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Abstract: Light energy consumption minimization  has become  the important aspect of concern today . Here the Luminaires 

illuminance is controlled without the help of sensors. The approach is regarding feed forward neural networks implementation to 

model the relationships between the controller, luminaires and their luminance. The scheme is flexible to be implemented on 

microcontrollers unlike the conventional aproaches. This implementation has great modeling accuracy approximately by 95%. The 

energy saving with its optimal nonlinear multiple-input multiple-output control is also improved by more than 28%. Resulting in  

ease of installation and cost effective alternate for reduction in lighting energy consumption. 
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      1. INTRODUCTION 

  
Due to rapidly increasing energy demand all over the 

world,saving light energy particularly in building 

environments has become increasingly important since 

lighting accounts for a  considerable portion, typically more 

than 20% of energy con-sumption in buildings [1], [2]. This 

has led to the exploration of not only new lighting 

technologies such as solid-state lighting (SSL) [3] but also a 

smarter approach to utilize these SSL systems. In the 

aforementioned smart lighting systems, it is the illumination 

control that plays a crucial role in reducing the energy 

consumption of the building lights. At present, there are 

already some forms of illumination controllers generally used 

to turn on/off lighting luminaires or adjust dimming levels of 

luminaires such that the consumed power reduces while the 

visual comfort of users is well kept [4]–[11].  
It is common in the lighting industry nowadays to design 

the lighting system using a zoning approach. While trying to 

achieve energy saving and human preference at the same time, 

traditional control approaches encounter the problem of 

complexity in deciding which luminaire should light up which 

area. To soften this problem, a zoning approach [2], [12] groups 

several luminaires in one zone together to be adjusted by one 

controller and with the corresponding sensors. The approach then 

transforms the control problem to become multiple single-input 

single-output (SISO). The first disadvantage of the ap-proach, 

however, is that designers have to manually preset the zoning for 

luminaires, lit area, and sensors. Moreover, the interactions 

among the zones still exist, and thus, either the control response 

is low or energy saving is lost because these interactions are 

neglected during the design phase.In lighting applications such as 

in a common shared-space office with multiple LED luminaires, 

the smart illumination control problem can be formulated as to 

automatically adjust dimming levels of the LED luminaires to 

ensure sufficient illuminance at users’ tables at minimized energy 

consumption. In this problem, on the one side, information on 

occupancy of users at their working tables which is detected by 

occupancy sensors is essentially necessary. On the other side, 

information on illuminance at their tables is optional owing to the 

following reasons. The first reason is that this type of information 

can be  
evaluated based on illumination modeling. The second reason 

is that illuminance sensors placed on the office tables may affect 

the working users and, vice versa, users may affect the function 

of these sensors accidentally. Without using illumi-nance sensors, 

several researchers [2], [13]–[16] have used simulation software 

to conduct the lighting configuration and establish the 

relationship between luminaires and illuminance. The major 

drawback of this published state-of-the-art approach is that, for 

different buildings, the lighting setting for networked lighting 

system has to be manually changed. Moreover, in many cases, the 

simulation software could not accurately imitate the real 

environment. In addition, it is difficult to set up the simulation 

software in microcontrollers (MCUs) and digital signal 

processors, and thus, the use of a personal computer (PC) is 

compulsory.  
To overcome the drawbacks of the aforementioned ap-

proaches, in this paper, we propose the use of a neural network 

technique to establish the relationship among dimming levels of 

luminaires and illuminance at the user tables. The neural network 

then will be included in sensorless feedforward illu-mination 

control for the smart networked LED-lighting system. The 

accuracy of the model depending on the configuration of the 

neural network and characteristics of the LED-lighting system 

will be examined. The daylight effect is beyond the scope of this 



research and will be investigated in future work.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Layout of two types of LED luminaires in the test bed. 
 

