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Abstract: 

Analysis of an algorithm is to determine the amount of resources such as time and storage necessary to 

execute it. The efficiency or complexity of an algorithm is based on the function relating the input length to 

the number of operations to execute the algorithm. In this paper, the computational complexities and 

execution time for sequential and parallel algorithms used Numerical Quadrature Formulas on Multi Core 

system Using Open MP are analyzed.To find the integral value of various function using Trapezoidal Rule, 

Simpson 1/3 Rule, Simpson’s 3/8 Rule, Boole’s Rule.We have to calculate estimated execution time taken 

by the programs of sequential andparallel algorithms and also computed the speedup. Accuracy of 

thequadrature formulas has been found in the order- Simpson’s three-eighth rule > Simpson’sone-third rule 

> Boole’s rule > Trapezoidal rule. 

Keywords:  Complexity of Algorithms, Sequential and parallel execution time,OpenMP 

1 Introduction 

The field of numerical analysis predates the invention 

of modern computers by many centuries. Linear 

interpolation was already in use more than 2000 years 

ago. Many great mathematicians of the past were 

preoccupied by numerical analysis, as it obvious from 

the names of important algorithms like Newton's 

method, Lagrange interpolation polynomial, Gaussian 

elimination, or Euler's method (Burden et. all 2000), 

To facilitate computations by hand, large books were 

produced with formulas and tables of data such as 

interpolation points and function coefficients (Gilat et. 

all 2004), MATLAB, (Hildebrand et. all 1974).  Using 

these tables, often calculated complexity and error out 

to 16 decimal places or more for some functions, one 

could look up values to plug into the formulas given 

and achieve very good numerical estimates of some 

functions. The canonical work in the field is the NIST 

publication edited by Abramowitz and Stegun 

(Abramowitz et. all 1972),a 1000-plus page book of a 

very large number of commonly used formulas and 

functions and their values at many points. The function 

values are no longer very useful when a   computer is 

available, but the large listing of formulas can still be 

very handy. The mechanical calculator was also 

developed as a tool for hand computation. These 

calculators evolved into electronic computers in the 

1940s, and it was then found that these computers were 

also useful for administrative purposes. But the 

invention of the computer also influenced the field of 

numerical analysis, since now longer and more 

complicated calculations could be done. Numerical 

quadrature is another name for numerical integration, 

which refers to the approximation of an integral ∫f(x)dx 

of some function f(x) by a discrete summation Σwi 

f(xi) over points xi with some weights wi. There are 
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many methods of numerical quadrature corresponding 

to different choices of methods such as Gaussian 

quadrature, (Gil et. All 2007), with varying degrees of 

accuracy for various types of functions f(x). Popular 

methods use one of the Newton–Cotes formulas (like 

the midpoint rule or Simpson's rule) or Gaussian 

quadrature. These methods rely on a "divide and 

conquer" strategy, whereby an integral on a relatively 

large set is broken down into integrals on smaller sets. 

