
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN: 2319-7242
Volume 5 Issue 5 May 2016, Page No. 16369-16375

Ashwini R, IJECS Volume 05 Issue 5 May 2016 Page No.16369-16375 Page 16369

Enhancing Web Navigation Appropriateness by Correlating Actual and

Predictable Practice
Ashwini R,

4
th
 Sem, M.Tech ,CSE,BGSIT, Ashwinircs@gmail.com

Abstract—a new method to identify navigation- related Web usability problems based on correlating Actual and Predictable

usage patterns. The actual usage patterns can be extracted from Web server logs routinely recorded for operational websites by

first processing the log data to identify users, user sessions, and user task-oriented transactions, and then applying an usage mining

algorithm to discover patterns among actual usage paths. The anticipated usage, including information about both the path and

time required for user-oriented tasks, is captured by our ideal user interactive path models constructed by cognitive ex- perts based on

their cognition of user behavior. The comparison is performed via the mechanism of test oracle for checking results and identifying

user navigation difficulties. The deviation data produced from this comparison can help us discover usability issues and suggest

corrective actions to improve usability. A software tool was developed to automate a significant part of the activities involved.

With an experiment on a small service-oriented website, we identified usability problems, which were cross-validated by do- main

experts, and quantified usability improvement by the higher task success rate and lower time and effort for given tasks after

suggested corrections were implemented.

Index Terms—Cognitive user model, sessionization, software tool, test oracle, usability, usage pattern, Web server log.

I. INTRODUCTION

World Wide Web becomes prevalent today, building and

ensuring easy-to-use Web systems is becoming core

competency of business. Usability is defined as the

effectiveness, efficiency, and satisfaction with which specific

users can complete specific tasks in a particular environment

Three basic Web design principles, i.e., structural firmness,

functional convenience, and presentational delight, were

identified to help improve users' online experience [42].

Structural firmness relates primarily to the characteristics that

influence the website security and performance. Heuristic

evaluation by experts and user-centered testing are typically

used to identify usability issues and to ensure satisfactory

usability . However, significant challenges exist, including 1)

accuracy of problem identification due to false alarms

common in expert evaluation,2) unrealistic evaluation of

usability due to differences between the testing environment

and the actual usage environment , and 3) increased cost due

to the prolonged evolution and maintenance cycles typical

for many Web applications . On the other hand, log data

routinely kept at Web servers represent actual usage. Such

data have been used for usage-based testing and quality

assurance, and also for understanding user behavior and

guiding user interface design .

We propose to extract actual user behavior from Web server

logs, capture anticipated user behavior with the help of

cognitive user models , and perform a comparison between

the two. This deviation analysis would help us identify some

navigation related usability problems. Correcting these

problems would lead to better functional convenience as

characterized by both better effectiveness (higher task

completion rate) and efficiency (less time for given tasks). This

new method would complement. The rest of this paper is

organized as follows: Section II introduces the related work.

Section III presents the basic ideas of our method and its

architecture. Section IV describes how to extract actual usage

patterns from Web server logs. Section V describes the

construction of our ideal user interactive path (IUIP) models to

capture anticipated Web usage. Section VI presents the com-

http://www.ijecs.in/

DOI: 10.18535/ijecs/v5i5.10

Ashwini R, IJECS Volume 05 Issue 5 May 2016 Page No.16369-16375 Page 16370

prison between actual usage patterns and corresponding IUIP

models. Section VII describes a case study applying our

method to a small service-oriented website. Section VIII

validates our method by examining its applicability and

effectiveness. Section IX discusses the limitations of our

method. Conclusions and perspectives are discussed in

Section X.

II. RELATED WORK

A. Logs, Web Usage and Usability

Two types of logs, i.e., server-side logs and client-side logs,

are commonly used for Web usage and usability analysis.

Server-side logs can be automatically generated by Web

servers, with each entry corresponding to a user request. By

analyzing these logs, Web workload was characterized and

used to suggest performance enhancements for Internet Web

servers. Because of the vastly uneven Web traffic, massive

user population, and diverse usage environment, coverage-

based testing is insufficient to ensure the quality of Web

applications . Therefore, server-side logs have been used to

construct Web usage models for usage-based Web testing ,

or to automatically generate test cases accordingly to improve

test efficiency.

