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ABSTRACT 

This paper investigated the numerical solution of linear ordinary differential equations using Mathematica. The 

computational software (Mathematica) automates tedious numerical computations, making it easier to generate 

accurate numerical solutions. Several programming paradigm can be used to implement these numerical 

algorithms (methods) via Mathematica, but this paper briefly featured two of the programming paradigm, the 

Recursive and Functional paradigm. The software to generate the necessary solution to a given ordinary 

differential equation, plot its graph and compare the different numerical methods for higher accuracy using the 

plotted graphs. We compare the NDSolveapproachin Mathematica with that of Euler and Runge-Kutta method. 

We observe that the NDSolve and Runge-Kutta produces similar results. 
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INTRODUCTION 
Differential equations play a vital role in modern world today. They occur widely as mathematical models in 

the physical world, and their numerical solution is important throughout the science and engineering. If a differential 

equation contains only ordinary derivatives of one or more unknown functions with respect to a single independent 

variable, it is said to be an ordinary differential equation (ODE). The term ordinary is used in contrast with the term 

partial differential equation which may be with respect to more than one independent variable (Zill, 2013). 

Numerical methods are mainly used to solve complex problems physically or geometrically; finding and interpreting 

the solutions of these differential equations numerically is therefore a central part of applied mathematics, and a 

thorough understanding of how to find these solution with the use of computers (Mathematica) is essential to any 

mathematician, scientist and engineer. 

 

Mathematicais a powerful software package used for all kinds of symbolic and numerical computations. It has 

been available for around 25 years. Mathematica is sometimes viewed as a very sophisticated calculator useful for 

solving a variety of different problems, including differential equations. However, the use of the term “calculator” is a 

misnomer in the case of Mathematica. Mathematica has its own programming language and has sophisticated graphics 

and visualization capability which, combined with the use of dynamic interactivity, makes it a valuable tool for any 

professionals(see Mokhasi et al, 2012 and Wellin, 2013). 

 

Mathematica’s diversity makes it particularly well suited to performing many calculations encountered when 

solving many ordinary and partial differential equations. In some cases, Mathematica’s built-in functions can 

immediately solve a differential equation by providing an explicit, implicit, or numerical solution (Abel & Braselton, 

2004). 

 



Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6927 

(Sofroniou  & Knapp, 2008), gave an overall introduction and in-depth elucidation of solving differential equations 

with Mathematica’s built-in function NDSolve. NDSolve is a general numerical differential equation 

solver.NDSolvehandles both single differential equations, and sets of simultaneous differential equations.It can 

handle a wide range of ordinary differential equations (ODEs) as well as some partial differentialequations (PDEs). 

 

The Mathematica’s built-in function NDSolveis designed to solve all kinds of differential equations and to 

work for the broadest possible set of situations, but might have occasional trouble with certain exceptional cases. 

Thus, it is important to know how to implement the several numerical algorithms for finding numerical solutions to 

ordinary differential equations (Kapadia, 2008). 

 

The purpose of this paper is to implement some numerical methods for finding solutions to linear ordinary 

differential equations using the Mathematica programming language. The Mathematica programming language 

officially known as the Wolfram Language is a highly general multi-paradigm programming language developed by 

Wolfram Research, which serves as the main interfacing language for Mathematica. It is designed to be as general as 

possible, with emphasis on symbolic computation, functional programming, and rule-based programming. Some other 

important programming paradigm that Mathematica supports are procedural, recursive, array programming paradigms 

etc. 

This paper focuses on the implementation of the Euler’s method and the classical Runge-Kutta method or the fourth 

order Runge-Kutta method for finding numerical solutions to ordinary differential equations. To demonstrate the 

implementation of these numerical algorithms, this paper delivers the solution of first and second order linear ordinary 

differential equations using the recursiveandfunctional programming paradigms respectively via the Wolfram 

language. 

We note here that the second order differential equations must be reduced to an equivalent system of two first order 

differential equations before we implement the algorithm for finding its numerical solution. 

