
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 2 February, 2014 Page No. 3897-3904

S. Mahalakshmi, IJECS Volume 3 Issue 2 Feb, 2014 Page No.3897-3904 Page 3897

CACHING DATA THROUGH PULL BASED

APPROCHES IN WIRELESS NETWORKS
S. Mahalakshmi, Dr. M. Kamarajan

Abstract-In MANET environments, data caching are essential because it increases the ability of mobile to

access desired data, and improve overall system performance. This paper proposes distributed cache

invalidation mechanism (DCIM), a client based cache consistency scheme that’s implemented on prime of

an antecedently planned design for caching information things in mobile impromptu networks

(MANET),namely COACS, where special nodes cache the queries and therefore the addresses of the nodes

that store the responses to those queries. DCIM may be a pull-based algorithmic program that implements

adaptive time to measure (TTL),piggybacking, per-fetching and provides near study consistency capabilities.

Cached knowledge things as appointed adjective TTL values that correspond to their update rates at the data

supply, where ever things with terminated TTL values as stored in validation requests to the information

adjective to refresh them, where a sun expired ones however with high request rates as perfected from the

server. DCIM is analyzed to assess the delay and bandwidth gains in comparison to polling whenever and

push based schemes.

Index Terms- Cache invalidation, client polling, consistency data, pull based scheme, TTL

INTRODUCTION

 Ad hoc is a Latin phrase meaning "for this".

It generally signifies a solution designed for a

specific problem or task, non-generalizable, and

not intended to be able to be adapted to other

purposes (compare a priori). Common examples

are organizations, committees, and commissions

created at the national or international level for a

specific task. In other fields the term may refer,

for example, to a military unit created under

special circumstances, a tailor-made suit, a

handcrafted network protocol, or a purpose-

specific equation. Ad hocking also mean

makeshift solutions, shifting contexts to create

new meanings, inadequate planning, or

improvised events.

 A wireless ad hoc network is a

decentralized type of wireless network. The

network is ad hoc because it does not rely on a

pre-existing infrastructure, such as routers in

wired networks or access points in managed

(infrastructure) wireless networks. Instead, each

node participates in routing by forwarding data for

other nodes, so the determination of which nodes

forward data is made dynamically on the basis of

network connectivity. In addition to the

classic routing, ad hoc networks can

use flooding for forwarding data. An ad hoc

network typically refers to any set of networks

where all devices have equal status on a network

and are free to associate with any other ad hoc

network device in link range.

 Ad Hoc network is a self-organizing multi-

hop wireless network, which relies neither on

fixed infrastructure nor on predetermined

connectivity.

 Ad Hoc networks can be classified using

various parameters:Symmetric and Asymmetric,

Traffic Characteristics, Routing Methods, Some

other metrics such as time and reliability

constraint

S. Mahalakshmi, IJECS Volume 3 Issue 2 Feb, 2014 Page No.3897-3904 Page 3898

Driving means changing constantly location. This

means a constant demand for information on the

current location and specifically for data on the

surrounding traffic, routes and much more. This

information can be grouped together in several

categories.

 A very important category is driver

assistance and car safety. This includes many

different things mostly based on sensor data from

other cars. One could think of brake warning sent

from preceding car, tailgate and collision warning,

information about road condition and

maintenance, detailed regional weather forecast,

premonition of traffic jams, caution to an accident

behind the next bend, detailed information about

an accident for the rescue team and many other

things. One could also think of local updates of

the cars navigation systems or an assistant that

helps to follow a friend’s car. Another category is

infotainment for passengers. For example internet

access, chatting and interactive games between

cars close to each other. The kids will love it.

 Next category is local information as next

free parking space (perhaps with a reservation

system), detailed information about fuel prices

and services offered by the next service station or

just tourist information about sights .A possible

other category is car maintenance. For example

online help from your car mechanic when your car

breaks down or just simply service information.

 The decentralized nature of wireless ad

hoc networks makes them suitable for a variety of

applications where central nodes can't be relied on

and may improve the scalability of networks

compared to wireless managed networks, though

theoretical and overall capacity of such networks

have been identified.