Server logs have also been used by organizations to learn

about the usability of their products. For example, search

queries can be extracted from server logs to discover user

information needs for usability task analysis . There are

many advantages to using server logs for usability studies.

Logs can provide insight into real users performing actual

tasks in natural working conditions versus in an artificial

setting of a lab. Logs also represent the activities of many

users over a long period of time versus the small sample of

users in a short time span in typical lab testing . Data

preparation techniques and algorithms can be used to process

the raw Web server logs, and then mining can be performed to

discover users' visitation patterns for further usability

analysis . For example, organizations can mine server-side

logs to predict users' behavior and context to satisfy users' need

. Users' revisitiation patterns can be discovered by mining

server logs to develop guidelines for browser history

mechanism that can be used to reduce users' cognitive and

physical effort .

Client-side logs can capture accurate comprehensive

usage data for usability analysis, because they allow low-

level user interaction events such as keystrokes and mouse

movements to be recorded . For example, using these client-

side data, the evaluator can accurately measure time spent

on particular tasks or pages as well as study the use of "back"

button and user click streams . Such data are often used with

task- based approaches and models for usability analysis by

com- paring discrepancies between the designer's anticipation

and a user's actual behavior . However, the evaluator must

program the UI, modify Web pages, or use an instrumented

browser with plug-in tools or a special proxy server to

collect such data. Because of privacy concerns, users

generally do not want any instrument installed in their

computers. Therefore, logging actual usage on the client side

can best be used in lab-based experiments with explicit

consent of the participants.

B. Cognitive User Models

In recent years, there is a growing need to incorporate

insights from cognitive science about the mechanisms,

strengths, and limits of human perception and cognition to

understand the human factors involved in user interface

design . For ex- ample, the various constraints on cognition

(e.g., system complexity) and the mechanisms and patterns

of strategy selection can help human factor engineers

develop solutions and apply technologies that are better

suited to human abilities. Software engineering techniques

have also been applied to develop intelligent agents and

cognitive models . On the one hand, higher level

programming languages simplify the encoding of behavior by

creating representations that map more directly to a theory of

how behavior arises in humans. On the other hand, as these

designs are adopted, adapted, and reused, they may become

design patterns.

III. ARCHITECTURE OF A NEW METHOD

Our research is guided by three research

questions:

1)RQ1:What usability problems are addressed?

DOI: 10.18535/ijecs/v5i5.10

Ashwini R, IJECS Volume 05 Issue 5 May 2016 Page No.16369-16375 Page 16371

2)RQ2: How to identify these problems?

3)RQ3: How to validate our approach?

As described in the previous section, Web server logs

have been used for usage-based Web testing and quality

assurance. They have also been used for understanding

user behavior and guiding user interface design. These

works are extended in this study to focus on the functional

convenience aspect of usability. In particular, we focus on

identifying navigation related problems as characterized

by an inability to complete certain tasks or excessive time

to complete them (RQ1).

Usability engineers often use server logs to analyze users'

behavior and understand how users perform specific tasks to

improve their experience. On the other hand, many critics

pointed out that server logs contain no information about the

users' goals in visiting websites [37]. Usability engineers

cannot generalize from server log data as they can from data

collected by perform ing controlled experiments. However,

these weaknesses can be alleviated by applying the cognitive

user models we surveyed in the previous section. Such

cognitive models can be constructed with our domain

knowledge and empirical data to capture anticipated user

behavior. They may also provide clues to users' intentions

when they interact with Web systems.

We propose a new method to identify navigation related

us- ability problems by comparing Web usage patterns

extracted from server logs against anticipated usage

represented in some cognitive user models (RQ2). Fig. 1

shows the architecture of our method. It includes three major

modules: Usage Pattern Ex- traction, IUIP Modeling, and

Usability Problem Identification. First, we extract actual

navigation paths from server logs and discover patterns for

some typical events. In parallel, we construct IUIP models

for the same events. IUIP models are based on the cognition

of user behavior and can represent anticipated paths for

specific user-oriented tasks. The result checking em- ploys

the mechanism of test oracle. An oracle is generally used to

determine whether a test has passed or failed [6]. Here, we use

IUIP models as the oracle to identify the usability issues

related to the users' actual navigation paths by analyzing the

deviations between the two. This method and its three major

modules will be described in detail in Sections IV-VI.

