
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 5 Issue 4 April 2016, Page No. 16244-16251

Jyotsana Sharma
1,IJECS Volume 05 Issue 4 April 2016 Page No.16244-16251 Page 16244

Proposed New Architecture Of Overlay Network Of Distributed

Hash Table
Jyotsana Sharma

1
,Birendra Kumar

2

Krishna Engineering College, Address-95 Loni Road Mohan Nagar, Rajendra Nagar, Gaziabad.UP-201007.

jyotsanasharma611@gmail.com

ABSTRACT: This paper proposes the new architecture of overlay network of Distributed Hash table (DHT). We introduce a

new MultiChord Protocol which is another variant of Chord Protocol defined over overlay network of Distributed Hash table.

MultiChord inherits basic properties of Chord protocol with some added new features.

Keywords: DHT, Chord.

I.INTRODUCTION

Distributed hash tables (DHTs) are a class of

decentralized distributed systems that provide a

lookup service similar to a hash table, i.e., it stores

a no of (key, value) pairs on various nodes that are

distributed across the internet, and provides an

efficient routing algorithm to perform various

operations (lookup, node joins, node leave) on that

data. Hence, we can say, it is a giant hash table

that is cooperatively maintained by a large number

of machines worldwide. An overlay network is a

virtual network of nodes and logical links that is

built on top of an existing network with the

purpose to implement a network service that is not

available in the existing network DHTs employ an

overlay network that is a base for the routing

algorithm. In this research, we present

MultiChord, a distributed lookup protocol for

peer-to-peer networks, that provides hash table

like functionality. It employs the concentric

circles geometry to distribute the network traffic

onto different circles in accordance with their

nodeids that are generated by a hash function.

Previous protocol, such as Chord, already

provides a scalable query latency of O(log N),

where 'N' is the no. of nodes in the peer-to-peer

network. But in MultiChord, the nodes are

distributed among multiple circles, unlike Chord

where all the nodes in the system are placed on

one circle. Hence, MultiChord retains the O(log

N) routing latency, but since now the nodes are

distributed among various circles instead of one,

effective „N„ is reduced and hence the overall

performance of the system improves.

Limitation of Distributed Hash Tables

Distributed Hash Tables are a cornerstone of state-

of-the-art Peer-to-Peer systems. They mean a

remarkable advancement in solving the issue of

scalability and decentralization, with the added

value of determinism and high guarantees.

However, this has opened a whole set of new

questions that need to be addressed. What follows

is a summary of those issues, from [SEA-2].

Quoting:

a) Lack of a Common Framework

Research in DHT systems has been

addressed by different research groups.

The results were the emergence of systems

that are very similar in basic principles.

Nevertheless, there is no common

framework that allows the common

understanding and reasoning about those

systems.

b) Locality Though accounted for in systems

like Pastry and Tapestry, locality remains

to be an open research issue. Additionally,

the loss of locality due to hashing is not

always considered a disadvantage. The

http://www.ijecs.in/
mailto:jyotsanasharma611@gmail.com

DOI: 10.18535/Ijecs/v5i4.33

Jyotsana Sharma
1,IJECS Volume 05 Issue 4 April 2016 Page No.16244-16251 Page 16245

Oceanstore system [OCS-3] which

depends on Tapestry for location and

routing, considers loss of locality

favorable because replicas of items would

be stored at physically apart nodes which

renders a system resistant to denial of

service attacks.

c) Cost of Maintaining the Structure Most

of the current DHTs depend on the

periodic checking and correction

(stabilization) for the maintenance of the

structure which is crucial to the

performance properties of those systems.

