Design of PID Controller with Compensator using Direct Synthesis Method for Unstable System

G. Atchaya1, P.Deepa2, V.Vijayan3, R.C.Panda4

1P.G Student,2-3Faculty,4Principal Scientist

1-3St. Joseph’s College of Engineering, Chennai 600119
4Central Leather Research Institute, Adyar, Chennai 600020
E-mail: atchayagal@gmail.com, vipvpn@gmail.com

ABSTRACT

In industrial processes, unstable system produces undesirable peak overshoot. So, PID controller with compensator and set point filter is designed using direct synthesis method. The set point filter reduces the peak overshoot. PID controller with compensator improves the overall response of the system. In this method, the characteristics equation of the system with PID controller and a compensator is compared with a desired characteristics equation. A single tuning parameter is used to find controller parameters, compensator and set point filter.

Key words: PID controller, Synthesis method, Tuning, Compensator

1. INTRODUCTION

et al [30] designed a gain scheduled PI controller for nonlinear system. Mikhalevich et al [31] proposed new method tuning PID controller based on phase margin specifications. Anusha Rani et al [32] designed sliding mode controller for chemical process. In this paper tuning of PID controller in double feedback loop with compensator and set point filter is proposed. This improves the robustness of the system. The PID controller with compensator is designed using synthesis method.

2. CONTROLLER DESIGN USING DIRECT SYNTHESIS METHOD

![Figure 1 Basic Structure of Proposed Closed Loop System](image)

The general transfer function is:

\[G_p = \frac{k(s + \gamma)e^{-ds}}{as^2 + bs + c} \]
(1)

Proportional controller \((G_c1 = K_c1)\) is used in the inner loop. The inner loop is tuned by Ziegler-Nichols [33] Method. The closed loop transfer function of inner loop is given by

\[G_{ci} = \frac{y}{r} = \frac{k_{ci}k(s + g)(1-0.5ds)}{k_{ci}k(s + g)(1-0.5ds) + (as^2 + bs + c)(1+0.5ds)} \]
(2)

The dead time is approximated using Pade approximation. In the outer loop, PID controller with compensator is used which is given by

\[G_{c2} = K_{c2}\left(1 + \frac{1}{\tau_i} + \tau_ds\right)\left(\alpha s + 1\right) \left(\beta s + 1\right) \]
(3)

The characteristics equation of outer loop is given as

\[1 + G_{pi}G_{c2} = 0 \]
(4)

By substituting equation (2) and (3) in equation (4), we get

\[1 + \left(\frac{k_{c1}k(s + g)(1-0.5ds)}{k_{c1}k(s + g)(1-0.5ds) + (as^2 + bs + c)(1+0.5ds)}\right)w \]

\[\left[K_{c2}\left(1 + \frac{1}{\tau_i} + \tau_ds\right)\left(\alpha s + 1\right) \left(\beta s + 1\right)\right] = 0 \]
(5)

The desired characteristics equation [26] is given as

\[(\lambda s + 1)^5 = 0 \]
(6)

After expanding equation (5) and (6), the coefficients are equated. Once the coefficients are equated, \texttt{fsolve} in MATLAB is used to obtain the known values of \(Kc2, \tau_i, \tau_D, \alpha\) and \(\beta\). The ‘\(\lambda\)’ is used as tuning parameter. The same ‘\(\lambda\)’ is used as time constant of set point filter.

3. SIMULATION RESULT

3.1. Example 1

An example for Unstable First order plus time delay Process [27] is given by

\[G_p = \frac{e^{-0.5s}}{(s-1)} \]
(7)

For the \(\lambda=1.07\), the proposed method gives better result. The PID tuning parameters of proposed method are \(kc1=1.268, kc2=0.4976, k_{\alpha}=3.6321, k_{\beta}=0.674, k_\alpha=0.759\) and \(k_\beta=4.7812\). The tuning parameter of IMC-PID with filter method is given by \(kc=1.274, k_{\alpha}=12.69, k_{\beta}=4.7812\). The servo response this system is shown in Figure 2. The performance index Integral Time weighted Absolute Error (ITAE), Integral Absolute Error (IAE), Integral Square (ISE) and Percentage of Peak Overshoot (PV) are calculated from servo response.
The Figure 2 and Table 1 shows that the proposed method produces better result compared with IMC-PID with filter method in terms of less ITAE, IAE, ISE and Peak Overshoot.

3.2 Example 2

A unstable second order plus delay time system [6] is given by

\[G_p = \frac{e^{-0.5s}}{(0.5s + 1)(2s - 1)} \]

(8)

For the \(\lambda=0.8 \), the proposed method gives better result. The PID tuning parameters of proposed method are \(k_c=1.3977 \), \(k_c=0.7636 \), \(\tau_i=2.5368 \), \(\tau_D =1.1125 \), \(\alpha=0.5158 \) and \(\beta=0.5167 \). The tuning parameter of Zhuo-Yun Nie method is given by \(k_c=0.155 \), \(\tau_i=0.314 \). The servo response this system is shown in Figure 3. The performance indexes are given in Table 2 which shows that the proposed method is better than Zhuo-Yun Nie method.

4. CONCLUSION

Double feedback controller structure is used for the closed loop system. In the inner loop proportional controller is used. It stabilizes the system. The outer loop contains PID controller with compensator which improves the overall response of the system. The set point filter reduced the peak overshoot of the system. A direct synthesis method is proposed to design the PID controller with compensator and set point filter. A single tuning parameter is used to find the system PID parameter, compensator and time constant of set point filter. Two examples are chosen and simulated using the proposed method. The simulated responses are compared with existing method to prove the efficacy of the proposed method. The proposed method produced better result compared with the existing method.
REFERENCES

