

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 4 Issue 3 March 2015, Page No. 10972-10976

Deepti Singh, IJECS Volume 4 Issue 3 March, 2015 Page No.10972-10976 Page 10972

A Mutation Testing Analysis And Regression

Testing

Deepti singh1, Ankit Thakur2, Abhishek Chaudhary3

1 M.Tech (CSE) Scholar, Bhagwant University,

Sikar Road, Ajmer, Rajasthan

2 M.Tech (CSE) Scholar, Bhagwant University,

Sikar Road, Ajmer, Rajasthan

3 Assistant Professor (CSE), Bhagwant University,

Sikar Road, Ajmer, Rajasthan

Abstract: Software testing is an investigation conducted to provide stakeholders with information about the quality of the product or service

under test. Software testing can also provide an objective, independent view of the software to allow the business to appreciate and understand

the risks of software implementation. In this paper we focused on two main software testing –mutation testing and mutation testing. Mutation

testing is a structural testing method, i.e. we use the structure of the code to guide the test process. A mutation is a small change in a program.

Such small changes are intended to model low level defects that arise in the process of coding systems. Ideally mutations should model low-

level defect creation. Mutation testing is a method of software testing in which program or source code is deliberately manipulated, followed by

suite of testing against the mutated code. The mutations introduced to source code are designed to imitate common programming errors. A

good unit test suite typically detects the program mutations and fails automatically. Mutation testing is used on many different platforms,

including Java, C++, C# and Ruby. Regression testing is a type of software testing that seeks to uncover new software bugs, or regressions, in

existing functional and non-functional areas of a system after changes such as enhancements, patches or configuration changes, have been

made to them. During confirmation testing the defect got fixed and that part of the application started working as intended. But there might be

a possibility that the fix may have introduced or uncovered a different defect elsewhere in the software. The way to detect these ‘unexpected

side-effects’ of fixes is to do regression testing. The purpose of a regression testing is to verify that modifications in the software or the

environment have not caused any unintended adverse side effects and that the system still meets its requirements. Regression testing are mostly

automated because in order to fix the defect the same test is carried out again and again and it will be very tedious to do it manually.

Regression tests are executed whenever the software changes, either as a result of fixes or new or changed functionality.

Keywords: Increment model, waterfall model, Software engineering, Software process model and Software

1. INTRODUCTION

Software testing is the process of executing software in a

controlled manner. When the end product is given to the client,

it should work correctly according to the specifications and

requirements stated by the client. Defect in software is the

variance between the actual and expected results. There are

different types of testing procedures, which when conducted,

help to eliminate the defects from the program. Testing is the

process of gathering information by making the observations

and comparing them to expectations. In our day-to-day life,

when we go out, shopping any product such as vegetable,

clothes, pens, etc., we do check it before purchasing them for

our satisfaction and to get maximum benefits. For example,

when we intend to buy a pen, we test the pen before actually

purchasing it, i.e. if it's writing, does it work in extreme

climatic conditions, etc. So, be it the software, hardware, or any

other product, testing turns be mandatory. Testing not only

means fixing the bug in the code, but also to check whether the

program is behaving according to the given specifications and

testing strategies. Software testing is an investigation

conducted to provide stakeholders with information about the

quality of the product or service under test. Software testing

can also provide an objective, independent view of

the software to allow the business to appreciate and understand

the risks of software implementation. Test techniques include,

but are not limited to, the process of executing a program or

application with the intent of finding software bugs (errors or

other defects). The primary function of software testing is to

detect bugs in order to uncover and detect it. The scope

includes execution of that code in various environments and

also to examine the aspects of the code - does the software do

what it is supposed to do and function according to the

specifications? As we move further we come across some

questions such as, "When to start testing?" and "When to stop

testing?" It is recommended to start testing from the initial

stages of the software development. This not only helps in

rectifying the errors before the last stage, but also reduces the

rework of finding bugs in the initial stages every now and then.

It saves time and is cost-effective. Software testing is an

http://www.ijecs.in/
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_bug

Deepti Singh, IJECS Volume 4 Issue 3 March, 2015 Page No.10972-10976 Page 10973

ongoing process, which is potentially endless but has to be

stopped somewhere, due to the lack of time and budget. It is

required to achieve maximum profit with good quality product,

within the limitations of time and money. The tester has to

follow some procedural way through which he can judge if he

covered all the points required for testing or missed out any. To

help testers carry out these day-to-day activities, a baseline has

to be set, which is done in the form of checklists.