This periodic activity costs a high number

of messages and sometimes unnecessarily

in the case of checking stable sections of a

routing table. The awareness about this

problem motivated research such as e.g.,

[MAH-4] where a network tries to ―self-

tune‖ the rate at which it performs periodic

stabilization.

d) Complex Queries DHTs assume that for

each item, there is a unique key and to

retrieve that item one must know the

respective key. That is, one cannot search

for items matching a certain criteria like a

keyword or a regular-expression-specified

query. The feasibility of the task is

questionable [JLI-5]. Some of the

approaches include the insertion of indices

[HAR-6] for general queries or using some

geometrical constructs that make use of

the DHT structure such as space-filling

curves [AND-7]. Another approach is to

let the hashing be based on keywords or

semantic information and not on unique

keys [SCH-8].

e) Heterogeneity While all DHT systems

aim at letting all nodes have equal duties

and responsibilities, the heterogeneity in

physical connectivity makes them unequal.

Consequently, nodes with higher latencies

constitute bottlenecks for the operation of

structured P2P systems. Two approaches

were suggested to cope with those

problems:

i) Cloning: The more powerful nodes are

cloned so they can act as multiple nodes

and receive higher percentage of the

uniformly distributed traffic [DAB-9]

ii) Clustering: Nodes of similar latency

behavior are clustered together [ZXU-10].

Group Communication Since structured P2P

systems offer graphs of known topologies to

connect peers, it is natural to start exploiting the

structural properties in group communication. The

main focus in P2P Group communication is on

multicasting. Extensions like [STO-1], [RAT-11],

[CAS-12] aim at providing multicast layers to

existing DHT systems. Publish-subscribe

communication [TAN-13] is also another form of

group communication that was researched in P2P

systems [BAE-28].

II. Related Work

DHTs were first introduced to the research

community in 2001, with the near-simultaneous

introduction of four different architectures: CAN,

Chord, Pastry, and Plaxton et al. Since that time,

there have been an amazing numbers of new DHT

architectures proposed, but very few publicly-

released, robust implementations.

This area of research has been quite active since it

was introduced. Outside academia, DHT

technology has been adopted as a component of

BitTorrent and in the Coral Content Distribution

Network.

DHT research was originally motivated, in part,

by peer-to-peer systems such as Napster, Gnutella,

and Freenet, which took advantage of resources

distributed across the Internet to provide a single

useful application

Desired Characteristics of a DHT:

DOI: 10.18535/Ijecs/v5i4.33

Jyotsana Sharma
1,IJECS Volume 05 Issue 4 April 2016 Page No.16244-16251 Page 16246

DHTs characteristically emphasize the following

properties:

* Decentralization: the nodes collectively form

the system without any central coordination.

* Scalability: the system should function

efficiently even with thousands or millions of

nodes.

* Fault tolerance: the system should be reliable

(in some sense) even with nodes continuously

joining, leaving, and failing.

In addition to the above mentioned issues, DHTs

must deal with more traditional distributed

systems issues such as load balancing, data

integrity, and performance (in particular, ensuring

that operations such as routing and data storage or

retrieval complete quickly).

Basic Operation a DHT performs:

1. Store(key, val) [put operation]

2. val = Retrieve(key) [get operation]

Review of Basic DHT Algorithms

All of them take, as input, a key and, in response,

route a message to the node responsible for that

key. The keys are strings of digits of some length.

Nodes have identifiers, taken from the same space

as the keys (i.e., same number of digits). Each

node maintains a routing table consisting of a

small subset of nodes in the system. When a node

receives a query for a key for which it is not

responsible, the node routes the query to the

neighbor node that makes the most “Progress”

towards resolving the query. The notion of

progress differs from algorithm to algorithm, but

in general is defined in terms of some distance

between the identifier of the current node and the

identifier of the queried key.

2.1 A Scalable Content-Addressable Network

(CAN)

Basic Idea of CAN[CAN-14]: A virtual

d-dimensional Coordinate space is

considered.