We used the Furniture Giveaway (FG) 2009 website as

the case study to illustrate our method and its application.

Addition- ally, we also used the server log data of the FG

2010 website, the next version of FG 2009, to help us

validate our method. All the usability problems in FG2009

identified by our method were fixed in FG2010. The

functional convenience aspect of usability for this website is

quantified by its task completion rate and time to complete

given tasks. The ability to implement recommended changes

and to track quantifiable usability im- provement over

iterations is an important reason for us to use this website to

evaluate the applicability and effectiveness of our method

(RQ3).

DOI: 10.18535/ijecs/v5i5.10

Ashwini R, IJECS Volume 05 Issue 5 May 2016 Page No.16369-16375 Page 16372

Fig 1 Architecture of new method for identifying usability problems

The FG website was constructed by a charity organization

to provide free furniture to new international students in

Dal- las. Similar to e-commerce websites, it provided

registration, selection, and removal of goods, submission of

orders, and other services. It was partially designed and

developed with the well- known templated page pattern . All

outgoing Web pages go through a one-page template on their

way to the client. Four templated pages were designed for

the furniture catalog, furniture details, account information

and selections. The FG website was implemented by using

PHP, MySQL, AJAX and other dy- namic Web development

techniques. It included 15 PHP scripts to process users'

requests, 5 furniture catalog pages, about 200 furniture detail

pages, and additional pages related to user in- formation,

selection rules, registration and so on.

IV. USAGE PATTERN EXTRACTION

Web server logs are our data source. Each entry in a log

contains the IP address of the originating host, the timestamp,

the requested Web page, the referrer, the user agent and other

data. Typically, the raw data need to be preprocessed and

converted into user sessions and transactions to extract usage

patterns.

A. Data Preparation and Preprocessing

The data preparation and preprocessing include the

following domain-dependent tasks. 1) Data cleaning: This

task is usually site-specific and involves removing

extraneous references to style files, graphics, or sound files

that may not be important for the purpose of our analysis. 2)

User identification: The remaining entries are grouped by

individual users. Because no user authentication and cookie

information is available in most server logs, we used the

combination of IP, user agent, and referrer fields to identify

unique users.

Fig. 2. Example of a trail tree (right) and associated transaction paths (left).

3) User session identification: The activity record of each

user is segmented into sessions, with each representing a

single visit to a site. Without additional authentication

information from users and without the mechanisms such as

embedded session IDs, one must rely on heuristics for

session identification [3], [23]. For example, we set an

DOI: 10.18535/ijecs/v5i5.10

Ashwini R, IJECS Volume 05 Issue 5 May 2016 Page No.16369-16375 Page 16373

elapse time of 15 min between two successive page accesses

as a threshold to partition a user activity record into different

sessions.

4) Path completion: Client or proxy side caching can

often

result in missing access references to some pages that have

been cached. These missing references can often be

heuristically inferred from the knowledge of site topology and

referrer information, along with temporal information from

server logs .

These tasks are time consuming and computationally

intensive, but essential to the successful discovery of usage

patterns. Therefore, we developed a tool to automate all these

tasks except part of path completion. For path completion, the

designers or developers first need to manually discover the

rules of missing references based on site structure, referrer,

and other heuristic information. Once the repeated patterns are

identified, this work can be automatically carried out. Our tool

can work with server logs of different Web applications by

modifying the related pa- rameters in the configuration file.

The processed log data are stored into a database for further

use.

B.TransactionIdentificati

E-commerce data typically include various task-oriented

events such as order, shipping, and shopping cart changes.

In most cases, there is a need to divide individual data into

corresponding groups called Web transactions. A transaction

usually has a well-defined beginning and end associated with a

specific task. For example, a transaction may start when a

user places something in his shopping cart and ends when

he has completed the purchase on the confirmation screen . A

transaction differs from a user session in that the size of a

transaction can range from a single page to all the visited

pages in a user session.

