xi
f x dx

2 2

0 0

(1)
() (0 0 2 0)

2

x x

x x

s s
f x dx f s f f dx

 =h

2

0

(1)
(0 0 2 0)

2

s s
f s f f ds

 = h(2f0+2 f0+1/3

2f0) = (0 4 1 2)
3

h
f f f

 We get the error by integrating the error of

polynomial:

 Error=-
1

5 (4)(?)
90

h f x0<? <x2

 It is convenient to think that the strips defined

by successive x-values as panel. For Simpson 1/3 Rule

there must be even number of panels.

7.1 Algorithm

1. Read a,b,n

2. Set h=(b-a)/n

3. Set s=[f(a)+f(b)]

4. Set S2=0

5. Set S4=0

D.S. Ruhela
1 IJECS Volume 3 Issue 7.Month July 2014 page no. 7203-7212 Page 7208

6. For I=1 to n-2 step 2

i. Set s4=s4+f(a+ I *h)

ii. Set s2=s2+f(a+(i+1)*h)

7. End forS

6. Set Integral=h/3*(s+2*s2+4*s4)

7 write Integral

7.2. Counting Primitive Operation
1. Reading the value of variable Read a,b,n

contributes three unit of count.

2. Assigning values h=(b–a)/n contributes three

unit of count.

3. Set sum= [f (a) +f(b)]/2 contributes five unit of

count.

5. Set s2=0 and S4=0 contributes two operations

4. The body of loop executes n-2/2 times with

count twelve operations in loop. So 12(n-1) /2=

6(n-1) unit of count.

5. Step 7 requires seven operations

6. Write integral contributes one operation.

To summarize, the number of primitive

operations t (n) executed by algorithm is at least.

T (n) =3+3+5+2+6(n-1) +7+1

 =6n+21-6

 =6n+15

So the complexity of algorithm used for

Trapezoidal method is O (n). In fact, any

polynomial a
k
n

k
+a

k-1
n

k-1
……+a

0
 will always be O

(n
k
)

S

.

N

o

No.

of

Inte

rval

s

Sequential

Execution time &

Difference

between Result

Parallel Execution

time & Difference

between Result

Perf

orm

anc

e/Sp

eed

Up(

s)

Inte

gral

Erro

r/

Diffe

renc

e

Tim

e in

ms

Inte

gral

Erro

r/

Diffe

renc

e

Tim

e in

ms

Diffe

renc

e

1

.

10 4.05

115

8

0.00

009

8

.00

029

3

4.05

115

8

0.00

009

8

.000

191
1.53
403

1
2

.

100 4.05
094
8

-
0.00
000
2

.00
025
8

4.05
094
8

-
0.00
000
2

.000
152 1.69

736
8

3

.

200 4.05
094
8

-
0.00
000
2

.00
026
1

4.05
094
8

-
0.00
000
2

.000
223 1.17

040
4

4

.

300 4.05
094
8

-
0.00
000
2

.00
039
4

4.05
094
8

-
0.00
000
2

.000
254 1.55

118
1

5

.

400 4.05
094
9

-
0.00
000
1

.00
043
1

4.05
094
9

-
0.00
000
1

.000
275 1.56

727
3

6

.

500 4.05
095
1

0.00
000
1

.00
054
9

4.05
095
1

0.00
000
1

.000
431

1.27
378

2
7

.

600 4.05
095
0

0.00
000
0

.00
058
3

4.05
095
0

0.00
000
0

.000
359

1.62
395

5
8

.

700 4.05
094
9

-
0.00
000
1

.00
062
0

4.05
094
9

-
0.00
000
1

.000
409 1.51

589
2

9

.

800 4.05
094
9

-
0.00
000
1

.00
037
5

4.05
094
9

-
0.00
000
1

.000
419 0.89

498
8

1

0

900 4.05
094
9

-
0.00
000
1

.00
045
2

4.05
094
9

-
0.00
000
1

.000
487 0.92

813
1

1

1

.

100

0

4.05
095
4

0.00
000
4

.00
066
8

4.05
095
4

0.00
000
4

.000
507

1.31
755
4

Table-3 Performance comparison of Serial and Parallel

Algorithm fir integration of sin(x)-log(x)+exp(x)

8. Simpson's 3/8 Rule:

 We get The Simpson 3/8 rule by

integrating the third degree Newton -Gregory

Interpolating polynomial that fit four evenly

spaced points and its error term:

3 3

0 0

3
 () 3(5) (0 3 1 3 2 3)

8

x x

x x

h
f x dx P x dx f f f f

D.S. Ruhela
1 IJECS Volume 3 Issue 7.Month July 2014 page no. 7203-7212 Page 7209

Error=-
3

5 (4)(?)
80

h f X0<

(?)<x3

8.1 Algorithm

1. Read a,b,n

2. Set h=(b-a)/n

3.Set s=[f(a)+f(b)]

4. Set S2=0

5. Set S3=0

6. fori=1 to n-3 step 3

i. Set s2=s2+f(a+(i+2)*h)

7. End for

6. Set Integral=3*h/83*(s1+2*s2+3*s3)

7 write Integral

8.2. Counting Primitive Operation
1. Reading the value of variable Read a,b,n

contributes three unit of count.