-Each node owns a Zone in the virtual

space

-Data is stored as (key, value) pair

-Hash(key) --> a point P in the virtual

space

-(key, value) pair is stored on the node within

whose Zone the point P locates For routing

purpose, each node only need to maintain the

information of those nodes that hold coordinate

zone adjoining its own zone (neighbors)

Fig 2.1 : A (sample) 2-d space with 5 nodes

2.2 Chord

The chord algorithm [STO-1] is nothing but a

circular, double-linked list. Each node in the list is

a machine on the network. Each node keeps a

reference to the next and previous nodes in the

list, the addresses of other machines. There must

be an ordering with which we can determine what

the “next” node is for each node in the list. The

method used by the Chord DHT to determine the

next node is as follows: assign a unique random

ID of k bits to each node. Arrange the nodes in a

ring so the IDs are in increasing order clockwise

around the ring. For each node, the next node is

the one that is the smallest distance clockwise

away. For most nodes, this is the node whose ID

DOI: 10.18535/Ijecs/v5i4.33

Jyotsana Sharma
1,IJECS Volume 05 Issue 4 April 2016 Page No.16244-16251 Page 16247

is closest to but still greater than the current node's

ID. The one exception is the node with the

greatest ID, whose successor is the node with the

smallest ID.

Fig.2.2: circular identifier address space with

twenty nodes and five keys

Each node is itself a standard hash table. All we

need to do to store or retrieve a value from the

hash table is find the appropriate node in the

network, then do a normal hash table store or

lookup there.

2.3 Pastry

In Pastry [PAS-15] the hash table's keyspace is

taken to be circular, like the keyspace in the

Chord system, and node IDs are 128-bit unsigned

integers representing position in the circular

keyspace. Node IDs are chosen randomly and

uniformly so peers who are adjacent in node ID

are geographically diverse. The routing overlay

network is formed on top of the hash table by each

peer discovering and exchanging state information

consisting of a list of leaf nodes, a neighborhood

list, and a routing table. The leaf node list consists

of the L/2 closest peers by node ID in each

direction around the circle.

2.4 Tapestry

Tapestry [TAP-16] is an extensible infrastructure

that provides decentralized object location and

routing focusing on efficiency and minimizing

message latency. This is achieved since Tapestry

constructs locally optimal routing tables from

initialization and maintains them in order to

reduce routing stretch. Furthermore, Tapestry

allows object distribution determination according

to the needs of a given application. Similarly

Tapestry allows applications to implement

multicasting in the overlay network.

2.5 Recent Work

The algorithms described above are all multi hop

P2P Networks. In a multi-hop system, a message

is routed through several hops in the overlay

network, with each intermittent node in the

source-destination path contributing to the

guidance of the message to its destination.

Recently the 1-hop systems have come into play.

A 1-hop system (often referred to as single hop)

aims to achieve look up operations within O(1)

hops

2.5.1 Epichord

EpiChord[EPI-17] is a DHT lookup algorithm that

demonstrates that we can remove the O(log n)-

state-per-node restriction on existing DHT

topologies to achieve significantly better lookup

performance and resilience using a novel reactive

routing state maintenance strategy that amortizes

network maintenance costs into existing lookups

and by issuing parallel queries. Our technique

allows us to design a new class of unlimited-state

per-node DHTs that is able to adapt naturally to a

wide range of lookup workloads. EpiChord is able

to achieve O(1)-hop lookup performance under

lookup-intensive workloads, and at least O(log n)-

hop lookup performance under churn-intensive

workloads even in the worst case (though it is

expected to perform better on average) . Our

reactive routing state maintenance strategy allows

us to maintain large amounts of routing state with

only a modest amount of bandwidth, while

parallel queries serve to reduce lookup latency and

allow us to avoid costly lookup timeouts.