 Minimal configuration and quick

deployment make ad hoc networks suitable for

emergency situations like natural disasters or

military conflicts. The presence of dynamic and

adaptive routing protocols enables ad hoc

networks to be formed quickly.

1.Secure Data Transmission in Mobile Ad Hoc

Networks

 The vision of nomadic computing with its

ubiquitous access has stimulated much interest in

the Mobile Ad Hoc Networking(MANET)

technology. However, its proliferation strongly

depends on the availability of security provisions,

among other factors. In the open, collaborative

MANET environment practically any node can

maliciously or selfishly disrupt and deny

communication of other nodes. In this paper, we

present and evaluate the Secure Message

Transmission (SMT) protocol, which safeguards

the data transmission against arbitrary malicious

behavior of other nodes.

 SMT is a lightweight, yet very effective,

protocol that can operate solely in an end-to-end

manner. It exploits the redundancy of multipath

routing and adapts its operation to remain efficient

and effective even in highly adverse

environments. SMT is capable of delivering up to

250% more data messages than a protocol that

does not secure the data transmission. Moreover,

SMT outperforms an alternative single-path

protocol, a secure data forwarding protocol we

term Secure Single Path (SSP) protocol. SMT

imposes up to68% less routing overhead than

SSP, delivers up to 22% more data packets and

achieves end-to-end delays that are up to 94%

lower than those of SSP. Thus, SMT is better

suited to support Quos for real-time

communications in the ad hoc networking

environment. The security of data transmission is

achieved without restrictive assumptions on the

network nodes’ trust and network membership,

without the use of intrusion detection schemes,

and at the expense of moderate multi-path

transmission overhead only.

 The communication in mobile ad hoc

networks comprises two phases, the route

discovery and the data transmission. In an adverse

environment, both phases are vulnerable to a

variety of attacks. First, adversaries can disrupt

the route discovery by impersonating the

destination, by responding with stale or corrupted

routing information, or by disseminating forged

control traffic. This way, attackers can obstruct

the propagation of legitimate route control traffic

and adversely influence the topological

knowledge of benign nodes. However, adversaries

can also disrupt the data transmission phase and,

thus, incur significant data loss by tampering with,

fraudulently redirecting, or even dropping data

traffic or injecting forged data packets.

2.Defending Against Cache Consistency

Attacks in Wireless Ad Hoc Networks

S. Mahalakshmi, IJECS Volume 3 Issue 2 Feb, 2014 Page No.3897-3904 Page 3899

 Caching techniques can be used to reduce

bandwidth consumption and data access delay in

wireless ad hoc networks. When cache is used,

cache consistency issues must be addressed. To

maintain strong cache consistency in some

strategic scenarios (e.g., battle fields), the

invalidation based approach is preferred due to its

low overhead. However, this approach may suffer

from some security attacks. For example, a

malicious node (intruder) may drop, insert or

modify invalidation messages to mislead the

receivers to use stale data or unnecessarily

invalidate the data that is still valid. In this paper,

we propose a solution based on the IR-based

cache invalidation strategy to prevent intruders

from dropping or modifying the invalidation

messages .Although digital signatures can be used

to protect IRs, it has significantly high overhead in

terms of computation and bandwidth

consumption. To address this problem, we

propose a family of randomized grouping based

schemes for intrusion detection and damage

recovery. Extensive analysis and simulations are

used to evaluate the proposed schemes. The

results show that our solution can achieve a good

level of security with low overhead.

 In wireless ad hoc networks, nodes

communicate with each other using multi-hop

wireless links. Due to lack of infrastructure

support, each node acts as a router, forwarding

data packets for other nodes. Most of the previous

research in ad hoc networks focuses on the

development of dynamic routing protocols that

can efficiently find routes between two

communicating nodes. Although routing is an

important issue in ad hoc networks, other issues

such as information(data) access are also very

important since the ultimate goal of using ad hoc

networks is to provide information access to

mobile nodes.

