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Abstract—a new method to identify navigation- related Web usability problems based on correlating Actual and Predictable 

usage patterns. The actual usage patterns can be extracted from Web server logs routinely recorded for operational websites by 

first processing the log data to identify users, user sessions, and user task-oriented transactions, and then applying an usage mining 

algorithm to discover patterns among actual usage paths. The anticipated usage, including information about both the path and 

time required for user-oriented tasks, is captured by our ideal user interactive path models constructed by cognitive ex- perts based on 

their cognition of user behavior. The comparison is performed via the mechanism of test oracle for checking results and identifying 

user navigation difficulties. The deviation data produced from this comparison can help us discover usability issues and suggest 

corrective actions to improve usability. A software tool was developed to automate a significant part of the activities involved. 

With an experiment on a small service-oriented website, we identified usability problems, which were cross-validated by do- main 

experts, and quantified usability improvement by the higher task success rate and lower time and effort for given tasks after 

suggested corrections were implemented.  

Index Terms—Cognitive user model, sessionization, software tool, test oracle, usability, usage pattern, Web server log.  

 

I. INTRODUCTION  

World Wide Web becomes prevalent today, building and 

ensuring easy-to-use Web systems is becoming core 

competency of business. Usability is defined as the 

effectiveness, efficiency, and satisfaction with which specific 

users can complete specific tasks in a particular environment 

Three basic Web design principles, i.e., structural firmness, 

functional convenience, and presentational delight, were 

identified to help improve users' online experience [42]. 

Structural firmness relates primarily to the characteristics that 

influence the website security and performance. Heuristic 

evaluation by experts and user-centered testing are typically 

used to identify usability issues and to ensure satisfactory 

usability . However, significant challenges exist, including 1) 

accuracy of problem identification due to false alarms 

common in expert evaluation,2) unrealistic evaluation of 

usability due to differences between the testing environment 

and the actual usage environment , and 3) increased cost due 

to the prolonged evolution and maintenance cycles typical 

for many Web applications . On the other hand, log data 

routinely kept at Web servers represent actual usage. Such 

data have been used for usage-based testing and quality 

assurance, and also for understanding user behavior and 

guiding user interface design .  

We propose to extract actual user behavior from Web server 

logs, capture anticipated user behavior with the help of 

cognitive user models , and perform a comparison between 

the two. This deviation analysis would help us identify some 

navigation related usability problems. Correcting these 

problems would lead to better functional convenience as 

characterized by both better effectiveness (higher task 

completion rate) and efficiency (less time for given tasks). This 

new method would complement. The rest of this paper is 

organized as follows: Section II introduces the related work. 

Section III presents the basic ideas of our method and its 

architecture. Section IV describes how to extract actual usage 

patterns from Web server logs. Section V describes the 

construction of our ideal user interactive path (IUIP) models to 

capture anticipated Web usage. Section VI presents the com- 
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prison between actual usage patterns and corresponding IUIP 

models. Section VII describes a case study applying our 

method to a small service-oriented website. Section VIII 

validates our method by examining its applicability and 

effectiveness. Section IX discusses the limitations of our 

method. Conclusions and perspectives are discussed in 

Section X.  

 

 

II. RELATED WORK  

A. Logs, Web Usage and Usability  

Two types of logs, i.e., server-side logs and client-side logs, 

are commonly used for Web usage and usability analysis. 

Server-side logs can be automatically generated by Web 

servers, with each entry corresponding to a user request. By 

analyzing these logs, Web workload was characterized and 

used to suggest performance enhancements for Internet Web 

servers. Because of the vastly uneven Web traffic, massive 

user population, and diverse usage environment, coverage-

based testing is insufficient to ensure the quality of  Web 

applications . Therefore, server-side logs have been used to 

construct Web usage models for usage-based Web testing , 

or to automatically generate test cases accordingly to improve 

test efficiency.  

Server logs have also been used by organizations to learn 

about the usability of their products. For example, search 

queries can be extracted from server logs to discover user 

information needs for usability task analysis . There are 

many advantages to using server logs for usability studies. 

Logs can provide insight into real users performing actual 

tasks in natural working conditions versus in an artificial 

setting of a lab. Logs also represent the activities of many 

users over a long period of time versus the small sample of 

users in a short time span in typical lab testing . Data 

preparation techniques and algorithms can be used to process 

the raw Web server logs, and then mining can be performed to 

discover users' visitation patterns for further usability 

analysis . For example, organizations can mine server-side 

logs to predict users' behavior and context to satisfy users' need 

. Users' revisitiation patterns can be discovered by mining 

server logs to develop guidelines for browser history 

mechanism that can be used to reduce users' cognitive and 

physical effort .  