2.5.2 D1HT

It is a novel single hop DHT that is able to

maximize performance with reasonable

DOI: 10.18535/Ijecs/v5i4.33

Jyotsana Sharma
1,IJECS Volume 05 Issue 4 April 2016 Page No.16244-16251 Page 16248

maintenance traffic over head even for huge and

dynamic peer-to-peer (P2P) systems. It detects

and notifies any membership change in the

system, prove its correctness and performance

properties, and present a Quarantine-like

mechanism to reduce the overhead caused by

volatile peers. It is a one hop P2P network [D1H-

18]

III. The Proposed Protocol

MultiChord

A MultiChord system is a self-organizing overlay

network of nodes, where each node routes client

requests and interacts with local instances of one

or more applications. It uses consistent hashing

which has several good properties. The basic

difference between chord and MultiChord is, that

in chord, all the nodes in the system are placed on

one circle, whereas, in MultiChord, the nodes are

placed on multiple circles.

3.1 Structure

As outlined above, MultiChord is organized as

multiple concentric circles (that provide as one-

dimensional address space). In its structure, the

radius of consecutive circles differs by 1. The

smallest circle, which will eventually be the

innermost circle, will be of radius 1. And then, the

radius of each next circle increments by 1, that is,

the second circle is of radius 2, third is of radius 3

and so on,

Fig.3.1 The concentric circle structure of

MultiChord

 In the fig, the dots represent nodes. The black

nodes are the normal nodes in the system,

however, the green ones are connecting nodes,

described below.

3.2 Connecting Nodes

Connecting nodes, as the name implies, are

used to connect the circles together. They are

used to traverse between the circles. In the

finger table of a connecting node, in addition to

the list of successors, contains the IP„s of the

connecting node in the immediate outer and the

immediate inner circle. Hence, if suppose a

node shoots a query for a key placed on a

different circle than the one the querying node

is itself located. Then it first goes to the

connecting node placed on its own circle. This

connecting node will contact the connecting

node on the immediate next circle, which will

again „contact„ the next connecting node on

immediate next circle, until the target node is

reached.

Each node in MultiChord is assigned an m-bit

identifier, that is generated by hashing the node„s

IP address (This identifier consists of digits

only). This identifier or the nodeid is used to

indicate a node„s position in the multi circular

address space as follows:

The digits of nodeid are added up. Let this sum

be S. Now, the node with sum S is placed on

the circle with radius equal to S. Hence, a circle

‟contains‟ the nodes whose nodeid‟s digit sum

is equal to its radius.

Let‟s see an example …

The node identifier address space is of 5 bits in

base 4, i.e., all nodes are hashed to 5 digit

numbers in base 4. Thus, the maximum no. of

circles possible is 5*4 = 20. Consider the

following table ……

DOI: 10.18535/Ijecs/v5i4.33

Jyotsana Sharma
1,IJECS Volume 05 Issue 4 April 2016 Page No.16244-16251 Page 16249

Thus, node3 and node 5 will be placed on 5
th

circle (starting from the smallest one), i.e., the

circle with radius =5. Similarly, node1 and node 4

will be placed on circle with radius = 8 and node 2

will be placed on circle with radius =9.

On a circle, the node responsible for a key is the

node whose identifier most closely follows the

key, i.e., the successor (see Fig.)

Fig. 3.2 Circular identifier addresses space with

twenty nodes and five keys.

3.3 Operation in MultiChord

After having described the basic structure of the

overlay network that MultiChord deploys, let‟s

now see the various operations that can be

performed on the same:

 3.3.1 Lookup Operation

The lookup operation is performed as follows:

1. The key is hashed to obtain its m-bit

identifier (Each node and key are assigned

an m-bit identifier).

2. The sum of its digits is calculated.

3. The target circle is reached via the

connecting nodes.

4. The circle with that radius is identified to

be the one containing the particular node.

5. After navigating to the target circle the

node with id greater than or equal to the

key is identified using the simple chord

algorithm.

Hence in MultiChord, the node information

required to reach the target node is O(log

(M)), where M is average no of nodes per circle

(We assume uniform distribution of nodes among

the circles)

3.3.2 Join

In a dynamic network, nodes can join (and leave)

at any time. The main challenge in implementing

these operations is preserving the ability to locate

every key in the network.