In this research, we first construct event models, also called

task models, for typical Web tasks. Event models can be

built by Web designers or domain experts based on the use

cases in the requirements for the Web application. Based on

the event models, we identify the click operations (pages)

from the click- stream of a user session as a transaction. For

the FG website we constructed four event models for the

following four typical tasks.

1) Task 1: Register as a new user.

2) Task 2: Select the first piece of furniture.

3) Task 3: Select the next piece of furniture.

4) Task 4: Change selection.

The example below shows the event model constructed

for

Task2("FirstSelection"):

[post register.php] .*? [post process. php].

Here, "[]" indicates beginning and end pages; ".*?" indicates

a minimal number of pages in a sequence between the two

pages. For this task, we extracted a sequence of pages which

started with the page "post register.php" and ended with the

first appearance of the page "post process.php" for each

session. Such a sequence of pages forms a transaction for a

user.

We call the sequence a "path."

C. Trail Tree Construction

The transactions identified

from each user session form

a

collection of paths. Since multiple visitors may access the

same pages in the same order, we use the trie data structure to

merge the paths along common prefixes. A trie, or a prefix

tree, is an ordered tree used to store an associative array

where the keys are usually strings [35]. All the descendants

of a node have a common prefix of the string associated with

that node. The root is associated with the empty string.

We adapted the trie algorithm to construct a tree structure

that also captures user visit frequencies, which is called a

trail tree in our work. In a trail tree, a complete path from the

root to a leaf node is called a trail. Each node corresponds to the

occurrence of a specific page in a transaction. It is annotated

with the number of users having reached the node across the

same trail prefix. The leaf nodes of the trail tree are also

annotated with the trail names.

An example trail tree is shown in Fig. 2. The transaction

paths extracted from the Web server log are shown in the

table to its left, together with path occurrence frequencies.

Paths 1, 4, and 5 have the common first node a; therefore,

they were merged together. For the second node of this

subtree, Paths 1 and 4 both accessed Page b; therefore, the

DOI: 10.18535/ijecs/v5i5.10

Ashwini R, IJECS Volume 05 Issue 5 May 2016 Page No.16369-16375 Page 16374

two paths were combined at Node b. Finally, Paths 1 and 4

were merged into a single trail, Trail 1, although Path 1

terminates at Node e. By the same method, the other paths can

be integrated into the trail tree. The number at each edge

indicates the number of users reaching the next node across the

same trail prefix.

Based on the aggregated trail tree, further mining can be

per- formed for some "interesting" pattern discovery. Typically,

good mining results require a close interaction of the human

experts to specify the characteristics that make navigation

patterns inter- esting. In our method, we focus on the paths

which are used by a sufficient number of users to finish a

specific task. The paths can be initially prioritized by their usage

frequencies and selected by using a threshold specified by the

experts. Application-domain knowledge and contextual

information, such as criticality of specific tasks, user

privileges, etc., can also be used to identified "interesting"

patterns. For the FG 2009 website, we extracted

30 trails each for Tasks 1, 2, and 3, and 5 trails for Task

4.

IV. IDEAL USER INTERACTIVE PATH MODEL

CONSTRUCTION

Our IUIP models are based on the cognitive models

surveyed

in Section II, particularly the ACT-R model. Due to the

com- plexity of ACT-R model development [9] and the low-

level rule- based programming language it relies on [12], we

constructed our own cognitive architecture and supporting tool

based on the ideas from ACT-R.

In general, the user behavior patterns can be traced with a

sequence of states and transitions [30], [32]. Our IUIP

consists of a number of states and transitions. For a

particular goal, a sequence of related operation rules can be

specified for a series of transitions. Our IUIP model specifies

both the path and the benchmark interactive time (no more

than a maximum time) for some specific states (pages). The

benchmark time can first be specified based on general rules

for common types of Web pages. For example, human factors

guidelines specify the upper bound for the response time to

mitigate the risk that users will lose interest in a website [22].

Diagrammatic notation methods and tools are often used to

support interaction modeling and task performance

evaluation [11], [15], [33]. To facilitate IUIP model

construction and reuse, we used C++ and XML to develop our

IUIP modeling tool based on the open-source visual diagram

software DIA. DIA allows users to draw customized

diagrams, such as UML, data flow, and other diagrams.