Client-side logs can capture accurate comprehensive 

usage data for usability analysis, because they allow low-

level user interaction events such as keystrokes and mouse 

movements to be recorded . For example, using these client-

side data, the evaluator can accurately measure time spent 

on particular tasks or pages as well as study the use of "back" 

button and user click streams . Such data are often used with 

task- based approaches and models for usability analysis by 

com- paring discrepancies between the designer's anticipation 

and a user's actual behavior . However, the evaluator must 

program the UI, modify Web pages, or use an instrumented 

browser with plug-in tools or a special proxy server to 

collect such data. Because of privacy concerns, users 

generally do not want any instrument installed in their 

computers. Therefore, logging actual usage on the client side 

can best be used in lab-based experiments with explicit 

consent of the participants.  

 

B. Cognitive User Models  

In recent years, there is a growing need to incorporate 

insights from cognitive science about the mechanisms, 

strengths, and limits of human perception and cognition to 

understand the human factors involved in user interface 

design . For ex- ample, the various constraints on cognition 

(e.g., system complexity) and the mechanisms and patterns 

of strategy selection can help human factor engineers 

develop solutions and apply technologies that are better 

suited to human abilities. Software engineering techniques 

have also been applied to develop intelligent agents and 

cognitive models . On the one hand, higher level 

programming languages simplify the encoding of behavior by 

creating representations that map more directly to a theory of 

how behavior arises in humans. On the other hand, as these 

designs are adopted, adapted, and reused, they may become 

design patterns. 

 

III. ARCHITECTURE OF A NEW METHOD  

Our research is guided by three research 

questions:  

1)RQ1:What usability problems are addressed?  
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2)RQ2: How to identify these problems?  

3)RQ3: How to validate our approach?  

 

 

As described in the previous section, Web server logs 

have been used for usage-based Web testing and quality 

assurance. They have also been used for understanding 

user behavior and guiding user interface design. These 

works are extended in this study to focus on the functional 

convenience aspect of usability. In particular, we focus on 

identifying navigation related problems as characterized 

by an inability to complete certain tasks or excessive time 

to complete them (RQ1).  

Usability engineers often use server logs to analyze users' 

behavior and understand how users perform specific tasks to 

improve their experience. On the other hand, many critics 

pointed out that server logs contain no information about the 

users' goals in visiting websites [37]. Usability engineers 

cannot generalize from server log data as they can from data 

collected by perform ing controlled experiments. However, 

these weaknesses can be alleviated by applying the cognitive 

user models we surveyed in the previous section. Such 

cognitive models can be constructed with our domain 

knowledge and empirical data to capture anticipated user 

behavior. They may also provide clues to users' intentions 

when they interact with Web systems.  

We propose a new method to identify navigation related 

us- ability problems by comparing Web usage patterns 

extracted from server logs against anticipated usage 

represented in some cognitive user models (RQ2). Fig. 1 

shows the architecture of our method. It includes three major 

modules: Usage Pattern Ex- traction, IUIP Modeling, and 

Usability Problem Identification. First, we extract actual 

navigation paths from server logs and discover patterns for 

some typical events. In parallel, we construct IUIP models 

for the same events. IUIP models are based on the cognition 

of user behavior and can represent anticipated paths for 

specific user-oriented tasks. The result checking em- ploys 

the mechanism of test oracle. An oracle is generally used to 

determine whether a test has passed or failed [6]. Here, we use 

IUIP models as the oracle to identify the usability issues 

related to the users' actual navigation paths by analyzing the 

deviations between the two. This method and its three major 

modules will be described in detail in Sections IV-VI.  

We used the Furniture Giveaway (FG) 2009 website as 

the case study to illustrate our method and its application. 

Addition- ally, we also used the server log data of the FG 

2010 website, the next version of FG 2009, to help us 

validate our method. All the usability problems in FG2009 

identified by our method were fixed in FG2010. The 

functional convenience aspect of usability for this website is 

quantified by its task completion rate and time to complete 

given tasks. The ability to implement recommended changes 

and to track quantifiable usability im- provement over 

iterations is an important reason for us to use this website to 

evaluate the applicability and effectiveness of our method 

(RQ3). 
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Fig 1 Architecture of new method for identifying usability problems 

 

 

The FG website was constructed by a charity organization 

to provide free furniture to new international students in 

Dal- las. Similar to e-commerce websites, it provided 

registration, selection, and removal of goods, submission of 

orders, and other services. It was partially designed and 

developed with the well- known templated page pattern . All 

outgoing Web pages go through a one-page template on their 

way to the client. Four templated pages were designed for 

the furniture catalog, furniture details, account information 

and selections. The FG website was implemented by using 

PHP, MySQL, AJAX and other dy- namic Web development 

techniques. It included 15 PHP scripts to process users' 

requests, 5 furniture catalog pages, about 200 furniture detail 

pages, and additional pages related to user in- formation, 

selection rules, registration and so on.  