II. ILLUMINATION CONTROL OF NETWORKED  
LED-LIGHTING SYSTEM 

 
The networked LED-lighting system consists of several 

LED luminaires for illumination of a given space, for 

example, a working space in an office. For configuration of 

the lighting controller, wireless sensor nodes can be used one 

time to collect necessary data and then discarded later on. 

 
A. Test Bed of Networked LED-Lighting System as  
Controlled Plant 
 

The test bed of the smart LED-lighting system is an 8.5 m × 

8.2 m office with 12 working tables. The office is located on the 

fifth level of the Research Techno Plaza (RTP) building and is the 

workplace for Energy Research Institute administration staff. The 

office is 2.8 m high with a working plane of 0.8-m height. 

Because the office has no direct access to the outdoor 

environment, the effect of daylight is almost zero and negli-gible. 

In the office, there is installation of 9 × 54 W LED luminaires and 

5 × 19 W LED luminaires on the ceiling. Each 54-W LED 

luminaire is a modular lamp (CoreView) with a large beam angle, 

while each 19-W luminaire is a downlight lamp (LuxSpace) with 

a small beam angle, as shown in Fig. 1.  
All installed LED luminaires are dimmable and controlled 

through a Digital Addressable Lighting Interface (DALI) con-trol 

box. Since there are no high partitions among the working tables, 

each luminaire can affect the illuminance of more than one table. 

This then poses the difficulty to control the networked lighting 

system. For example, in the test bed, luminaire 1 affects tables 2 

and 3, while luminaire 2 affects tables 1, 2, and 4. A manually 

preset solution is then using sensors 2 and 3 together for lighting 

control of luminaire 1 while using sensors 1, 2, and 4 together for 

lighting control of luminaire 2. This predefined 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Test bed at RTP simulated in DIALux software. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Two conventional illumination control approaches. (a) Open-loop 
control with manual adjustment by users. (b) Closed-loop control following 
multiple-SISO approach. 
 
solution for the complex networked lighting system is not only 

nonoptimal in energy saving but also time consuming and 

inconvenient. The interactions inside the lighting control system, 

furthermore, are not dealt by a multiple-input multiple-output 

(MIMO) approach. Hence, the control performance in terms of 

response and accuracy is poor. To illustrate the illumi-nance 

distribution, the test bed is simulated in DIALux lighting 

simulation software, as shown in Fig. 2. 

 
B. Conventional Illumination Control Approaches 
 

In industrial practice, the most traditional illumination con-trol 

approach is open-loop control, i.e., without light sensor feedback, 

as illustrated in Fig. 3(a). Following this approach, the users have 

to manually adjust the dimming levels of the luminaires until they 

are satisfied. The first drawback of this approach is that it is 

subjective, with no feedback lux mea-surement information, and, 

thus, inaccurate. The considerable inaccuracy then leads to loss of 

potential energy savings by 10%–20%. Moreover, the approach 

also has the other disadvan-tage of inconvenience caused, 

particularly when the number of luminaires is large which would 

confuse the users and when the different users have conflicting 

lighting interests. 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Framework of the linear MIMO control approach in [25]. 
 

The other traditional illumination control solution with 

more lighting automation is using a multiple-SISO control 

approach with lux sensor feedback to adjust the dimming 

levels of the luminaires, as illustrated in Fig. 3(b). As opposed 

to the open-loop lighting control, this closed-loop control is 

introduced to overcome the inaccuracy problem. Following 

this closed-loop approach, the SISO controller of each 

luminaire uses its corresponding light sensor to measure the 

actual illuminance at the user table and then feeds back the 

information to com-pare with its own reference in the control 

loop. The error between the illuminance reference and the 

actual value will then generate an appropriate dimming 

control action. An ex-ample of this multiple-SISO approach is 

the lighting controller in [17] and [18].  
Even as the accuracy problem is being taken care of by the 