3.A Scalable Low-Latency Cache Invalidation

Strategy for Mobile Environments

 The falling cost of both communication

and mobile terminals (laptop computers, personal

digital assistants, hand-held computers, etc.) has

made mobile computing commercially affordable

to both business users and private consumers. In

the near future, people with battery powered

mobile terminals (MTs) can access various kinds

of services over wireless networks at any time or

any place. However, due to limitations on battery

technologies these MTs may be frequently

disconnected (i.e., powered off) to conserve

battery energy. Also, the wireless Bandwidth is

rather limited.

 Caching frequently accessed data on the

client side is an effective technique for improving

performance in a mobile environment. Average

data access latency is reduced as several data

access requests can be satisfied from the local

cache, thereby obviating the need for data

transmission over the scarce wireless links.

However, frequent disconnections and mobility of

the clients make cache consistency a challenging

problem. Effective cache invalidation strategies

are required to ensure the consistency between the

cached data at the clients and the original data

stored at the server.

 When cache techniques are used, data

consistency issues must be addressed to ensure

that clients see only valid states of the data, or at

least do not unknowingly access data that is stale

according to the rules of the consistency model.

Problems related to cache consistency have been

widely studied in many other systems such as

multiprocessor architectures distributed file

systems distributed shared memory and client-

server database systems. Depending on whether or

not the server maintains the state of the client’s

cache, two invalidation strategies aroused: the

shameful server approach and the stateless server

approach.

 In the shameful server approach, the server

maintains the information about which data are

coached by which client. Once a data item is

changed, the server sends invalidation messages to

the clients with copies of the particular data. The

Andrew File System is an example of this

approach. However, in mobile environments, the

Server may not be able to contact the

disconnected clients.

 Thus, a disconnection by a client

automatically means that its cache is no longer

valid. Moreover, if the client moves to another

cell, it has to notify the server. This implies some

restrictions on the freedom of the clients. In the

stateless server approach, the server is not aware

of the state of the client’s cache. The clients need

to query the server to verify the validity of their

S. Mahalakshmi, IJECS Volume 3 Issue 2 Feb, 2014 Page No.3897-3904 Page 3900

caches before each use. The Network File System

(NFS) is an example of this approach. Obviously,

in this option, the clients generate a large amount

of traffic on the wireless channel, which not only

wastes the scarce wireless bandwidth, but also

consumes a lot of battery energy.

4.Data Consistency for Cooperative Caching in

Mobile Environments

 He trend toward wireless

communications and advances in mobile

technologies are increasing Consumer demand

for ubiquitous access to Internet-based

information and services. However, Due to

battery power limitations, users often must

disconnect mobile devices from the network to

conserve energy. Moreover, wireless links have

lower capacity than wired links and wireless

channels are less stable, resulting in higher

network congestion and packet loss.

 These challenges make mobile

communication unreliable; emphasizing the

need for efficient information-access

mechanisms. Cooperative caching improves

system performance because it allows sharing

and coordination of cached data among

multiple mobile users in the network. By

cooperatively caching frequently accessed

information, mobile devices do not always

have to send requests to the data source. In

addition to reducing query latency, this

technique can lower mobile host

communication overhead and energy

consumption. However, the unreliable

communication and the user’s mobility make it

difficult to maintain cache consistency.

 As the “Cache Invalidation Techniques”

sidebar describes, researchers have proposed a

wide range of strategies for maintaining cache

consistency in recent years. However, each

strategy has its own design goals and application

scenarios. No uniform or structured methods exist

for current work, making it difficult to evaluate

their relative effectiveness and performance. In

response to this problem, we have developed a

3Dmodel that captures the main features of cache

consistency schemes and provides a basis for

evaluating existing strategies as well as designing

new ones. Based on this model, we propose a

hybrid and generic strategy: relay-peer-based

cache consistency. Because RPCC uses relay

peers between the source hosts and cache hosts to

forward updated information, it can divide cache

invalidation into two asynchronous procedures.

 Mobile wireless environments can be

broadly classified as either infrastructure based or

ad hoc based. In the former scheme, a fixed

network device such as a mobile support station

forwards messages that mobile hosts send or

receive.