IV. USAGE PATTERN EXTRACTION  

Web server logs are our data source. Each entry in a log 

contains the IP address of the originating host, the timestamp, 

the requested Web page, the referrer, the user agent and other 

data. Typically, the raw data need to be preprocessed and 

converted  into user sessions and transactions to extract usage 

patterns.  

 

A. Data Preparation and Preprocessing  

The data preparation and preprocessing include the 

following  domain-dependent tasks. 1) Data cleaning: This 

task is usually site-specific and  involves removing 

extraneous references to style files, graphics, or sound files 

that may not be important for the purpose of our analysis. 2) 

User identification: The remaining entries are grouped by 

individual users. Because no user authentication and cookie 

information is available in most server logs, we used the 

combination of IP, user agent, and referrer fields to identify 

unique users. 

 

 

Fig. 2. Example of a trail tree (right) and associated transaction paths (left).

3) User session identification: The activity record of each  

user is segmented into sessions, with each representing a 

single visit to a site. Without additional authentication 

information from users and without the mechanisms such as 

embedded session IDs, one must rely on heuristics for 

session identification [3], [23]. For example, we set an 
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elapse time of 15 min between two successive page accesses 

as a threshold to partition a user activity record into different 

sessions.  

4) Path completion: Client or proxy side caching can 

often  

result in missing access references to some pages that have 

been cached. These missing references can often be 

heuristically inferred from the knowledge of site topology and 

referrer information, along with temporal information from 

server logs .  

These tasks are time consuming and computationally 

intensive, but essential to the successful discovery of usage 

patterns. Therefore, we developed a tool to automate all these 

tasks except part of path completion. For path completion, the 

designers or developers first need to manually discover the 

rules of missing references based on site structure, referrer, 

and other heuristic information. Once the repeated patterns are 

identified, this work can be automatically carried out. Our tool 

can work with server logs of different Web applications by 

modifying the related pa- rameters in the configuration file. 

The processed log data are stored into a database for further 

use.  

B.TransactionIdentificati 

E-commerce data typically include various task-oriented 

events such as order, shipping, and shopping cart changes. 

In most cases, there is a need to divide individual data into 

corresponding groups called Web transactions. A transaction 

usually has a well-defined beginning and end associated with a 

specific task. For example, a transaction may start when a 

user places something in his shopping cart and ends when 

he has completed the purchase on the confirmation screen . A 

transaction differs from a user session in that the size of a 

transaction can range from a single page to all the visited 

pages in a user session.  

In this research, we first construct event models, also called 

task models, for typical Web tasks. Event models can be 

built by Web designers or domain experts based on the use 

cases in the requirements for the Web application. Based on 

the event models, we identify the click operations (pages) 

from the click- stream of a user session as a transaction. For 

the FG website we constructed four event models for the 

following four typical tasks.  

1) Task 1: Register as a new user.  

2) Task 2: Select the first piece of furniture. 

3) Task 3: Select the next piece of furniture. 

4) Task 4: Change selection.  

The example below shows the event model constructed 

for  

Task2("FirstSelection"):  

[post register.php] .*? [post process.  php].  

Here, "[ ]" indicates beginning and end pages; ".*?" indicates  

a minimal number of pages in a sequence between the two 

pages. For this task, we extracted a sequence of pages which 

started with the page "post register.php" and ended with the 

first appearance of the page "post process.php" for each 

session. Such a sequence of pages forms a transaction for a 

user.  

We call the sequence a "path."  

 

C. Trail Tree Construction 

The transactions identified 

from each user session form 

a  

collection of paths. Since multiple visitors may access the 

same pages in the same order, we use the trie data structure to 

merge the paths along common prefixes. A trie, or a prefix 

tree, is an ordered tree used to store an associative array 

where the keys are usually strings [35]. All the descendants 

of a node have a common prefix of the string associated with 

that node. The root is associated with the empty string.  

We adapted the trie algorithm to construct a tree structure 

that also captures user visit frequencies, which is called a 

trail tree in our work. In a trail tree, a complete path from the 

root to a leaf node is called a trail. Each node corresponds to the 

occurrence of a specific page in a transaction. It is annotated 

with the number of users having reached the node across the 

same trail prefix. The leaf nodes of the trail tree are also 

annotated with the trail names.  

An example trail tree is shown in Fig. 2. The transaction 

paths extracted from the Web server log are shown in the 

table to its left, together with path occurrence frequencies. 

Paths 1, 4, and 5 have the common first node a; therefore, 

they were merged together. For the second node of this 

subtree, Paths 1 and 4 both accessed Page b; therefore, the 
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two paths were combined at Node b. Finally, Paths 1 and 4 

were merged into a single trail, Trail 1, although Path 1 

terminates at Node e. By the same method, the other paths can 

be integrated into the trail tree. The number at each edge 

indicates the number of users reaching the next node across the 

same trail prefix.  