Existing shapes and lines in DIA form part of the graphic

notations in our IUIP models. New ones can be easily added

by writing simple XML files. The operations, operation

rules, and computation rules can be embedded into the

graphic notations with XML schema we defined to form our

IUIP symbols. Currently, about 20 IUIP symbols have been

created to represent typical Web interactions. IUIP symbols

used in subsequent examples are explained at the bottom of

Fig. 3. Cognitive experts can use our IUIP modeling tool to

develop various IUIP models for different Web applications. .

Fig. 3 shows the IUIP model constructed by the cognitive

experts for the event "First Selection" for the novice users of

the FG website, together with the explanation for the

symbols. Each state of the IUIP model is labeled, and the

benchmark time is shown on the top. "-" means there is no

interaction with users. Those pages are only used to post data

to the server.

V. USABILITY PROBLEM

IDENTIFICATION

The actual users' navigation trails we extracted from the

aggregated trail tree are compared against corresponding

IUIP models automatically. This comparison will yield a set of

deviations between the two. We can identify some common

problems of actual users' interaction with the Web application

by focusing on deviations that occur frequently. Combined

with expertise in product internal and contextual information,

our results can also help identify the root causes of some

usability problems existing in the Web design.

Based on logical choices made and time spent by users at

each page, the calculation of deviations between actual users'

usage patterns and IUIP can be divided into two

parts:

1) Logical deviation calculation:

DOI: 10.18535/ijecs/v5i5.10

Ashwini R, IJECS Volume 05 Issue 5 May 2016 Page No.16369-16375 Page 16375

a) When the path choice anticipated by the IUIP model is

available but not selected, a single deviation is counted.

b) Sum up all the above deviations over all the selected user

transactions for each page.

2)Temporal deviation calculation:

a) When a user spends more time at a specific page than

the benchmark specified for the corresponding state in the IUIP

model, a single deviation is counted.

b) Sum up all the above deviations over all the selected user

transactions for each page.

CONCLUSION

We have developed a new method for the identification

and

Improvement of navigation-related Web usability problems

by checking extracted usage patterns against cognitive user

models. As demonstrated by our case study, our method can

identify areas with usability issues to help improve the

usability of Web systems. Once a website is operational, our

method can be continuously applied and drive ongoing

refinements. In contrast with traditional software products

and systems, Web- based applications have shortened

development cycles and pro- longed maintenance cycles. Our

method can contribute significantly to continuous usability

improvement over these prolonged maintenance cycles. The

usability improvement in successive iterations can be

quantified by the progressively better effectiveness.

REFERENCES

[1] A. Agarwal and M. Prabaker, "Building on the usability

study: Two explorations on how to better understand an

interface," in Human-Computer Interaction. New Trends, J.

Jacko, Ed. New York, NY, USA: Springer, 2009,pp. 385-

394.

[2] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass,

C. Lebiere, and Y. Qin, "An integrated theory of the mind,"

Psychol. Rev., vol. 111, pp. 1036-1060, 2004.

[3] M. F. Arlitt and C. L. Williamson, "Internet Web

servers: Workload characterization and performance

implications," IEEE/ACM Trans. Netw., vol. 5, no. 5, pp. 631-

645, Oct. 1997.

[4] C. M. Barnum and S. Dragga, Usability Testing and

Research. White Plains, NY, USA: Longman, Oct. 2001.

[5] B. Beizer, Software Testing Technique. Boston, MA,

USA: Int. Thomson Comput. Press, 1990.

[6] J. L. Belden, R. Grayson, and J. Barnes, "Defining and

testing EMR

usability: Principles and proposed methods of EMR

usability evalu- ation and rating," Healthcare Information

and Management Systems Society, Chicago, IL, USA, Tech.

Rep., (2009). [Online].

Available:http://www.himss.org/ASP/ContentRedirector.asp

?ContentID=71733

[7] M. C. Burton and J. B. Walther, "The value of Web log

data in use-based

design and testing," J. Comput.-Mediated Commun., vol. 6,

no. 3, p. 0, 2001.

[8] M. D. Byrne, "ACT-R/PM and menu selection:

Applying a cognitive architecture to HCI," Int. J. Human-

Comput. Stud., vol. 55, no. 1, pp. 41-84, 2001