In MultiChord a node join takes place as follows:

We assume that the new node learns the identity

of an existing node by some external mechanism.

The joining node„s IP is hashed to generate the

nodeid. The sum of its digits is obtained, and the

node that was „chosen„ by the joining node,

forwards a query with the nodeid of the new node.

After this, the above mentioned process is

followed to find the appropriate circle and then

the node is placed on the circle according to the

simple Chord Algorithm.

3.3.3 Leave

A node departure takes place exactly as happens

in the basic chord protocol. However, this

S.No Nodeids SumofDigits

Respective

circle

1 32102 8 8

2 23121 9 9

3 32000 5 5

4 23021 8 8

5 30020 5 5

DOI: 10.18535/Ijecs/v5i4.33

Jyotsana Sharma
1,IJECS Volume 05 Issue 4 April 2016 Page No.16244-16251 Page 16250

operation could lead to a situation where the

leaving node was the only node left in the circle.

In that situation, the whole connectivity would

break. So, in this case, the leaving node would

first „inform„(a special function

‘RetainConnectivity’ is invoked) the connecting

node of immediate inner and the immediate outer

circle, so that the later can update their tables

accordingly and the connectivity of the whole

system is retained.

3.4 Conclusion

Hence, like chord, MultiChord still requires

information about O(log N) other nodes on the

circle, but since now the traffic is distributed

among various circles, „n„, is reduced and hence

the overall performance of the system improves.

We can say, the effective performance if O(log

M), where M is the average no of nodes on one

circle. (Note that M will be less than N (total no of

nodes in the system))

IV.References

[STO-1] ION STOICA, ROBERT MORRIS,

DAVID LIBEN-NOWELL, DAVID R.

KARGER, M. FRANS KAASHOEK, FRANK

DABEK, HARI BALAKRISHNAN, Chord: A

Scalable Peer-to-peer Lookup Protocol for

Internet Applications. ACM SIGCOMM (San

Diego, CA, 2001) pp. 149-160

[SEA-2] EL-ANSARY, S. A Framework For The

Understanding, The Optimization, and Design Of

Structured Peer-To-Peer Systems. Licentiate

Philosophy Dissertation, Royal Institute of

Technology, 2003.

[OCS-3] KUBIATOWICZ, J., BINDEL, D.,

CHEN, Y., CZERWINSKI, S., EATON, P.,

GEELS, D., GUMMADI, R., RHEA, S.,

WEATHERSPOON, H., WEIMER, W., WELLS,

C., AND ZHAO, B. OceanStore: An architecture

for global-scale persistent storage. In Proceedings

of the Ninth international Conference on

Architectural Support for Programming

Languages and Operating Systems (ASPLOS

2000) (Boston, MA, November 2000).

[MAH-4] MAHAJAN, R., CASTRO, M.,

ROWSTRON, A. Controlling the cost of

reliability in peer-to-peer overlays, LNCS 2735,

Proceedings of the Second International

Workshop IPTPS 2003 (Berkeley), Springer,

2003.

[JLI-5] LI, J., LOO, B.T., HELLERSTEIN, J.,

KAASHOEK, F., KARGER, D.R., MORRIS, R.

On the Feasibility of Peer-to-Peer Web Indexing

[HAR-6] HARREN, M., HELLERSTEIN, J.M.,

HUEBSCH, R., LOO, B.T., SHENKER, S.,

STOICA, I., Complex Queries in DHT-based

Peer-to-Peer Networks. In The 1st International

Workshop on Peer-to-Peer Systems (IPTPS„02),

2002.

http://www.cs.rice.edu/Conferences/IPTPS02/

[AND-7] ANDRZEJAK, A., XU, Z. Scalable,

Efficient Range Queries for Grid Information

Services. In 2nd International Conference on Peer-

To-Peer Computing, pages 33–40, Linköping,

Sweden, September 2002. IEEE Computer

Society. ISBN-0-7695-1810-9.