closed-loop lighting control, this lighting control approach is only 

useful when the luminaires do not affect one another, for 

example, when the luminaires are located far away from one 

another, or there are partitions among the luminaires. Other-wise, 

when the illumination correlation of the luminaires is not 

negligible, it becomes difficult to identify which sensors should 

accompany which controller and its corresponding luminaire for 

closed-loop control. For more complex lighting systems, this 

approach is slightly improved by using grouping technique, in 

which a group of luminaires is preset to control the lighting of a 

specific zone. The major drawback of this individual lighting 

control approach for a networked lighting system is that it bears 

the interactions between the lighting controllers, particularly the 

integral elements. For example, when lighting group A increases 

its light output, it also increases the illuminance at the nearby 

zone B. The controller of lighting group B then has its response 

by reducing its light output which consequently affects the 

illuminance at zone A. When the integral elements contribute the 

major part in lighting control actions, because of these 

interactions, the overall lighting system has to spend considerably 

large transient time to reach its stable state. An-other limitation of 

this individual control approach is that it requires light sensors to 

facilitate the lighting adjustment [19]. Otherwise, either the 

illumination preferences are not met or energy conservation is not 

maximized or both. 

 
C. State-of-the-Art Illumination Control Approaches 
 

According to the authors in [15], [20], and [21], correlation 

between light output and power input of a luminaire for ideal 

 
dimming operation is linear, except at low power (less than 20% 

of power rating). Based on the assumption that this correlation is 

linear by avoiding the less than 5% dimming region and knowing 

that correlation between light outputs of LED lumi-naires and 

illuminance at any point is also linear [22]–[24], the final 

correlation between ideal dimming levels of LED lumi-naires and 

illuminance at working tables is approximated to be linear. This 

approximated linearity has been used by researchers in [25]–[27] 

to formulate the lighting energy minimization problem as a linear 

programming problem which is easy to solve, for example, by 

using the simplex method. In detail, the approach in [25], as 

depicted in Fig. 4, considers the networked lighting control 

problem as a linear MIMO model owing to the use of sensors for 

measurement of light output and sensors for measurement of 

illuminance at user tables. A salient advantage of this approach is 

that it can incorporate the daylight effect by using the data from 

the sensors to configure/reconfigure the linear MIMO model of 

the office lighting system. On the other side, the approach in [26] 

uses no light sensors but simulation software to attain the 

illuminance model. This approach has the merit of low cost and 

ease of installation owing to no light sensors being used. The 

tradeoff, nonetheless, is the possibly large inaccuracy. 
 
 
 

III. INSIGHTS INTO NETWORKED LED-LIGHTING  
SYSTEM TEST BED 

 
A. Invalidation of Linear MIMO Model 
 

Following the ideal linearization approach suggested in [15] 

and [20]–[25], we can formulate the illumination modeling 

problem for the investigated test bed as a linear MIMO 

relation as follows. Let 
 

d = [d1, d2, . . . , dM ]
T
 (1) 

 
be the M × 1 vector of the dimming levels of the LED lumi-

naires, where M is the number of LED luminaires in the test 

bed. Let 
 

t = [t1, t2, . . . , tN ]
T
 (2) 

 
be the N × 1 vector of illuminance at working tables, where N is 

the number of tables in the test bed. The dimming level di of the 

ith LED luminaire is in the range of 0% (dark) to 100% (fully 
bright). Assuming linear relation between dimming levels 



 
 
 
of LED luminaires and illuminance at tables as mentioned 

earlier, we have 
 

A × d = t (3)  
where A is the coefficient matrix of the linear MIMO relation 

of the system 
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Considering that one set of input–output data includes one 

dimming level setting d as input and one resulted illuminance 

t as output, M sets of data will be needed to obtain matrix A, 

given that the input vectors are independent. It can be 

expressed in mathematical form as 
 

A [ d1   d2   · · ·  dM ] = [ t1   t2   · · ·  tM ] .   (5) 
 

Choosing A to be unknown, we have the standard linear 

equation  

d1T   t1T    
d2

T  A
T
 = t2

T  . (6) 
       