 

 

BUILT IN MATHEMATICA FUNCTION (NDSolve) 

In this section, we will give an example of solving an ordinary differential equation with the built-in 

Mathematica numerical differential equation solver,NDSolve. NDSolve returns the exact solution to the differential 

equation supplied to it. It returns the solution in terms of an InterpolatingFunction object. 

 

The InterpolatingFunction is an internal object within Mathematica that contains the numerical solution data. 

The function can be used as a “black-box” function which can be used for further mathematical operations like taking 

derivatives, integrating, etc. in a unified manner (Mokhasi et al, 2012). 

Mathematica contains extensive documentation that we can access in a variety of ways. The easiest wayto find more 

information about NDSolve is to evaluate ?NDSolvein the Mathematica notebook, then the usage message for 

NDSolve will be displayed in the notebook as shown below. 

 

 

The command 

 

attempts to generate a numerical solution of 

http://reference.wolfram.com/mathematica/ref/NDSolve.html
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{

  

  
  (   ) 

 (  )    

 

valid for            . 

NDSolverepresents solutions for the function ( )as InterpolatingFunction objects. The 

InterpolatingFunction objects provide approximations to the ( )over the range of values     to     for the 

independent variable  . 

 

In general, NDSolvefinds solutions iteratively. It starts at a particular value of  , and then takes a sequence of steps, 

trying eventually to cover the whole range     to    . In order to get started, NDSolvehas to be given appropriate 

initial conditions for  ( )and its derivatives. For example, we will solve a first and second order initial value problem 

using NDSolveand then visualize their graphs using thePlotfunction. 

 

Consider the first order initial value problem taken from Bronson & Costa, 2006. 

        ( )                                                                             ( ) 

We obtain the numerical approximation of its solution in the interval     , using an initial condition for   at     by 

entering  

 

into our Mathematica notebook, and then evaluating gives, 

 

theInterpolatingFunction which provide approximations to ( )over the range of values  to  for the 

independent variable  . 

 

Entering          (replacement rule) evaluates the numerical solution at    . 

. 

The result (      ) means that  ( )         . 

We can also generate the numerical solution from     through    using the step size,      .  

Using the Mathematica functionTable, we define the values of   (     ) and entering             , we 

generate the numerical solution in the interval     to    , and store the solution in the variable          
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From the         , we can extract the values of   

 

And present the numerical solution in a tabular form 

 

This solution is the numerical exact solution to the initial value problem ( ). 

Now, we use the Plotcommand to graph the solution for      . 

 

 

 

 

Considering a second order initial value problem 

            ( )      ( )                                                                      ( ) 

NDSolvecan solve this problem directly, or we can choose to reduce it to its equivalent system of first order 

differential equations. Entering the equation directly and evaluating at    , we get, 

                                  ( )               
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Similarly, reducing ( ) it to its equivalent first order system, 

     

      
         

 

and entering it into the Mathematica notebook, evaluating at     gives, 

 

The output    (       ) generated means  ( )        and  ( )         . 

We can also compute the numerical solution from     to     using step size of     . 
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This is also the exact numerical solution to the second order initial value problem ( ). 

And the graph of the solution for       is      

 

 

 

 

IMPLEMENTATION OF THE NUMERICAL ALGORITHMS 

 

FIRST ORDER DIFFERENTIAL EQUATIONS 

Consider the initial value problem of the first order 

{

  

  
  (   )

 (  )    

 

Using the recursive programming paradigm, we will implement the Euler’s method and the Runge-Kutta 

methods/algorithms for find numerical solutions to first order linear differential equations via the Wolfram language. 

 

Euler’s Method 

The Euler’s method/algorithm is given as 

          (     )                                                                  ( ) 
where  

        (   )                          
Following the algorithm, suppose we choose to find the approximate solution of( ) on the interval 

      with      . The Mathematica subroutine using Recursive approach can be written as follows: 

                                  ( )               
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Looking at the nine lines of code carefully. The first line simply clears all previous values for the variables we wish to 

use. The second line defines the equation in the initial value problem under consideration. The third through the 

seventh line sets constants and establishes the initial condition. The numerical calculation starts from    , so we 

obviously set         . We chose the initial condition that          and so we established that condition. The step 

size       is also clearly defined and also the number of steps (iteration) using the formula   (     )  ⁄ , but   

is replaced with       in the subroutine. 