[SCH-8] SCHLOSSER, M., STINEK, M.,

DECKER, S., NEJDL, W. A Scalable and

Ontology-Based P2P Infrastructure for Semantic

Web Services. In 2nd International Conference on

Peer-To-Peer Computing, pages 104–111,

Linköping, Sweden, September 2002. IEEE

Computer Society. ISBN-0-7695-1810-9.

[DAB-9] DABEK, F., KAASHOEK, M.F.,

DARGER, D., MORRIS, R., STOICA, I. Wide-

Area Cooperative Storage With CFS. In

Proceedings of the 18th ACM Symposium on

Operating Systems

Principles (SOSP „01), Chateau Lake Louise,

Banff, Canada, October 2001.

[ZXU-10] XU, Z., MALLIK, M., KARLSSON,

M. Turning Heterogeneity into an Advantage in

http://www.cs.rice.edu/Conferences/IPTPS02/
http://www.cs.rice.edu/Conferences/IPTPS02/

DOI: 10.18535/Ijecs/v5i4.33

Jyotsana Sharma
1,IJECS Volume 05 Issue 4 April 2016 Page No.16244-16251 Page 16251

Overlay Routing. Technical Report HPL-2002-

126R2, Hewlett-Packard Labs, July 2002.

http://www.hpl.hp.com/techreports/2002/HPL-

2002-126R2.html

[RAT-11] RATNASAMY, S., HANDLEY, M.,

KARP, R., SHENKER, S., Application-level

Multicast using Content-Addressable Networks.

In Third International Workshop on Networked

Group

Communication (NGC „01), 2001. http://www-

mice.cs.ucl.ac.uk/ngc2001/

[CAS-12] CASTRO, M., DRUSCHEL, P.,

KERMARREK, A.M., ROWSTRON, A.,

SCRIBE: A Large-Scale And Decentralized

Application-Level Multicast Infrastructure. IEEE

Journal on Selected Areas in Communications

(JSAC) (Special issue on Network Support for

Multicast Communications, 2002.

[TAN-13] TANENBAUM, A.S., VAN STEEN,

M., Distributed Systems: Principles and

Paradigms. Prentice Hall, Inc., 2002. ISBN-0-13-

088893-1.

[CAN-14] RATSANAMY, S., FRANCIS, P.,

HANDLEY, M., KARP, R., SHENKER, S. A

Scalable Content Addressable Network.Technical

Report TR-00-010, Berkeley, CA, 2000

[PAS-15] ROWSTRON, A., DRUSCHEL, P.

Pastry: Scalable, Decentralized Object Location,

and Routing for Large-Scale Peer-to-Peer

Systems. Lecture Notes in Computer Science,

2218, 2001.

http://citeseer.nj.nec.com/rowstron01pastry.html

[TAP-16] ZHAO, B.Y., KUBIATOWICZ, J.D.,

JOSEPH, A.D. Tapestry: An Infrastructure for

Fault-tolerant Wide-area Location and Routing. U.

C. Berkeley Technical Report UCB//CSD-01-

1141, April 2000

[EPI-17] LEONG B., LISKOV B., Eric D

DEMAINE,‖Epichord: Parallelizing the Chord

Lookup Algorithm with Reactive Routing State

Management‖, proceeding of 12
th

 international

confrenceon Networks 2004.

[D1H-18] MONNERE L., AMONRIM C.,,

―D1HT: A Distributed one hop hash table‖, in

the Proc of 14
th

IEEE Dexa, 2006

http://www-mice.cs.ucl.ac.uk/ngc2001/
http://www-mice.cs.ucl.ac.uk/ngc2001/
http://citeseer.nj.nec.com/rowstron01pastry.html
http://citeseer.nj.nec.com/rowstron01pastry.html