· · ·   · · ·   

dMT   tMT   
 

Normalization of Dimming Level as Input: Because the ac-

tual dimming level of each LED luminaire is discretized and 

binary coded in the DALI controller using 1 B for each LED, a 

conversion is necessary to normalize back the input. Since the 

actual dimming level varying from 0% (dark) to 100% (fully 

bright) is equivalent to the discretized and binary-coded 

dimming level varying from 255 to 0, the conversion equation 

for normalization is then 
 

d = 255 − b 
= 1 

− 
b 

(7)  
255 255  

   
 

 
where d is the actual dimming level and b is the discretized 

binary-coded dimming level.  
Collection of Data: The input set of the illumination model 

includes the M dimming levels of M LED luminaires. The cor-

responding output set of the illumination model then includes 

the N measured table illuminance values. Each input set and 

its corresponding output set constitute a sample set. For the 

test bed with M = 14 and N = 12 600 sample sets are 

collected by using either illumination meters or a wireless 

light sensor network. The input sets in the 600 sample sets are 

generated randomly without any repetition. During the data 

collection process, human interference and any effect of 

surrounding light sources are kept as little as possible.  
Result of Validation: By selecting any M = 14 sample sets 

such that the formed matrix of dimming levels has full rank, 

which implies that it is invertible, coefficient matrix A can be 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  Efficiency performance of a Phillips light driver. 
 
easily obtained. However, during validation, the model bears an 

unacceptable inaccuracy as high as 10
5
 lx

2
 in terms of mean 

square error (mse). In addition, while most of the coefficients in 

matrix A are positive, some of them are negative. This presence 

of negative coefficients is unacceptable because its practical 

meaning is that, when a luminaire related to the negative 

coefficient increases its light output, the corresponding table 

would have less illumination. The validation result therefore 

suggests that the use of a linear model is inadequate and another 

modeling approach should be examined. 

 
B. Nonlinearity of LED-Lighting System 
 

For the unexpected invalidation of the linear model, the major 

reason is probably that the assumption of linear correlation 

between dimming levels and light outputs is wrong. After thor-

ough investigation, the problems are found to be attributed to 

internal discretization in the DALI controller and power control in 

the light driver in the test bed that cause the nonlinearity. It is 

unfortunate that the datasheet of the DALI controller does not 

provide the internal discretization scheme, which can be often 

encountered in real-world lighting controller design. The 

dimming control scheme inside the DALI controller, nev-

ertheless, is known to be open loop. In addition, efficiency 

performance of the Philips light driver used in the test bed clearly 

shows the nonlinearity for different input voltages and different 

brightness levels, as illustrated in Fig. 5. The efficiency curves of 

the light driver are expected ideally to be constant. However, the 

efficiency in practice always drops at low power range 

represented by low brightness level in this case and at low input 

voltage. In short, the internal discretization and the open-loop 

dimming control in the DALI controller, together with the 

nonconstant efficiency performance of the light driver, are the 

causes of nonlinearity in the relation between dimming levels of 

LED luminaires and illuminance at the user tables.  
Inside the LED-lighting system as depicted in Fig. 6, from 

each dimming level to each corresponding light output, the 

relation is independently nonlinear SISO. Therefore, up to 

light output of luminaires, the system is multiple nonlinear 

SISO. The cross-relation, which is linear MIMO, only occurs 

between light output and illuminance at tables. This then turns 

the overall system into a nonlinear MIMO model. 



  
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.  Insights into the LED-lighting system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Framework of lighting system using neural network for illuminance 
modeling. 
 

IV. SENSORLESS ILLUMINATION CONTROL OF  
NETWORKED LED-LIGHTING SYSTEM USING  

FEEDFORWARD NEURAL NETWORK 
 
A. Proposed Approach Using Feedforward Neural Network 
 

In order to control the lighting system, the researchers in  
[25] had to use photosensors arranged on the ceiling to cap-

ture the luminance of the LED luminaires. The researchers in   
[26] used no light sensors but simulation software to generate 

the illuminance model, which is different from this approach. 