This paper focused on two main types of software testing-

Mutation Testing and Regression Testing. In Section -2 and

Section -3 summarizes mutation testing & regression testing

and its algorithm with their advantages and disadvantages, final

discussion is concluded in Section-4.

2. MUTATION TESTING

Mutation test is one of those wonderful tests that allow you to

assess the tests. Mutation test involves deliberately altering,

modifying or changing a program code, later rerunning a suit of

correct unit tests against the mutated program. As the demand

for software grows, so is the complexity of the design. The

more complex a software is, the higher will be the testing

needs, quality assurance and customer satisfaction. Although

testing is, an integral part of the software development process

the issue is still on what is sufficient or adequate testing still

open. Mutation testing is one way to verify if the software

tester performed the testing in a proper manner. Through

mutation testing, it can be determined, if the set of testing

methods used in the developing process were appropriate and

adequate to ensure product quality. To determine the

correctness of a testing program, you will need to observe the

behavior for each test case. If there are no detected faults, then

the program is correct or it passes the test. A test case is the set

of input values to the program under test and the corresponding

output values. Mutation testing is a method or strategy to check

the effectiveness or accuracy of a testing program to detect the

fault in the system or program under test. The test is called so

because mutants of the software are created and run with the

test cases. Experts also call mutation testing as fault-based

testing strategy because the mutants are created by introducing

a single fault into the original program. You can set any

number of mutants into the system. There are other versions of

mutation testing, but they rely on the same method – to mutate

the original software. Some of the other versions are weak

mutation, interface mutation and specification based mutation.

Mutation testing is not a new method, developers know about it

since the late 1970s. However, researchers have been using it

in the educational institutions than in the industrial software

domain. Mutation testing is a simple but ingenious method

used to validate source code correctness and the testing

process. The concept was first coined by Richard Lipton in

1971, and there has been a surge of interest since that

time. Mutation testing's working mechanism is simple and

straightforward. A piece of source code encompassing all unit

tests is selected. After verifying all positive testing for a given

source code, a mutation is introduced into the program.

The degree of mutation applied to a given code block may

vary. A common mutation testing implementation involves

replacing a logical operator with its inverse. For example,

operator "! =" is used in place of "= =." In some cases,

mutation involves rearranging lines to change the execution

order or even deleting a few lines of code. Complex mutation

testing levels may result in compilation errors. Once a program

is modified, a suite of unit tests are executed against the

mutated code. The mutated code passes or fails the unit test,

depending on the testing quality. A well-written unit test must

detect mutated code errors, resulting in failure. A unit test that

fails to detect code errors may require a rewrite.

2.1 Mutation Testing Example

Mutation testing is done by selecting a set of mutation

operators and then applying them to the source program one at

a time for each applicable piece of the source code. The result

of applying one mutation operator to the program is called

a mutant. If the test suite is able to detect the change (i.e. one of

the tests fails), then the mutant is said to be killed.Let’s take

example to find a maximum between two numbers:

function MAX(M<N:INTEGER)

 return INTEGER is

begin

 if M>N then

 return M;

 else

 return N;

 end if:

end MAX;

2.1.1First test data set--M=1, N=2

1. The original function returns 2

2. Five mutants: replace”>“ operator in if statements by

(>,<,<=or=)

3. Executing each mutant:

Mutants Outputs Comparison

if M>=N then 2 live

if M<N then 1 dead

if M<=N then 1 dead

if M=N then 2 live

Deepti Singh, IJECS Volume 4 Issue 3 March, 2015 Page No.10972-10976 Page 10974

if M< >N then 1 dead

4. Adding test data M=2, N=1 will eliminate the latter live

mutant, but the former live mutant remains live because it is

equivalent to the original function. No test data can eliminate

it.

2.2 Mutation Testing Algorithm

The following steps rely on the traditional mutation process:

1. Generate program test cases.

2. Run each test case against the original program.

a. If the output is incorrect, the program must be

modified and re-tested.

b. If the output is correct go to the next step ...

3. Construct mutants using a tool like Mothra

4. Mutation testing will empower software testing process

with trust and fidelity.

5. Execute each test case against each alive mutant.

a. If the output of the mutant differs from the

output of the original program, the mutant is

considered incorrect and is killed.

6. Two kinds of mutants survive:

a. Functionally equivalent to the original program:

Cannot be killed.

b. Killable: Test cases are insufficient to kill

the mutant. New test cases must be created.