In higher dimensions, where these methods become 

prohibitively expensive in terms of computational 

effort, one may use Monte Carlo or quasi- Monte 

Carlo methods or, in modestly large dimensions, the 

method of sparse grids. More accurate integration 

formulas with smaller truncation error can be obtained 

by interpolating several data points with higher-order 

interpolating polynomials. For example, the fourth 

order interpolating polynomial P4(t) between five data 

points leads to the Boole's rule of numerical 

integration. The Boole's rule has the global truncation 

error of order O(h
6
). However, the higher-order 

interpolating polynomials often do not provide good 

approximations for integrals because they tend to 

oscillate wildly between the samples (polynomial 

wiggle). As a result, they are seldom used past Boole's 

rule. Another popular numerical algorithm is used 

instead to reduce the truncation error of numerical 

integration. This is Romberg integration based on the 

Richardson extrapolation algorithm In numerical 

analysis, the Newton–Cotes formulas are a group of 

formulas for numerical integration (also called 

quadrature) based on evaluating the integrand at n+ 1 

equally spaced point. Newton–Cotes formulas can be 

useful if the value of the integrand at equally-spaced 

points is given. If it is possible to change the points at 

which the integrand is evaluated, then other methods 

such as Gaussian quadrature(Gil et. All 2007), 

(William 1988), and (Roland Bulirsch, 1980) are 

probably more suitable. It is assumed that the value of 

a function f is known at equally spaced points xi, for i 

= 0, , n. There are two types of Newton–Cotes 

formulas, the "closed" type which uses the function 

value at all points, and the "open" type which does not 

use the function values at the endpoints. The closed 

Newton- Cotes formula (Josef et. All 1980), (Atkinson 

et. All 1989) and (Douglas, 2000)of degree n is stated 

as where xi = hi + x0, with h (called the step size) equal 

to (xn − x0)/n. The wi are called weights. As can be 

seen in the following derivation the weights are 

derived from the Lagrange basis polynomials. This 

means they depend only on the xi and not on the 

function f. Let L(x) be the interpolation polynomial in 

the Lagrange form for the given data points (x0, f(x0) ), 

…, (xn, f(xn) ), then The open Newton–Cotes formula 

of degree n is stated as A Newton–Cotes formula of 

any degree n can be constructed. However, for large n 

a Newton–Cotes rule can sometimes suffer from 

catastrophic Runge's phenomenon where the error 

grows exponentially for large n. Methods such as 

Gaussian quadrature and Clenshaw–Curtis quadrature 

with unequally spaced points (clustered at the 

endpoints of the integration interval) are stable and 

much more accurate, and are normally preferred to 

Newton–Cotes. If these methods cannot be used, 

because the integrand is only given at the fixed equi-

distributed grid, then Runge's phenomenon can be 

avoided by using a composite rule, as explained in next 

section.  

The current multi-core architectures have 

become popular due to performance, and efficient 

processing of multiple tasks simultaneously. Today’s 

the parallel algorithms are focusing on multi-core 

systems. The design of parallel algorithm and 

performance measurement is the major issue on multi-

core environment. If one wishes to execute a single 

application faster, then the application must be divided 

into subtask or threads to deliver desired result. 

Numerical problems, especially the solution of linear 
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system of equation have many applications in science 

and engineering. This paper describes and analyzes the 

parallel algorithms for computing the solution of dense 

system of linear equations, and to approximately 

compute the value of _ using OpenMP interface. The 

performances (speedup) of parallel algorithms on 

multi-core system have been presented. The 

experimental results on a multi-core processor show 

that the proposed parallel algorithms achieves good 

performance (speedup) compared to the sequential. 

We have calculated the complexity of definite 

integral by dividing the interval of integration [.2 1.4 

1] into 10 to 1000000 equal parts in trapezoidal rule, 

Simpson’s 1/3 rule, Simpson’s 3/8 rule Boole’s Rule 

and Wedles Rule by developing computer programs in 

Visual C++ language. Error in the values of integral 

calculated by quadrature formulas is minimum when 

upper limit is in the neighborhood of zero and lower 

limit is .2. Accuracy of the quadrature formulas has 

been found in the order- Simpson’s three-eighth rule > 

Simpson’s one-third rule > Boole’s rule > Trapezoidal 

rule>Weddle’s Rule. 

We have to calculate estimated execution time 

taken by the programs of sequential and parallel 

algorithms and also computed the speedup. We find 

Sequential Execution and Parallel Execution Time, 

Compare and Analyze Result. 

2 Programming in OpenMP 

An OpenMP Application Programming 

Interface (API) was developed to enable shared 

memory parallel programming. OpenMP API is the set 

of compiler directives, library routines, 

andEnvironment variables to specify shared-memory 

parallelism in FORTRAN and C/C++ 

programs(Barbara et. all 2008). It provides three kinds 

of directives: parallel work sharing, data environment 

and synchronization to exploit the multi-core, 

multithreaded processors. The OpenMP provides 

means for the programmer to: create teams of thread 

for parallel execution, specify how to share work 

among the member of team, declare both shared and 

private variables, and synchronize threads and enable 

them to perform certain operations exclusively 

(Barbara et. all 2008). OpenMP is based on the fork-

and-join execution model, where a program is 

initialized as a single thread named master thread 

(Barbara et. all 2008). This thread is executed 

sequentially until the first parallel construct is 

encountered. This construct defines a parallel section 

(a block which can be executed by a number of threads 

in parallel). The master thread creates a team of 

threads that executes the statements concurrently in 

parallel contained in the parallel section. There is an 

implicit synchronization at the end of the parallel 

region, after which only the master thread continues its 

execution (Barbara et. all 2008). 