 The MSS is similar to the server in a

traditional client-server distributed system in that

all source data is deployed on it. Other mobile

hosts retrieve data from the MSS and can cache a

replica by themselves. In contrast, ad hoc

networks, like that shown in Figure 1b, do not

store data on the MSS but use it only as the access

point to the Internet. Ad hoc networks disperse all

data items for searching and querying across the

mobile hosts. Thus, the cache invalidation

strategies employed in a single-hop wireless

mobile network are not suitable for a multichip

mobile ad hoc network.

5. An Update-Risk Based Approach to TTL

Estimation in Web Caching

 As the web grows into an infrastructure for

disseminating information, so does the volume of

data exchanged on the web. This explosive growth

of the data volume is overloading the web servers

and the communication network, causing

performance degradation. Web caching offers a

Solution to this problem by retaining frequently

used web pages on the client side recent research

outputs in this area have been incorporated into

such commercial products.

 Like any cached data, cached web pages

are copies of the original data (from the web

server), and therefore, need to be synchronized

with the original data. This consistency

requirement is rather weak in the case of web

caching as discussed in the references. That is, it

allows the synchronization to be delayed, and

thus, allows the clients to access outdated data for

some time Synchronization delay affects

consistency and performance of cache. Larger

synchronization delay results in lower

consistency, but better performance of cache. In

other words, cache consistency and performance

have a tradeoff relationship. Therefore, the cache

server administrator should find a reasonable

S. Mahalakshmi, IJECS Volume 3 Issue 2 Feb, 2014 Page No.3897-3904 Page 3901

compromising point between consistency and

performance of cache.

 The rest of the paper is organized as

follows. We give an overview of the web caching

techniques and describe the conventional TTL

estimation methods. In Section 3 we explain the

concept of the update risk and develop a

mechanism for determining the TTL based on the

update risk. In Section 4 we describe the

experiments performed and present the results. In

Section 6 we compare our method with the two

conventional methods in terms of the update risk.

 Based on their positions in the network,

web cache servers are classified into the reverse

cache server, the transparent cache server, and the

proxy cache server as shown in First, the reverse

cache server is placed in front of the web server. It

reduces the load on the web server by responding

to clients’ requests on behalf of the server, thereby

helping the server scale up to handle heavy

workload. Second, the transparent cache server

and the proxy cache server are used for multiple

clients to share and reuse the data accessed in the

same local area network (LAN).These cache

servers offer the following benefits obtained by

obviating the accesses to remote servers: reduced

response time, reduced network traffic, and

reduced load on the web server. To use the proxy

cache server, a client should explicitly indicate it

in its configuration.

 To use the transparent cache server, a

client does not have to because all requests

,regardless of the client’s configuration, are

redirected to the cache server by a network switch.

The client cache in simply an internal cache of the

individual browsers. Among these cache servers,

our focus is on the client-side cache server.

Therefore, from now on our scope is confined to

the transparent cache server and the proxy cache

server.

 The fixed TTL method is used in IIS of

Microsoft. It Assigns the same TTL to all data

items regardless of the time of update, and thus, is

simple and easy to implement. However ,the

reality is that different data items are updated at

different rates, and even the same data item is

updated at different rates at different times. Thus,

this method lacks any consideration for distinct

and time-variant update patterns of data items at

all. This deficiency deprives the method of its

credibility in setting a reasonable TTL. If the TTL

is set too large, the cache server ends up using

obsolete data longer than necessary. If the TTL is

set too small, it end sup revalidating unnecessarily

often, thus wasting the system and network

resources.

6.Piggyback Server Invalidation for Proxy

Cache Coherency

 Caching is widely used in the Web at the

browser and proxy level. Previously, we studied

piggyback cache validation (PCV), a technique to

improve cache coherency and reduce the cache

validation traffic between proxy caches and

servers. We focused on using the information

available in the cache and partitioned resources on

the basis of originating server. When a server is

contacted again, the proxy client piggybacked a

list of cached, but potentially stale, resources

obtained from that server for validation.