Both approaches, however, have not considered the 

nonlinearity characteristics caused by power electronic 

devices inside the system. To tackle this problem, we propose 

the use of neural networks to attain the nonlinear MIMO 

model of the studied lighting system. The framework of the 

proposed approach is depicted in Fig. 7. In the proposed 

approach, light sensors for illuminance at tables are not 

regularly used in real-time control. They are used to update 

the nonlinear MIMO model only when office configuration 

changes. This approach is suitable for the studied office 

lighting test bed since little daylight effect exists.   
Compared with the approach in [26], the proposed approach 

does not require office configuration knowledge and, thus, avoids 

the inaccuracy caused by insufficient or incorrect data in the 

simulation software approach, which is its first advan-tage. 

Second, it has the feedback channel for illuminance, and 

therefore, it is easy and convenient to accurately update the 

illuminance model whenever the office configuration changes. 

Third, the approach is flexible because the implementation can be 

MCU based but neither PC based nor dependent on simula-tion 

software. Finally, the light sensors for illuminance at user tables, 

which are based on wireless communication, are used only once 

for any model updating and then can be removed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8.  Two-layer feedforward neural network. 
 
Therefore, not only the wiring problem of the wired sensors 

but also the maintenance problems, e.g., owing to batteries, of 

the wireless sensors are avoided. Moreover, compared to the 

approach in [25], the proposed approach has the strengths of 

cheap cost and ease of installation attributed to less usage of 

light sensors.  
Similar to the two state-of-the-art approaches presented, the 

proposed approach helps overcome the difficulty of controlling 

networked lighting system by viewing the system as a MIMO 

model with all the complex nonlinear relationship among power 

supply grid, power electronic devices, luminaires, and human 

with their working tables. Additionally, in terms of feedfor-ward 

control with fast response, it eliminates the drawback of 

inaccuracy that the approach in [26] suffers from. Achieving fast 

response and high accuracy at the same time is crucial in 

nighttime scenarios. For example, when one person walks into 

the dark room after office hours, the illumination controller has to 

quickly and accurately turn on the correct luminaire(s) with 

appropriate dimming level(s) to provide sufficient lighting to the 

user at minimal energy consumption. 

 
B. Configuration of Neural Network 
 

The objective of the illumination modeling is to attain the 

relationship among dimming level setting of LED luminaires 

and illuminance at tables. Because there are no meters or 

sensors used to obtain the data of power output and light 

output inside, the examined LED-lighting system can be 

viewed as a black box with inputs of dimming levels and 

outputs of illuminance at the tables. A neural network is 

selected to map the relation between the inputs and outputs of 

this black box.  
Considering the two-layer neural network with M inputs, L 

hidden neurons, and N outputs, as illustrated in Fig. 8, the 
vector of hidden neurons is 
 

h = [h1, h2, . . . , hL]
T
 . (8) 

 

Denoting wj,k
h

  as the weight that connects hidden neuron 

j with input neuron k, weight matrix W
h
  in the hidden 
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Similarly, denoting wi,j

o
 as the weight that connects hidden 

neuron j with output neuron i, then the weight matrix W
o

 in 
the output layer is 
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Fig. 9.  Framework of the lighting system using simulation software for 

(10) illuminance modeling in [26].  
 

Considering the system as a whole and following the MIMO 

control approach, global optimization can be derived while 

illumination preferences are all satisfied, as obtained in [25] and 
 

[26]. By assuming that the dimming level of a luminaire is pro-  

(11) portional to its power consumption, the total power consumed  

 

(12) by all the luminaires in the system can be calculated as  

 
Using transfer function tansig for the hidden layer and 

linear transfer function purelin for the output layer, the output 

vector t can be calculated as 
 

h = tansig(W
h
d + b

h
) = 

    2  

− I 
 

     

1 + exp [ 
− 

2(W
h
d + b

h
)] 

 

       (13)          
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M M  

 
  

(15) 

 