3 Creating an OpenMP Program 

OpenMP’s directives can be used in the 

program which tells the compiler which instructions to 

execute in parallel and how to distribute them among 

the threads (Barbara et. all 2008). The first step in 

creating parallel program using OpenMP from a 

sequential one is to identify the parallelism it contains. 

This requires finding instructions, sequences of 

instructions, or even large section of code that can be 

executed concurrently by different processors. This is 

the important task when one goes to develop the 

parallel application. The second step in creating an 

OpenMP program is to express, using OpenMP, the 

parallelism that has been identified (Barbara et. all 

2008). A huge practical benefit of OpenMP is that it 

can be applied to incrementally create a parallel 

program from an existing sequential code. The 

developer can insert directives into a portion of the 

program and leave the rest in its sequential form. Once 

the resulting program version has been successfully 

compiled and tested, another portion of the code can be 

parallelized. The programmer can terminate this 
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process once the desired speedup has been obtained 

(Barbara et. all 2008). 

4.Performance of Parallel Algorithm 

The amount of performance benefit an 

application will realize by using Open MP 

depends entirelyon the extent to which it can be 

parallelized. Amdahl’s law specifies the maximum 

speed-up thatcan be expected by parallelizing 

portions of a serial program [8]. Essentially, it 

states that themaximum speed up (S) of a 

program is 

S = 1/ (1-F) + (F / N) 

Where, F is the fraction of the total serial 

execution time taken by the portion of code that 

can beparallelized and N is the number of 

processors over which the parallel portion of the 

code runs.The metric that have been used to 

evaluate the performance of the parallel algorithm 

is the 

Speedup [8]. It is defined as 

Sp = T1 / TP 

Where, T1 denotes the execution time of 

the best known sequential algorithm on single 

processormachine, and Tp is the execution time 

of parallel algorithm onIn other word, speedup 

refers to how much the parallel algorithm is faster 

than the csequential algorithm. The linear or ideal 

speedup is obtained. 

5. Proposed Methodology 

 Calculation: to find the integral value of 

various function using following methods: 

(A) Trapezoidal Rule 

(B) Simpson 1/3 Rule 

(C) Simpson’s 3/8 Rule 

(D) Boole’s Rule 

6.Trapezoidal Rule: 

We learned that the definite integral

( ) ( ) ( ).
b

a
f x F b F a  can be evaluated from the 

anti-derivative we learned that the definite integral 

area between the curves of f(x) and the x-axis. 

That is the principle behind the numerical 

integration we divide the distance from x=a to x=b 

into vertical strips and add the area of these 

strips.    

1

( ) 1/ 2( 1 )
xi

xi
f x dx fi fi xi xi



     we will 

usually write h=(xi+1-xi) for the width of interval. 

6.1. Algorithm 

1. Read a,b,n 

2. Set h=(b-a)/n 

3.Set sum=[f(a)+f(b)]/2 

4 for i=1 to n-1 

i. Set 

sum=sum+f(a+i*h) 

5. End for 

6. Set Integral=h/2*sum 

7 write Integral 

6.2. Counting Primitive Operation  
1. Reading the value of variable Read a,b,n 

contributes three unit of count.  

2. Assigning values h= (b–a)/n contributes three 

unit of count.  

3. Set sum= [f (a) +f (b)]/2 contributes five unit of 

count.  

4. The body of loop executes n-1 times with count 

five operations in loop. So 5(n -1) unit of count. 

5.  Step 6 requires two operations 

6. Write integral contributes one operation.  

To summarize, the number of primitive operations 

t (n) executed by algorithm is at least.  

t(n) = 3+3+5+5(n-1)+2+1 

 =11+5n-5+3 

t(n)=5n+9.  

So the complexity of algorithm used for 

Trapezoidal method is O (n). In fact, any 

polynomial a
k
n

k
+a

k-1
n

k-1
……+a

0
 will always be O 

(n
k
)  

Using program in c for Trapezoidal Rule we find 

the result for Integral of sin(x)-log(x)-exp(x) with 

range .2 to 1.4 with no of intervals. 
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5 
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0 
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7 
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3 

4

. 
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5 
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6 
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6 

.00
047
6 
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8 

5

. 
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8 
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1
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5 1.13

007 
1
1
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9 
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9 

-
0.00
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1 
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8 
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8 

1
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9 
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1 
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6 
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9 
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6 

1 100 4.05 - .06 4.05 - .05 1.24

3
. 