 The server replied with the subset of

resources that are no longer valid. PCV yielded

stronger cache coherency and reduced costs by

using the validations to extend the expiration time

for cached resources and reduce the need for GET

If-Modified-Since (IMS) requests.

 In this work, we combine resource

information available to servers with the

piggybacking technique to create a mechanism

called Piggyback Server Invalidation (PSI).

Servers partition the set of resources at a site

into volumes, either a single site-wide volume or

related subsets of resources and maintain version

information for each volume. When a server

receives a request from a proxy client containing

the client's last known version of the volume, it

piggybacks a list of volume resources modified

since the client-supplied version.

 The proxy client invalidates cached entries

on the list and can extend the lifetime of entries

not on the list. Servers maintain volume, but no

proxy-specific information. While the mechanism

could be used by browser clients, we focus our

discussion on its use by proxy clients, where there

are more cached resources.

 The aim of the PCV and PSI mechanisms

is the same---use piggybacking to eliminate stale

entries from a proxy cache while extending the

lifetime of valid entries without introducing

additional network traffic. However, the

mechanisms differ in their use of resource

information and piggybacking. The PCV

S. Mahalakshmi, IJECS Volume 3 Issue 2 Feb, 2014 Page No.3897-3904 Page 3902

mechanism uses resource information available

only to a proxy while PSI can group resources

based on access patterns and modification

characteristics known only to a server. The PSI

mechanism does require changes to existing Web

servers for implementation. The PCV mechanism

piggybacks a list of resources in the proxy cache

for validation, which can cause validation checks

for resources that have not changed. The PSI

piggybacks a list invalidated resources, which

have changed at the server, but may not be

coached at the proxy. For both mechanisms, this

unused piggybacked information creates

additional bandwidth and latency overhead.

 In this work, we study the PSI approach,

comparing its performance and overhead to the

PCV approach and existing cache coherency

techniques. The study was carried out using trace

driven simulation on two large independent proxy

log data sets. Proxy logs do not have the

information regarding when resources change on

the server and thus the number of invalidations

that would be generated between client accesses.

In the absence of such end-to-end logs we studied

a number of representative server logs to obtain a

measure of invalidations that do occur between

successive client accesses and used this measure

in the simulation.The rest of this paper is

organized as follows: we begin with a discussion

of related work in the field of file systems and the

Web in describes piggyback server invalidation in

more detail and discusses approaches for its

implementation. Presents the environment and

evaluation criteria for studying various PSI-based

cache coherency policies. Provides the results of

this study. Summarizes the results and discusses

alternative approaches.

7.Minimizations of the Update Response Time

in a Distributed Database System

 The basic architecture of a distributed

database system (DDBS) consists of database sites

connected to each other via a communication

network. At each database site, there is a

computer running one or both of the software

modules, namely data access software which

supervises user interactions with the database, and

data storage software which stores and manages

the physical data at each site In the case of full

replication, an update transaction has to be

broadcast from an access site to all the storage

sites of the DDBS.

 The update transactions to be processed on

a given data item may arrive in differing orders at

distinct storage sites. The integer timestamp

ordering (TO) algorithm, known as the Leann’s

ticketing algorithm can be used in packet switched

networks where messages may arrive out of

sequence. The global order is established in the

following way the access sites are ordered in a

virtual ring configuration. On this ring, M tokens

circulate (one token for every data item in the

database). These tokens are in charge of

sequentially delivering the timestamp.

 The system analyzed in is a one-stage

DDBS as opposed to the two-stage DDBS

investigated in this paper. The two-stage DDBS is

shown in. It is assumed that the token passing

mechanism of Leann’s ticketing algorithm is

implemented at access sites. It is further assumed

that the allocation of timestamps is very fast

compared to the arrival of the updates. The

propagation topology for the updates involves two

stages: the first stage of communication is from

the access sites to K gateway controllers, and the

second stage is from the gateway controllers to the

end-users’ L storage sites.

 Proposed system considers fully

replicated databases. An update is replicated to

produce K new updates and is immediately sent to

the input queue of the communication link in

order to broadcast to all gateway controllers.