The eighth line of code calculates the value of   for the     iteration. Examining the ninth line, The "new" value of   

to be computed is represented by     ; this is equated to the previous value of   (namely,        ) plus the product 

of   and  (   ) (namely,    (             ) where        is the previously calculated value of  . 

Evaluating the code will not producing any result, so we have to use the function Tableto calculate the set of ordered 

pairs (     ) for                   , naming the result           , and then usingthe function TableFormto 

outlook            in traditional row-and-column form 

 

 
Also, adding labels (  and  ) to the result (          ) using the Joincommand and then ListPlotto plot, we 

have, 



Adoh, A. C., IJECS Volume 3 Issue 7 July,2014 Page No.6926-6942 Page 6933 

 

 
 

 

 

 

To compare the result gotten using the Euler’s method (          ) to the exact solution (   )we got 

usingNDSolve, we use the function Showto display                together with         

 

 
The 

Clas

sical 

Run

ge-Kutta Method 

The Classical runge-kutta method/algorithm is given as 

                                  (   )                          

                                                 ( )                                       
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(             )                                        ( ) 

where  

        (     ) 

          (   
 

 
     

 

 
  ) 

       (   
 

 
     

 

 
  ) 

     (          ) 
and 

        (   )                          
Now, we proceed with the implementation of the algorithm using the recursive paradigm. Considering the 

approximate solution of( ) on the interval       with      . Thus, the subroutine is 

 
The lines of codes here are almost the same with that of the Euler’s method,but the only difference is that the 

intermediate values of  , that is,             are wrapped together with      in Moduleso as to localize them. 

Evaluating the code and then usingTableto calculate the set of ordered pairs (     ) for                   , 

naming the result        , and also using TableFormto view it in the traditional row-and-column form. 
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The graph of the solution is  

 
 

 

 

 

The graphical comparism of the result obtained using the Runge Kutta method (       ) and that of the exact 

solution gotten using NDSolveis 

 
 

 

 

 

SECOND ORDER DIFFERENTIAL EQUATIONS 

 

Consider the initial value problem of the first order 

                                  ( )                              

                                                 ( )               
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{
   

   
  (      ) 

 (  )         
 (  )    

 

Using the functional programming paradigm, we will also implement the Euler’s method and the Runge-Kutta 

methods/algorithms for find numerical solutions to second order linear differential equations via the wolfram 

language.  

 

Consider the initial value problem 

     (      )  (  )      
 (  )     

which can also be written as 

    (     )  
    (     ), 

 (  )      (  )     
after it has been reduced to its equivalent system of first order differential equations.  

The subroutines that will be written using the Functional programming paradigm will feature one important 

Mathematica function,NestList. NestListgives a list of the results of applying a function   to an 

expression,      0 through   times. 

 
For example, 

 
In the first example above, NestList first keep   as part of it result and the apply   to   producing  ( ), and then 

applying   to  ( ) producing  ( ( )) and so on four times and the same principle applies to the second example. 

(Wellin, 2013). 

Now, we move to implementing the numerical methods using Mathematica coupled with the visualization of the 

results they produce. 

 

Euler’s Method  

The Euler’s method/algorithm( ) above for finding numerical solutions to first order differential equations can be 

applied to differential equations of order two when it has been reduced to its equivalent system of two first order 

equations. The algorithm is given as 

          (        ) 

            (        ) 
where 

        (   )                            

Suppose we choose to find the approximate solution of equation ( ) on the interval       with      . Its 

equivalent of two first order equation is  
     

      
         

 

The following Mathematica subroutine will generate the appropriate numerical solution to the system above. 
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The subroutine(       ) has eight lines of code. The first line simply clears all previous values for the variables we 

wish to use. The second, third and fourth lines sets constants and establishes the initial condition. The numerical 

calculation starts from    , so we obviously set       . The step size       is also clearly defined and also the 

number of steps (iteration) using the formula   (     )  ⁄ , but   is replaced with       in the subroutine. 