PΣ =pi(di) = Pidi 
 

i=1 i=1  
 

 

where PΣ is the overall power consumption, pi is the instan-

taneous power consumed by the ith luminaire, Pi is the rated 

power of the ith luminaire with full brightness, di is the current 

dimming level of the ith luminaire ranging from zero (dark) to 

one (fully bright), and M is the number of luminaires. The 

optimal control problem then can be formulated as

 The bias vectors in the hidden layer and output layer are 
respectively 



The key research questions in configuring the neural 

network are as follows: 1) how to select the number of 

hidden neurons (L) and 2) how many data sets are needed 

to train the neural network. For the first question, from the 

analysis viewpoint, because the nonlinearity in the system 

is introduced by energy performance at drivers and of 

SISO type, there are mainly M nonlinear characteristics 

inside the system that can be repre-sented by using L = M 

hidden neurons. Because the cross-relations between light 

outputs of luminaires and illuminance at the tables are 

constant, they can be represented accurately by N output 

neurons. 
 

For the second question on the number of data sets 

needed, it is obvious that the number of data required 

depends on the number of hidden neurons (L). In general, 

as previously men-tioned, the shape of the sigmoid 

function in hidden neurons, as illustrated in Fig. 8, is 

similar to that of efficiency performance of the light driver, 

as illustrated in Fig. 9. Hence, three to four operating 

points can be used for the hidden neuron to capture that 

efficiency curve. 
 
C. Optimal MIMO Control Approach 
 

Similar to other lighting approaches, the goals of the 

exam-ined sensorless lighting control scheme are as 

follows: 
 

1) to satisfy user preferences of illuminance at their 

working tables;  

 

2) to minimize the overall lighting power consumption. 

where r = [r1, r2, . . . , rN ]
T

 is the N × 1 vector of 

illuminance preference and ―NeuralNetwork‖ is the neural 

network model built earlier to map the relationship among 

dimming levels of luminaires and illuminance at the tables. 

It should be noted that the constraint (18) is nonlinear. 

Because the optimiza-tion problem is discretized and 

nonlinear constrained, either nonlinear constrained 

optimization algorithm or mixed integer programming 

algorithm can be used. In this research, the first 

optimization algorithm is chosen since the resolution of the 

discretization in dimming levels is rather fine.  

 
D. Practical Implementation 
 

The proposed approach can be easily implemented on PC 

with common programming softwares (e.g., C, Python, and 

MATLAB) that support coding of neural networks and opti-

mization. Moreover, this control system can be implemented 

on MCUs or DSPs as well. For instance, a 24-b TMS320 DSP 

with extra EEPROM or Flash memory can be used. The 

purpose 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10.  MSEs for different numbers of hidden neurons (L).  

Fig.  12.  MSE  for  different  numbers  of  data  sets  for  training  and 
L = 5M = 70. 

 
 
 
 
 
 
 

 
Fig.  11.  MSE  for  different  numbers  of  data  sets  for  training  and 
L = M = 14. 

 
of the extra EEPROM or Flash memory is to store the updated 

data of the neural network. 
 
 

V. EXPERIMENTAL RESULTS  
 
A. Performance of Neural Network in Modeling  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 13. Histograms of percentage errors between neural-network-based 
model and actual system at 12 tables. 

 

To validate the estimation of the number of hidden neurons 

min PΣ = minPidi (16) 
i=1  

subject to  

0 ≤ d ≤ 1 (17) 

t = ―NeuralNetwork‖(d) ≥ r (18) 