7. The mutation score for a set of test cases is the

percentage of non-equivalent mutants killed by the test

data.

8. Mutation Score = 100 * D / (N - E)

a. D = Dead mutants

b. N = Number of mutants

c. E = Number of equivalent mutants

9. A set of test cases is mutation adequate if its mutation

score is 100%.

 Fig 2. Process of Mutation

Testing

 2.3 Advantages and Disadvantages

 2.3.1 Advantages:

1. Program code fault identification

2. Effective test case development

3. Detection of loopholes in test data

4. Improved software program quality

5. Elimination of code ambiguity

 2.3.2 Disadvantages

1. Difficult implementation of complex mutations

2. Expensive and time-consuming

3. Requires skilled testers with programming knowledge

2.4 MUTATION OPERATORS

A variety of mutation operators were explored by researchers.

Here are some examples of mutation operators for imperative

languages:

1. Statement deletion.

2. Replace each boolean subexpression

with true and false.

3. Replace each arithmetic operation with another one,

e.g. + with *, - and /.

Deepti Singh, IJECS Volume 4 Issue 3 March, 2015 Page No.10972-10976 Page 10975

4. Replace each boolean relation with another one,

e.g. > with >=, == and <=.

5. Replace each variable with another variable declared in

the same scope (variable types should be the same).

3. REGRESSION TESTING

Regression means errors that occur due to some action or

activities in a system. In IT world a “regression” means the

return of a bugRegression testing is a style of testing that

focuses on retesting after changes are made. In traditional

regression testing, we reuse the same tests (the regression

tests). In risk-oriented regression testing, we test the same areas

as before, but we use different (increasingly complex) tests.

Traditional regression tests are often partially automated.

Regression test optimization techniques reduce the cost of

regression testing by selecting a subset of an existing test suite

to use in retesting a modified program. Over the years,

numerous regression test optimization techniques have been

described in the literature. Empirical studies of the techniques

suggest that they can indeed benefit testers, but so far, few

studies have empirically compared different techniques. In this

paper, the results of a comparative empirical study of different

regression test optimization techniques are represented.

Regression testing attempts to mitigate two risks:

 A change that was intended to fix a bug failed.

 Some change had a side effect, unfixing an old bug or

introducing a new bug

Regression means retesting the unchanged parts of the

application. Test cases are re-executed in order to check

whether previous functionality of application is working fine

and new changes have not introduced any new bugs. This test

can be performed on a new build when there is significant

change in original functionality or even a single bug fix. This is

the method of verification. Verifying that the bugs are fixed

and the newly added features have not created in problem in

previous working version of software. Testers perform

functional testing when new build is available for verification.

The intend of this test is to verify the changes made in the

existing functionality and newly added functionality. When this

test is done tester should verify if the existing functionality is

working as expected and new changes have not introduced any

defect in functionality that was working before this change.

Regression test should be the part of release cycle and must be

considered in test estimation. Regression testing is usually

performed after verification of changes or new functionality.

But this is not the case always. For the release taking months to

complete, regression tests must be incorporated in the daily test

cycle. For weekly releases regression tests can be performed

when functional testing is over for the changes. Regression

testing is initiated when programmer fix any bug or add new

code for new functionality to the system. There can be many

dependencies in newly added and existing functionality. It is a

quality measure to check that new code complies with old code

and unmodified code is not getting affected. Most of the time

testing team has task to check the last minute changes in the

system. In such situation testing only affected application area

in necessary to complete the testing process in time with

covering all major system aspects.

4.1 Regression Testing Example

Example of regression testing with its process is explained

below:

For Example there are three Modules in the

Project named Admin Module, Personal Information, and

Employment Module and suppose bug occurs in

the Admin Module like on Admin Module existing User is not

able to login with valid login credentials so this is the

bug. Now Testing team sends the above - mentioned Bug to

the Development team to fix it and when development team

fixes the Bug and hand over to Testing team than testing team

checks that fixed bug does not affect the remaining

functionality of the other modules (Admin, PI, Employment)

and also the functionality of the same module (Admin) so this

is known as the process of regression testing done by Software

Testers.

1. Regression testing is required when there is a-

2. Change in requirements and code is modified

3. New feature is added to the software.

4. Defect fixing

5. Performance issue fix

4.2 Regression Testing Steps

Let P be a procedure or program, let P' be a modified version

of P and let T be a test suite for P. Regression testing consists

of reusing T the new test cases are needed to effectively test

code or functionality added to or changed in producing A

typical regression test proceeds as follows:

1. Select T’ subset of T, a set of test cases to execute on P'.

2. Test P' with T’. Establish P’ correctness with respect to T’.

3. If necessary, create T", a set of new functional or

structural test cases for P'.