2. Assigning values h= (b–a)/n contributes three

unit of count.

3. Set sum= [f (a) +f (b)]/2 contributes five unit of

count.

5. Set s2=0 and S4=0 contributes two operations

4. The body of loop executes n-3/3 times with

count fifteen operations in loop. So 15(n-1) /3=

5(n-1) unit of count.

5. Step 7 requires seven operations

6. Write integral contributes one operation.

To summarize, the number of primitive operations

t (n) executed by algorithm is at least.

T(n)=3+3+5+2+5(n-1)+7+1

 =5n+21-6

 =5n+15

So the complexity of algorithm used for

Trapezoidal method is O (n). In fact, any

polynomial a
k
n

k
+a

k-1
n

k-1
……+a

0
 will always be O

(n
k
)

S

.

N

o

No.

of

Inte

rval

s

Sequential

Execution time &

Difference

between Result

Parallel Execution

time & Difference

between Result

Perf

orm

anc

e/Sp

eed

Up(s

)

Inte

gral

Erro

r/

Diffe

renc

e

Tim

e in

ms

Inte

gral

Erro

r/

Diffe

renc

e

Tim

e in

ms

Diffe

renc

e

1

.

10 4.05

115

8

0.00

020

8

.00

014

9

4.05

115

8

0.00

020

8

.000

129
1.15
503

9
2

.

100 4.05
094
8

0.00
000
2

.00
015
2

4.05
094
8

0.00
000
2

.000
132

1.15
151

5
3

.

200 4.05
096
7

0.00
001
7

.00
032
3

4.05
096
7

0.00
001
7

.000
303

1.06
600

7
4

.

300 4.05
095
6

0.00
000
6

.00
039
4

4.05
095
6

0.00
000
6

.000
354

1.11
299

4
5

.

400 4.05
095
3

0.00
000
3

.00
067
1

4.05
095
3

0.00
000
3

.000
571

1.17
513

1
6

.

500 4.05
095
1

0.00
000
1

.00
054
9

4.05
095
1

0.00
000
1

.000
549

1
7

.

600 4.05
095
0

0.00
000
0

.00
066
1

4.05
095
0

0.00
000
0

.000
601

1.09
983

4
8

.

700 4.05
094
9

-
0.00
000
1

.00
070
2

4.05
094
9

-
0.00
000
1

.000
692 1.01

445
1

9

.

800 4.05
094
9

-
0.00
000
1

.00
080
1

4.05
094
9

-
0.00
000
1

.000
701 1.14

265
3

1

0

900 4.05
094
9

-
0.00
000
1

.00
081
0

4.05
094
9

-
0.00
000
1

.000
710 1.14

084
5

1

1

.

100

0

4.05
094
9

-
0.00
000
1

.00
082
5

4.05
094
9

-
0.00
000
1

.000
755 1.09

271
5

Table-3 Performance comparison of Serial and Parallel

Algorithm fir integration of sin(x)-log(x)+exp(x)

9.Boole's Rule:

(1)/4

4 1

1 4 3
1

() ()
n

xn x k

x x k
k

f x dx f x dx

 =

(1)/4

1

[14 (4 3) 64(4 2) 24 (4) 14 (4 1) / 45
n

k

h f x k x k f x k f x k

D.S. Ruhela
1 IJECS Volume 3 Issue 7.Month July 2014 page no. 7203-7212 Page 7210

 where h = x4k-3 - x4k-2 = x4k-2 - x4k-1

=…. = x4k+2 - x4k+1, (n-1)/4 are positive integers.

5

1

2
() (7 (1) 32 (2) 12 (3) 32 (4) 7 (5)

45

x

x
f x dx h f x f x f x f x f x

And error=-
8

7 (6)(?)
945

h f where x1<(?)<x5

Using program code in c for sequential

and parallel execution we get the results:

 No

of

itera

tions

Lo

we

r

Li

mit

Up

per

Li

mit

Integr

al

Value

Sequ

ential

time

In ms

Parall

el

Exec

ution

time

in ms

Perfor

mance/

Speed

Up(s)

1

.

10 0.2 1.0 2.414

793

0.000
855

0.000

834
0.9754

39
2

.

100 0.2 1.3
6

3.865
551

0.022
117

0.018

794
0.8497

54
3

.

100

0

0.2 1.3
96

4.032
1589

0.330
559

0.321

379
0.9722

29
4

.

