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Abstract—The processes of Software engineering are complex and produces large number and variety of artifacts. The potential of data 

mining technique on this large valuable data is  to better manage the software projects and to produce high-quality software systems 

that are delivered on time and within budget.  This paper present the latest research in mining software engineering data, software 

engineering task helped by data mining, kind of software engineering data, data mining techniques used in software engineering. 

Index Terms—Software Engineering, Data mining, software 

Quality 

I. INTRODUCTION  

Software Engineering data contains large amount of 

information about software project’s status, progress and 

evolution. Working with Nokia, Gall et al. [4] have shown 

that software repositories can help developers change legacy 

systems by pointing out hidden code dependencies. Working 

with Bell Labs and Avaya, Graves et al. [5] andMockus et al. 
[8] demonstrated that historical change information can 

support management in building reliable software systems by 

predicting bugs and effort. Working on open source projects, 

Chen et al. [3] have shown that historical information can 

assist developers in understanding large systems.  SE data can 

be used to gain empirically-based understanding of software 

development. It can be also used to prdict, plan and understand 

various aspects of a project and support future development 

and project management activities. 

     Types of SE Data 

• Historical data 

 • Multi-run and multi-site data 

 • Source code data 

     Data Mining Techniques in SE 

 • Association rules and frequent patterns 

 • Classification 

 • Clustering 

Software engineering data can be broadly categorized into: 

 Sequences such as execution traces collected at 

runtime, static traces extracted from source code, and 

cochanged code locations. Examples of mining 

algorithms used here are Frequent Item set 

/Sequence/ Partial ordering mining, sequence 

matching/clustering/classification. Examples of 

software engineering tasks here are Programming, 

maintenance, bug detection and debugging. 

 Graphs such as dynamic call graphs collected at  

runtime and static call graphs extracted from source 

code;Examples of mining algorithms used here are 

Frequent Sub-graph mining, Graph 

matching/clustering/classification. Examples of 

software engineering tasks here are bug detection and 

debugging. 

 Text such as bug reports, e-mails, code comments, 

and documentation. Examples of mining algorithms 

used here are Text Matching/ 

Clustering/Classification.  Examples of  software 

engineering tasks here are Maintenance, Bug 

Detection and Debugging. 

 
Figure 1.  overview of mining SE data 

 

2. SOFTWARE ENGINEERING DATA  
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SE data concerns the 3Ps: people, processes, and products. 

People include software developers, testers, project managers, 

and users. Processes include various development phases and 

activities such as requirements, design, implementation, 

testing, debugging,  maintenance, and deployment. Products 

can be structured, such as source code (including production 

and test code), or nonstructured, 

such as documentation and bug reports. As the first column of 

Table 1 shows, SE data can be broadly categorized into 

• sequences such as execution traces collected at runtime, 

static traces extracted from source code, and co-changed code 

locations; 

• graphs such as dynamic call graphs collected at runtime and 

static call graphs extracted from source code; and 

• text such as bug reports, e-mails, code comments, and 

documentation. 

To improve both software productivity and quality, software 

engineers are increasingly applying data mining algorithms to 

various SE tasks. For example, such algorithms can help 

engineers figure out how to invoke APImethods provided by a 

complex library or framework with insufficient 

documentation. In terms of maintenance, such algorithms can 

assist in determining what code locations must be changed 

when another code location is changed. 

Software engineers can also use data mining algorithms to 

hunt for potential bugs that can cause future in-field failures as 

well as identify buggy lines of code (LOC) responsible for 

already-known failures. The second and third columns of 

Table 1 list several example data mining algorithms and the 

SE tasks to which engineers apply them. 

 

 
Table 1. Software engineering data, mining algorithms, 

and software engineering tasks [1] 

 

3. MINING METHODOLOGY FOR SOFTWARE 

ENGINEERING DATA 
 

Figure 3 shows an overview of the five main steps in mining SE data. 