(L) needed in the neural network, 600 data sets are used and 
divided into three different groups of training (70%), 

validation (15%), and testing (15%). During the training of the 

neural net-work, the training data group is used to adjust the 

coefficients in the network, while the validation data group is 

used to measure the network generalization and indicate when 

the training can stop. The testing data group is used to 

independently measure the network performance after 

training. From Fig. 10, it can be seen that, for values of L from 

8 to 5M = 70, the network modeling accuracy is high with all 

the three mses less than 50 lx
2

. The best results are with L = 

10 up to L = 2M = 28. This verifies that the selection of L = 

M is acceptable and also recommended.  
For the case of L = M , the validation results in Fig. 11 

show that all the three mses are less than 80 lx
2

 when more 

than 4M = 56 data sets for training are used. For the case of L 
= 5M , the results in Fig. 12 show that about 20M = 280 data 
sets for training are needed to ensure that all the three mses 

are less than 100 lx
2

. These results verify that using 4L data 

sets for training is sufficient to obtain an acceptable modeling 
accuracy. A substantial modeling accuracy is necessary 
because a poor accuracy in modeling results in either more 
energy being wasted or sacrificed visual comfort. Also, it may 
significantly reduce the convergence speed of the optimizer.  

To collect the data sets from the office to train the neural 

network, illumination meters can be used manually to measure 

illuminance at the user tables. However, this task requires a 

considerably large amount of time. Hence, in our research 

project, an automated wireless mesh sensor network has been 
developed to accomplish this task.  

For the accuracy of the modeling, the histograms of 

percent-age errors between the model and the actual system 

are derived and shown in Fig. 13. With 50 lx
2

 mse overall, it 

can be seen that the model obtains more than 95% accuracy. 

Nonetheless, it should be noted that the data sets used to train 

the neural network must cover the important lower bounds 
and upper bounds of all combinations of the dimming levels 

to avoid inaccurate extrapolation. Again, the inaccuracy is the 
cause of either loss of energy saving or visual discomfort. 
 
 
B. Optimization Results and Energy Saving 
 

As illustrated in Fig. 14, the examined LED-lighting system 

was designed to fully illuminate the whole space of the office, 

i.e., high illuminance (in lux) at most of the points inside the 

office. When all the LED luminaires are at their full bright-ness, 

the total power consumption is 581 W. This operating point of 

the lighting system is favored during office hours when intensive 

administration actions are conducted. However, before and/or 

after office hours, when the administration staff only focus on 

their work at their tables, for example, preparing documents, it is 

not required to have the full illumination for the whole office 

space. Instead, illumination can concentrate on the user tables, as 

encouraged in [28]. In addition, it also often happens that only a 

few and not all administration staff have to work overtime to 

complete their tasks before deadlines. In such 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 14. Illustration of the office test bed illuminated with full brightness of all 
the LED luminaires. 

should be noted again that this energy saving can be attained 
without regular use of light sensors. By using only occupancy 
sensors and neural networks to represent the nonlinear MIMO 
system, the optimizer can effectively reduce the lighting 
power consumption. As illustrated in Fig. 15(b), the two 
tables, num-ber 2 and number 7, with administration staff 
working during nonoffice hours have sufficient illuminance of 
350 lx as their preferences.  

The distinguished merits of the sensorless illumination con-

trol presented are that not only can it be performed with 100% 

automation but also it requires less use of light sensors and, 

thus, low installation cost and low maintenance cost. Given 

the LED-lighting system already installed, after placing the 

user tables inside the office and using light sensors only one 

time for autoconfiguration, the proposed approach can 

significantly im-prove the lighting power saving automatically 

while satisfying user comfort. During regular real-time control 

process, the light sensors are not used. This is because the 

model of the lighting system as controlled plant that has been 

already generated and stored inside the neural network is used 

instead to evaluate the outputs as illuminance at user tables. 

 
VI. CONCLUSION 

 
In this paper, a luminaire illumination control without sensors 

or less use of sensors approach of a networked LED-lighting 

system using a feedforward neural network has been presented. 

The approach has shown its ef-fectiveness in tackling the 

nonlinear characteristics of the networked LED-lighting system . 

With the merits of low cost, ease of installation, flexibility, high 

accuracy, and fast response, it proves to be promising for the 

control of the future smart and energy-efficient networked LED-

lighting system. Experimental results have been shown to validate 

the guidelines on how to configure the neural network as well as 

the energy saving functionality. 
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