Update customers that arrive from the

communication medium are re sequenced in a re

sequencing buffer with respect to the TO, defined

among the different access sites by the token

mechanism. In the proposed system, it is assumed

that a batch server will serve periodically and

together the waiting in-sequence update

customers. Each gateway controller will then

generate new time stamps by maintaining a

counter and will issue a new timestamp for every

batch.

 This newly formed update customer is

replicated to produce Elk new customers, which

are immediately sent to the input queue of the

communication link in order to broadcast to all the

end-users’ storage sites. At storage sites, servers

will update customers according to a “re

sequencing” service discipline. Once serviced, all

customers leave the queuing network and a “join”

S. Mahalakshmi, IJECS Volume 3 Issue 2 Feb, 2014 Page No.3897-3904 Page 3903

takes place when all replicas of a given data item

have been updated.

 This arrangement enables the re

sequencing delay to be controlled at the second

stage, to minimize the processing time at end-

users and hence reduce the overall update

response time. This novel re sequencing strategy

is referred to as hop-by-hop re sequencing with

batch processing the idea of batch processing was

motivated by the fact that the departure process in

the re sequencing buffer is a batch departure. The

proposed technique is adaptive by nature, since

with any changes in network parameters the

batch-processing period T can be changed to

minimize the end-to-end delay.

8.On the Cooperation of Web Clients And

Proxy Caches

 Web cache is an indispensable component

in the Internet. It reduces response time and saves

network bandwidth consumption. These benefits

are achieved via two mechanisms: caching and

validation. Caching is an age-old technique for

reducing access latency in many systems. It

avoids new transactions with the remote server for

objects that are still fresh. Between a client and a

web server, there could be more than one cache;

these caches form a chain, and the sites hosting

these caches are commonly referred to as proxy

servers.

 Every cached object has its own lifetime

called time-to-live (TTL), where an object within

its TTL is considered fresh and will be served

from the cache upon request.

Server generates a response; a validated is

included in the header. The requesting cache

keeps the validates with the object received. A

valuator can be considered as the “version

number” of the object. When an object expires

(according to the cache’s own rule) and is then

referenced, its Valuator is sent with the request to

the next site up in the chain towards the web

server. These requests are called validation

requests. The receiving site checks the received

validates against its own validated of the object. If

the validations match, a short Not Modified

response will be generated. In this case, the cache

will consider its copy of the object still being fresh

and update the expiration time of the object.

Otherwise, a full response including the new

document and it’s validate is sent from the

receiving site. Describes the sequence of actions

of handling an object request.

 When a reference to a stale object is made

at a cache, a validation request of the object will

be sent to a higher level cache if one exists, or to

the web server, as described in A Not Modified

response, or an OK response with the object will

be returned to the requesting cache. If it is a Web

server that generates the response, a new Date

header is included in the response. If it is a proxy

cache that generates the response, the cached Date

header will be sent, together With an Age header

to indicate how long the object has been cached.

 Every cached object has a fixed TTL

value which is computed when the object is

received. The Date header is used in finding the

TTL, which will be discussed in the following

subsections. There is also an age associated with

each object. The age value is a local estimation of

the time that the object has resided in the entire

cache system. The age value grows with time.

When the age of an object exceeds its TTL, it

becomes stale. The Age header in the response

tells the requesting cache the responding cache’s

own estimation on the age of the object, which in

general is used by the requesting cache as the age

of the object when it is received.

 Another unique characteristic of caching

in the web is that some objects are uncatchable.

Querying the cache for all the objects, as in

traditional caching systems, is thus not suitable for

web caching. It is a pure overhead to request a

cache for uncatchable object and the result is

increased response time and system load. It is

therefore superfluous for a client to issue requests

of uncatchable objects to the proxy cache. Studies

on web proxy cache only reported the existence of

such problem without actually solving it.

Commercial web caching solutions alleviate the

problem by employing a web switch that

differentiates requests of cacheable objects from

the others. Cacheable object requests are sent to

the proxy, while the uncatchable ones are directed

to the web servers.