4. Test P' with T", establish to P”s correctness with respect to

T”.

5. Create T’”, a new test suit and test history for P’,

from T, T’,T”

http://testingbasicinterviewquestions.blogspot.in/2012/05/is-software-tester-should-be-from-high.html
http://testingbasicinterviewquestions.blogspot.in/2012/05/is-software-tester-should-be-from-high.html

Deepti Singh, IJECS Volume 4 Issue 3 March, 2015 Page No.10972-10976 Page 10976

 Fig.3- Regression Testing process

5. CONCLUSIONS

Software testing is a process of executing a program or

application with the intent of finding the software bugs. We

have many types of software testing but in this report we

focused on two main type of testing and also the working of -

Mutation testing and Regression Testing. Mutation testing is

actually introducing small errors (called mutations) into your

application (errors that are not supposed to fix bugs or provide

new functionality) to see if your test suite picks them up. The

idea is that, if your test suite doesn't pick up the mutations, it is

deficient and should have more test cases added. In other

words, mutation testing tests your test suite rather than your

application. Regression testing is actually a test suite that is

supposed to test as much functionality of your application as

possible. The idea is to make a change to your application as

required for bug fixing or new functionality, and regression

testing will hopefully catch any problems (or regressions) with

your changes. It's called regression since the vast majority of

tests have been added due to previous bugs hence, if they find a

problem, you have regressed to a previous state (in which the

problem once again exists).In other words, regression testing

tests our application.

REFERENCES

[1] A. S. Namin, J. H. Andrews, and D. J. Murdoch(2008),

Sufficient mutation operators for measuring test effectiveness.

In Proc. ICSE, pages 351–360.

[2] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and

F. G.Sayward(1979).” Mutation analysis”. Technical report,G

eorgia Institute of Technology.

[3] D. Schuler and A. Zeller(2009) “Javalanche: Efficient

mutation testing for Java” In Proc. FSE, pages 297–298.

[4] J. H. Andrews, L. C. Briand, and Y. Labiche(2005).”Is

mutation an appropriate tool for testing experiments?” In

Proc. ISE, pages 402–411.

[5] L. Zhang, S. S. Hou, J. J. Hu, T. Xie, and H. Mei(2010) ” Is

operator-based mutant selection superior to random mutant

selection?” In Proc. ICSE, pages 435–444.

[6] M. B. Dwyer, and G. Rothermel.(2009)” Regression model

checking.” In Proc. ICSM, pages 115–124.

[7] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M.

Pennings,S. Sinha, S. A. Spoon, and A. Gujarathi (2001)

“Regression test selection for java software.” In Proc.

OOPSLA, pages 312–326.

[8] M. Woodward and K. Halewood.(1988) “From weak to

strong, dead oralive? an analysis of some mutation testing

issues”. In Proc. of the Second Workshop on Software Testing,

Verification, and Analysis,pages 152–158.

[9] P.Ammann and J.Offutt.”Introduction to Software Testing.”

Cambridge University Press.

[10] P. E. Black, V. Okun, and Y. Yesha(2001), “Mutation of

Model Checker Specifications for Test Generation and

Evaluation,” in Proceedings of the 1st Workshop on Mutation

Analysis (MUTATION’00), published in book form, as

Mutation Testing for the New Century. San Jose,California, pp.

14–20.

[11] P. G. Frankl, S. N. Weiss, and C. Hu(1997) “All-uses vs

mutation testing:An experimental comparison of effectiveness”

JSS, 38(3):235–253.

[12] R. Abraham and M. Erwig(2009), “Mutation Operators

for Spreadsheets,”IEEE Transactions on Software engineering,

vol. 35, no. 1, pp. 94–10.

[13] R. H. Carver(1993),“Mutation-Based Testing of

Concurrent Programs,” in Proceedings of the IEEE

International Test Conference on Designing, Testing, and

Diagnostics, Baltimore, Maryland, 17-21,pp. 845–853.

[14] W. E. Howde(1982)” Weak mutation testing and

completeness of test sets”.IEEE TSE, pages 371–379.

http://istqbexamcertification.com/what-is-defect-or-bugs-or-faults-in-software-testing/
http://en.wikipedia.org/wiki/Mutation_testing
http://en.wikipedia.org/wiki/Regression_testing