Based on the aggregated trail tree, further mining can be 

per- formed for some "interesting" pattern discovery. Typically, 

good mining results require a close interaction of the human 

experts to specify the characteristics that make navigation 

patterns inter- esting. In our method, we focus on the paths 

which are used by a sufficient number of users to finish a 

specific task. The paths can be initially prioritized by their usage 

frequencies and selected by using a threshold specified by the 

experts. Application-domain knowledge and contextual 

information, such as criticality of specific tasks, user 

privileges, etc., can also be used to identified "interesting" 

patterns. For the FG 2009 website, we extracted  

30 trails each for Tasks 1, 2, and 3, and 5 trails for Task 

4.  

 

 

 

IV. IDEAL USER INTERACTIVE PATH MODEL 

CONSTRUCTION  

Our IUIP models are based on the cognitive models 

surveyed  

in Section II, particularly the ACT-R model. Due to the 

com- plexity of ACT-R model development [9] and the low-

level rule- based programming language it relies on [12], we 

constructed our own cognitive architecture and supporting tool 

based on the ideas from ACT-R.  

In general, the user behavior patterns can be traced with a 

sequence of states and transitions [30], [32]. Our IUIP 

consists of a number of states and transitions. For a 

particular goal, a sequence of related operation rules can be 

specified for a series of transitions. Our IUIP model specifies 

both the path and the benchmark interactive time (no more 

than a maximum time) for some specific states (pages). The 

benchmark time can first be specified based on general rules 

for common types of Web pages. For example, human factors 

guidelines specify the upper bound for the response time to 

mitigate the risk that users will lose interest in a website [22].  

Diagrammatic notation methods and tools are often used to 

support interaction modeling and task performance 

evaluation [11], [15], [33]. To facilitate IUIP model 

construction and reuse, we used C++ and XML to develop our 

IUIP modeling tool based on the open-source visual diagram 

software DIA. DIA allows users to draw customized 

diagrams, such as UML, data flow, and other diagrams. 

Existing shapes and lines in DIA form part of the graphic 

notations in our IUIP models. New ones can be easily added 

by writing simple XML files. The operations, operation 

rules, and computation rules can be embedded into the 

graphic notations with XML schema we defined to form our 

IUIP symbols. Currently, about 20 IUIP symbols have been 

created to represent typical Web interactions. IUIP symbols 

used in subsequent examples are explained at the bottom of 

Fig. 3. Cognitive experts can use our IUIP modeling tool to 

develop various IUIP models for different Web applications. .  

Fig. 3 shows the IUIP model constructed by the cognitive 

experts for the event "First Selection" for the novice users of 

the FG website, together with the explanation for the 

symbols. Each state of the IUIP model is labeled, and the 

benchmark time is shown on the top. "-" means there is no 

interaction with users. Those pages are only used to post data 

to the server.  

 

V. USABILITY PROBLEM 

IDENTIFICATION  

The actual users' navigation trails we extracted from the 

aggregated trail tree are compared against corresponding 

IUIP models automatically. This comparison will yield a set of 

deviations between the two. We can identify some common 

problems of actual users' interaction with the Web application 

by focusing on deviations that occur frequently. Combined 

with expertise in product internal and contextual information, 

our results can also help identify the root causes of some 

usability problems existing in the Web design.  

Based on logical choices made and time spent by users at 

each page, the calculation of deviations between actual users'  

usage patterns and IUIP can be divided into two 

parts:  

1) Logical deviation calculation:  



DOI: 10.18535/ijecs/v5i5.10 
 

Ashwini R, IJECS Volume 05 Issue 5 May 2016 Page No.16369-16375 Page 16375 

a) When the path choice anticipated by the IUIP model is 

available but not selected, a single deviation is counted.  

b) Sum up all the above deviations over all the selected user 

transactions for each page.  

2)Temporal deviation calculation:  

a) When a user spends more time at a specific page than  

the benchmark specified for the corresponding state in the IUIP 

model, a single deviation is counted.  

b) Sum up all the above deviations over all the selected user 

transactions for each page.  

CONCLUSION 

We have developed a new method for the identification 

and  

Improvement of navigation-related Web usability problems 

by checking extracted usage patterns against cognitive user 

models. As demonstrated by our case study, our method can 

identify areas with usability issues to help improve the 

usability of Web systems. Once a website is operational, our 

method can be continuously applied and drive ongoing 

refinements. In contrast with traditional software products 

and systems, Web- based applications have shortened 

development cycles and pro- longed maintenance cycles. Our 

method can contribute significantly to continuous usability 

improvement over these prolonged maintenance cycles. The 

usability improvement in successive iterations can be 

quantified by the progressively better effectiveness. 
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