And wrapped withIntegerPart, this is because       produces a real number when evaluated, but          

requires its third argument to be an integer. 

The fifth and sixth lines define the equation in the initial value problem under consideration. The seventh line creates a 

function containing the most important part of the algorithm which will then be supplied to theNestList. 

NestList will apply the function       to (        )  through       times thereby producing the required 

solution to the initial value problem and storing it in a variable called         . 

The         is the approximate solution of the initial value problem under consideration, which has been stored in the 

variable         . 

We get a better view of the result usingTableForm, knowing that the first column is the  -values, the second column 

is the numerical solution(that is  -value, while last column is the  -value. 

 
And now, we visualize the result by extracting the   and  -values and plotting them using ListPlot 
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A comparism of the graph (Figure 9) with the exact graph (Figure 2) using Showwill produce 

 
 

 

The Classical 

Runge-Kutta Method for Systems  

The Classical Runge-Kutta method/algorithm( ) can also be appliedto second order differential equations when it has 

been reduced to its equivalent system of two first order equations. The algorithm is as follows 

        
 

 
(             ) 

        
 

 
(            ) 

where 

     (        ) 

     (        ) 

     (   
 

 
     

 

 
      

 

 
  ) 

     (   
 

 
     

 

 
      

 

 
  ) 

     (   
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     (   
 

 
     

 

 
      

 

 
  ) 

                                  (   )                      

                                                  (   )               
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     (   
 

 
             ) 

     (   
 

 
             ) 

and 

        (   )                            
Proceeding with the implementation of the Runge Kutta methodusing Mathematica while focusing on the approximate 

solution of( )on the interval       with      , which is equivalent to the first order system 

     

       
         

 

The Mathematica subroutine is 
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The implementation is similar to that of the Euler’s method. The first line simply clears all previous values for the 

variables we wish to use. The second, third and fourth lines sets constants and establishes the initial condition. The 

numerical calculation starts from    , so we obviously set         The step size       is also clearly defined and 

also the number of steps (iteration) using the formula   (     )  ⁄ , but   is replaced with       in the 

subroutine. 

And wrapped withIntegerPart, this is because       produces a real number when evaluated. but         

requires its third argument to be an integer. 

The fifth and sixth lines define the equation in the initial value problem under consideration. The seventh through the 

fourteenth lines defines the intermediate functions for the computation of the intermediate values of 

              and   . The fifteenth line creates the function    containing the most important part of the 

algorithm which will then be supplied to theNestList. NestListwill apply the function    to (        )  

through       times thereby producing the required approximate solution to the initial value problem and storing it in 

a variable called      . 

The          is the approximate solution of the initial value problem( ), which has been stored in the variable 

     . 

Using TableFormand knowing that the first column is the  -values, the second column is the numerical 

solution(that is  -value), while last column is the  -value. 
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The result is hereby visualized using ListPlot 

 

 
 

 

 

And the comparism of this result with the exact solution is 

 
 

 

 

                                   (   )                          

                                                  (   )               
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CONCLUSION 

Mathematica’s diversity makes it particularly well suited to performing many calculations encountered when solving 

many ordinary differential equations. Invariably, we can say that Mathematica has saved time consumption because of 

its high speed computation capabilities and performance and to generate these solutions, we must instruct the 

computer via the Wolfram language to implement the necessary numerical method for solving these ordinary 

differential equations. 

In many cases, seeing a solution graphically is most meaningful, so the relevance of Mathematica’s outstanding 

graphics capabilities cannot be over-emphasized. Our modern technology would have not come to be or would have 

suffered deficiency without the use of a numerical computational machine such as Mathematica. 
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