000 094
9 
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000
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427
1 

094
9 

0.00
000
1 

165
0 

435
6 

 
Table-1 Performance comparison of Serial and Parallel 

Algorithm fir integration of sin(x)-log(x)+exp(x) 

7.Simpson's 1/3 Rule: 

 The Trapezoidal rule is based on 

approximating the function with a linear 

polynomial. We can fit the function better if we 

approximate it with a quadratic or a cubic 

interpolation polynomial. Simpson rules are based 

on this approximation. We get the Simpson 1/3 

Rule by integrating the second degree Newton-

Gregory forward polynomial, which fits f(x) a x-

value of x0,x1,x2…. Which are evenly spaced a 

distance h apart. 

  
1

( )
xi

xi
f x dx





2 2

0 0

( 1)
( ) ( 0 0 2 0)

2

x x

x x

s s
f x dx f s f f dx


     

    =h

2

0

( 1)
( 0 0 2 0)

2

s s
f s f f ds


   = h(2f0+2 f0+1/3

2f0) = ( 0 4 1 2)
3

h
f f f   

 We get the error by integrating the error of 

polynomial: 

  Error=-
1

5 (4)(?)
90

h f    x0<? <x2 

 It is convenient to think that the strips defined 

by successive x-values as panel. For Simpson 1/3 Rule 

there must be even number of panels. 

7.1 Algorithm 

1. Read a,b,n 

2. Set h=(b-a)/n 

3. Set s=[f(a)+f(b)] 

4. Set S2=0 

5. Set S4=0 
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6. For I=1 to n-2 step 2 

i. Set s4=s4+f(a+ I *h) 

ii. Set s2=s2+f(a+(i+1)*h) 

7. End forS 

6. Set Integral=h/3*(s+2*s2+4*s4) 

7 write Integral 

7.2. Counting Primitive Operation  
1. Reading the value of variable Read a,b,n 

contributes three unit of count.  

2. Assigning values h=(b–a)/n contributes three 

unit of count.  

3. Set sum= [f (a) +f(b)]/2  contributes five unit of 

count.  

5. Set s2=0 and S4=0 contributes two operations 

4. The body of loop executes n-2/2 times with 

count twelve operations in loop. So 12(n-1) /2= 

6(n-1) unit of count. 

5.  Step 7 requires seven operations 

6. Write integral contributes one operation.  

To summarize, the number of primitive 

operations t (n) executed by algorithm is at least.  

T (n) =3+3+5+2+6(n-1) +7+1 

 =6n+21-6 

 =6n+15 

So the complexity of algorithm used for 

Trapezoidal method is O (n). In fact, any 

polynomial a
k
n

k
+a

k-1
n

k-1
……+a

0
 will always be O 

(n
k
)  
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Table-3 Performance comparison of Serial and Parallel 

Algorithm fir integration of sin(x)-log(x)+exp(x) 

 

8. Simpson's 3/8 Rule: 

 We get The Simpson 3/8 rule by 

integrating the third degree Newton -Gregory 

Interpolating polynomial that fit four evenly 

spaced points and its error term: 

3 3

0 0

3
  ( ) 3( 5) ( 0 3 1 3 2 3)

8

x x

x x

h
f x dx P x dx f f f f     
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Error=-
3

5 (4)(?)
80

h f X0< 

(?)<x3 

8.1 Algorithm 

1. Read a,b,n 

2. Set h=(b-a)/n 

3.Set s=[f(a)+f(b)] 

4. Set S2=0 

5. Set S3=0 

6. fori=1 to n-3 step 3 

i. Set s2=s2+f(a+(i+2)*h) 

7. End for 

6. Set Integral=3*h/83*(s1+2*s2+3*s3) 

7 write Integral 

8.2. Counting Primitive Operation  
1. Reading the value of variable Read a,b,n 

contributes three unit of count.  

2. Assigning values h= (b–a)/n contributes three 

unit of count.  

3. Set sum= [f (a) +f (b)]/2 contributes five unit of 

count.  

5. Set s2=0 and S4=0 contributes two operations 

4. The body of loop executes n-3/3 times with 

count fifteen operations in loop. So 15(n-1) /3= 

5(n-1) unit of count. 

5.  Step 7 requires seven operations 

6. Write integral contributes one operation.  

To summarize, the number of primitive operations 

t (n) executed by algorithm is at least.  