 All the values without a subscript in the

equations above are specified by the origin server

in the HTTP response header. Caches do not

change these values and hence they are the same

in all the caches involved. As a result, Equations1

and 2 will yield the same values in all the caches,

S. Mahalakshmi, IJECS Volume 3 Issue 2 Feb, 2014 Page No.3897-3904 Page 3904

and all the copies will expire at the same time if

the clocks of the caches are synchronized. Such a

consistency requires the web server to include

max-age or Expires information in the header,

which is not commonly done. In the following, we

discuss the more dominant TTL calculation (i.e.

equation 3) that uses the Last-Modified time and

the interaction between a web client and proxy

cache.

 To study the effect of the TTL calculation

mismatch on the number of validation requests

sent by the client, we have carried out simulations

for different combinations of TTL calculations

being applied to a proxy log file. Details of the log

are described in the next subsection followed by

the simulation results.

CONCLUSION

 We conferred a client-based cache

consistency theme for MANETs that depends on

estimating the lay to rest update intervals of

information things to line their end time. It makes

use of piggybacking and pre-fetching to extend

the accuracy of its estimation to scale back each

traffic and question delays. We have a tendency to

compare this approaches to pull-based

approaches(fixed TTL and consumer polling)and

to two server based approaches (SSUM and UIR).

This showed that DCIM provides a much better

overall performance than the opposite consumer

primarily based schemes and comparable

performance to SSUM. In this process traffic was

reduced by using the DCIM concepts. It shows the

lowest Data consistency in all the graphs, and

higher traffic overhead in DCIM. For future work,

investigate additional refined TTL algorithms to

switch the running average formula. Extend our

preliminary add to develop an entire reproduction

allocation. DCIM assumes that every one node is

well behaved, as problems associated with

security weren’t through-about .

REFERENCES

[1] Y. Huang, J. Cao, Z. Wang, B. Jin, and Y.

Fens, “Achieving Flexible Cache Consistency for

Pervasive Internet Access,” Proc.IEEE Fifth Ann.

Int’l Conf. Pervasive Computing and Comm., pp.

239-250, 2007.

[2] O. Bah at and A. Makowski, “Measuring

Consistency in TTLBased

Caches,” Performance Evaluation, vol. 62,pp.

439-455, 2005.

[3] M. Denko and J. Titan, “Cooperative Caching

with Adaptive Perfecting in Mobile Ad Hoc

Networks,” Proc. IEEE Int’l Conf.

Wireless and Mobile Computing, Networking and

Comm. (Wino ’06), pp. 38-44, June 2006.

[4] J. Jing, A. Elmagarmid, A. Hell, and R.

Alonso, “Bit-Sequences:

An Adaptive Cache Invalidation Method in

Mobile Client/Server Environments,” Mobile

Networks and Applications, vol. 2, pp. 115-127,

1997.

[5] Q. Hum and D. Lee, “Cache Algorithms Based

on Adaptive Invalidation Reports for Mobile

Environments,” Cluster Computing,

vol. 1, pp. 39-50, 1998.

[6] Z. Wang, S. Das, H. Chi, and M. Kumar, “A

Scalable Asynchronous Cache Consistency

Scheme (SACCS) for Mobile

Environments,” IEEE Trans. Parallel and

Distributed Systems, vol. 15, no. 11, pp. 983-995,

Nov. 2004.

[7] S. Lim, W.C. Lee, G. Cao, and C. Das, “Cache

Invalidation Strategies for Internet-Based Mobile

Ad Hoc Networks,” Computer Comm., vol. 30,

pp. 1854-1869, 2007.

[8] K.S. Khorana, S. Gupta, and P. Remain, “A

Scheme to Manage Cache Consistency in a

Distributed Mobile Wireless Environment,” IEEE

Trans. Parallel and Distributed Systems, vol. 12,

no. 7, pp. 686-700, 2001.

[9] V. Cater, “Alex - A Global Filesystem,” Proc.

USENIX File System Workshop, pp. 1-12, May

1992.

[10] L. Yin and G. Cao, “Supporting Cooperative

Caching in Ad Hoc

Networks,” IEEE Trans. Mobile Computing, vol.

5, no. 1, pp. 77-89, Jan. 2006.