100

00

0.2 1.4 4.059
064

1.408
216

1.169

268
0.8303

19

Table-4 Performance comparison of Serial and Parallel

Algorithm fir integration of sin(x)-log(x)+exp(x)

Conclusion

There are two version of algorithm:

sequential and parallel. The programs are

executed on Intel@Core2-Duo processor

machine. We analyzed the performance

using results and finally derived the

conclusions. The Visual C++ compiler

12.0 under Microsoft Visual Studio 12.0

used for compilations and executions. The

Visual C++ compiler supports

multithreaded parallelism with /Qopenmp

flag. In the experiments the execution

times of both the sequential and parallel

algorithms have been recorded to measure

the performance (speedup) of parallel

algorithm against sequential.. The data

presented in Table 1 to 5 represents the

execution time taken by the sequential and

parallel programs, Error between

mathematica’s values of and result and

speed up. The result obtained shows a vast

difference in time required to execute the

parallel algorithm and time taken by

sequential algorithm. Based on our study

we arrive at the following conclusions:

(1) We see that parallelizing serialalgorithm using

Open MP has increased the performance.

(2) For multi-core system Open MPprovides a lot

of performance increase and parallelization can

be done with careful small changes.

(3) The parallel algorithm is approximately twice

faster than the sequential and the speedup is

Linear.

References:

[1] Burden, Richard L.; J. Douglas Faires, (2000),

NumericalAnalysis (7th Ed. ed.), Brooks/Cole.

[2] Gilat, Amos, (2004), MATLAB: An Introduction

withApplications (2nd edition ed.), John Wiley &

Sons.

[3] Hildebrand, F. B. ,(1974), Introduction to

NumericalAnalysis (2nd edition ed.), McGraw-Hill.

[4] Leader, Jeffery J., (2004), Numerical Analysis

andScientific Computation, Addison Wesley.

D.S. Ruhela
1 IJECS Volume 3 Issue 7.Month July 2014 page no. 7203-7212 Page 7211

[5] M. Abramowitz and I. A. Stegun eds., (1972),

Handbookof Mathematical Functions with

Formulas, Graphs, andMathematical Tables. New

York: Dover.

[6] Gil, Amparo; Segura, Javier; Temme, Nico M.,

(2007),"§5.3: Gauss quadrature", Numerical

Methods for SpecialFunctions, SIAM

[7] Press, William H.; Flannery, Brian P.;

Teukolsky, Saul A.;Vetterling, William T., (1988),

"§4.5: GaussianQuadratures and Orthogonal

Polynomials", NumericalRecipes in C (2nd ed.)

[8] Josef Stoer and Roland Bulirsch, (1980).

Introduction toNumerical Analysis. New York:

Springer-Verlag.

[9] Atkinson, Kendall A., (1989). An Introduction

to NumericalAnalysis (2nd edition ed.), John

Wiley & Sons.[10] Burden, Richard L. and Faires,

J. Douglas, (2000).Numerical Analysis (7th edition

ed.), Brooks/Cole.

[11] George E. Forsythe, Michael A. Malcolm, and

Cleve B.Moler, (1977), Computer Methods for

MathematicalComputations. Englewood Cliffs, NJ:

Prentice-Hall.

[12] William H. Press, Brian P. Flannery, Saul A.

Teukolsky,William T. Vetterling, (1988), Numerical

Recipes in C.Cambridge, UK: Cambridge

University Press.

[13] Jon M. Smith,(1974), Recent Developments

in NumericalIntegration, J. Dynam. Sys.,

Measurement and Control96, Ser. G-1, No. 1, 61-

70.

[14] Noronha R., Panda D.K., “Improving

Scalability of OpenMP Applications on Muti-core

Systems

Using Large Page Support, IEEE Computer,

2007.

[15] Kulkarni, S. G., “Analysis of Multi-Core

System Performance through OpenMP”, National

Conference on Advanced Computing and

Communication Technology, IJTES, Vol-1. No.-2,

Page.189-192, July – Sep 2010.

[16] Gallivan K. A., Plemmons R. J., and Sameh

A. H.,"Parallel algorithms for dense linear algebra

computations," SIAM Rev., vol. 32, pp. 54-135,

March 1990.

[17] Gallivan K. A., Jalby W., Malony A. D., and

Wijshoff H. A. G., "Performance prediction for

parallelnumerical algorithms.," International

Journal of High Speed Computing, vol. 3, no. 1,

pp. 31-62,1991.International Journal of Computer

Science, Engineering and Information Technology

(IJCSEIT), Vol.2, No.5, October 201264

[18] Horton M., Tomov S., and Dongarra J., "A

class of hybrid LAPACK algorithms for multi-core

andGPU architectures," in Proceedings of the

2011 Symposium on Application Accelerators in

High-Performance Computing, SAAHPC ’11,

(Washington, DC, USA), pp. 150-158, IEEE

ComputerSociety, 2011.

[19] Wilkinson, B., Allen, M., “Parallel

Programming”, Pearson Education (Singapore),

2002.

[20] Barbara, C., Jost, G., Pas, R.V., “Using

OpenMP: portable shared memory parallel

programming”,The MIT Press, Cambridge,

Massachusetts, London, 2008.

[21] Quinn, M. J, “Parallel Programming in C with

MPI and OpenMP”, McGraw-Hill Higher

Education,2004.

D.S. Ruhela
1 IJECS Volume 3 Issue 7.Month July 2014 page no. 7203-7212 Page 7212