T(n)=3+3+5+2+5(n-1)+7+1 

 =5n+21-6 

 =5n+15 

So the complexity of algorithm used for 

Trapezoidal method is O (n). In fact, any 

polynomial a
k
n

k
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n

k-1
……+a

0
 will always be O 

(n
k
)  
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000
1 

.000
549 

1 
7

. 

600 4.05
095
0 

0.00
000
0 

.00
066
1 

4.05
095
0 

0.00
000
0 

.000
601 

1.09
983

4 
8

. 

700 4.05
094
9 

-
0.00
000
1 

.00
070
2 

4.05
094
9 

-
0.00
000
1 

.000
692 1.01

445
1 

9

. 

800 4.05
094
9 

-
0.00
000
1 

.00
080
1 

4.05
094
9 

-
0.00
000
1 

.000
701 1.14

265
3 

1

0 

900 4.05
094
9 

-
0.00
000
1 

.00
081
0 

4.05
094
9 

-
0.00
000
1 

.000
710 1.14

084
5 

1

1

. 

100

0 

4.05
094
9 

-
0.00
000
1 

.00
082
5 

4.05
094
9 

-
0.00
000
1 

.000
755 1.09

271
5 

 

Table-3 Performance comparison of Serial and Parallel 

Algorithm fir integration of sin(x)-log(x)+exp(x) 

9.Boole's Rule: 

  
( 1)/4

4 1

1 4 3
1

( ) ( )
n

xn x k

x x k
k

f x dx f x dx







    

  =

( 1)/4

1

[14 ( 4 3) 64( 4 2) 24 ( 4 ) 14 ( 4 1) / 45
n

k

h f x k x k f x k f x k
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  where h = x4k-3 - x4k-2 = x4k-2 - x4k-1 

=…. = x4k+2 - x4k+1, (n-1)/4 are positive integers. 
 

 

 

5

1

2
( ) (7 ( 1) 32 ( 2) 12 ( 3) 32 ( 4) 7 ( 5)

45

x

x
f x dx h f x f x f x f x f x    

 

And  error=-
8

7 (6)(?)
945

h f  where x1<(?)<x5 

Using program code in c for sequential 

and parallel execution we get the results: 

 
 No 

of 

itera

tions 

Lo

we

r 

Li

mit 

Up

per 

Li

mit 

Integr

al 

Value 

Sequ

ential 

time  

In ms 

Parall

el 

Exec

ution 

time 

in ms 

Perfor

mance/

Speed 

Up(s) 

1

. 

10 0.2 1.0 2.414

793 

0.000
855 

0.000

834 
0.9754

39 
2

. 

100 0.2 1.3
6 

3.865
551 

0.022
117 

0.018

794 
0.8497

54 
3

. 

100

0 

0.2 1.3
96 

4.032
1589 

0.330
559 

0.321

379 
0.9722

29 
4

. 

100

00 

0.2 1.4 4.059
064 

1.408
216 

1.169

268 
0.8303

19 
 

Table-4 Performance comparison of Serial and Parallel 

Algorithm fir integration of sin(x)-log(x)+exp(x) 

 

 

Conclusion 

There are two version of algorithm: 

sequential and parallel. The programs are 

executed on Intel@Core2-Duo processor 

machine. We analyzed the performance 

using results and finally derived the 

conclusions. The Visual C++ compiler 

12.0 under Microsoft Visual Studio 12.0 

used for compilations and executions. The 

Visual C++ compiler supports 

multithreaded parallelism with /Qopenmp 

flag. In the experiments the execution 

times of both the sequential and parallel 

algorithms have been recorded to measure 

the performance (speedup) of parallel 

algorithm against sequential.. The data 

presented in Table 1 to 5 represents the 

execution time taken by the sequential and 

parallel programs, Error between 

mathematica’s values of  and result and 

speed up.  The result obtained shows a vast 

difference in time required to execute the 

parallel algorithm and time taken by 

sequential algorithm. Based on our study 

we arrive at the following conclusions:  

(1) We see that parallelizing serialalgorithm using 

Open MP has increased the performance.  

(2) For multi-core system Open MPprovides a lot 

of performance increase and parallelization can 

be done with careful small changes. 

(3) The parallel algorithm is approximately twice 

faster than the sequential and the speedup is 

Linear. 
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