Software engineers can start with either a problem-driven approach 

(knowing what SE task to assist) or a data-driven approach (knowing 

what SE data to mine), but in practice they commonly adopt a  

mixture of the first two steps: collecting/investigating data to mine 

and determining  the SE task to assist. The three remaining steps are, 

in order, preprocessing data, adopting/adapting/developing a mining 

algorithm, and post processing/applying mining results. 

Preprocessing data involves first extracting relevant data from the 

raw SE data—for example, static method- call sequences or call  

raphs from source code, dynamic method-call sequences or call 

graphs from execution traces, or word sequences from bug report 

summaries. 

This data is further preprocessed by cleaning and properly formatting 

it for the mining algorithm. For example, the input format for 

sequence data can be a sequence database where each sequence is a 

series of events.  

The next step produces a mining algorithm and its supporting tool, 

based on the mining requirements derived in the first two steps. In 

general, mining algorithms1 fall into four main categories: 

• frequent pattern mining—finding commonly occurring patterns; 

• pattern matching—finding data instances for given patterns; 

• clustering—grouping data into clusters; and 

• classification—predicting labels of data based on already-labeled 

data. 

The final step transforms the mining algorithm results into an 

appropriate format required to assist the SE task. For example, in the 

preprocessing step, a software engineer replaces each distinct method 

call with a unique symbol in the sequence database being fed to the 

mining algorithm. 

The mining algorithm then characterizes a frequent pattern with these 

symbols. In postprocessing, the engineer changes each symbol back 

to the corresponding method call. When applying frequent pattern 

mining, this step also includes finding locations that match a mined 

pattern—for example, to assist in programming or maintenance—and 

finding locations that violate a mined pattern—for example, to assist 

in bug detection. 

 

 
Figure 3. Five basic steps for mining software engineering 

data  

 

4. DATA MINING FOR SOFTWARE ENGINEERING 

 

Due to its capability to deal with large volumes of data and its 

efficiency to identify hidden patterns of knowledge, data 

mining has been proposed in a number of research work as 

mean to support industrial scale software maintenance, 

debugging, testing. The mining results can help software 

engineers to predict software failures, extract and classify 

common bugs, identify relations among classes in a libraries, 

analyze defect data, discover reused patterns in source code 

and thus automate the development procedure. In general 

terms, using data mining practitioners and researchers can 

explore the potential of software engineering data and use the 

mining results in order to better manage their projects and to 

produce higher quality software systems that are delivered on 

time and on budget. In the following sections we discuss the 

main features of mining approaches that have been used in 

software engineering and how the results can be used in the 
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software engineering life cycle. We classify the approaches 

according to the software engineering tasks that they help and 

the mining techniques that they use.  

4.1. Requirement elicitation and tracing 

In this section we discuss how data analysis techniques can 

contribute to educe or trace system requirements. The works 

for requirement analysis refers to data mining in its broadest 

sense, including certain related activities and methodologies 

from statistics, machine learning and information retrieval. 

 

4.1.1. Classification 

A recent approach, presented in [6], has focused on   

improving the extraction of high level and low level 

requirements using information retrieval. More specifically, 

they consider the documents’ universe as being the union of 

the design elements and the individual requirements and they 

map the problem of requirements tracing into finding the 

similarities between the vector space representations of high 

leveland low level requirements, thus reducing it into an IR 

task. As an expansion of this study, in [7], the authors focused 

on discovering the factors that affect an analysts’ behavior 

when working with results from data mining tools in software 

engineering. The whole study was based on the verified 

hypothesis that the accuracy of compute regenerated 

candidate traces affects the accuracy of traces produced by 

the analyst. The study presents how the performance of tools 

that extract high level and low level requirements through the 

use of information retrieval, affects the time consumed by an 

analyst to submit feedback, as well as her performance. 

Results reveal that data mining systems exhibiting low recall 

result in a time consuming feedback from the analyst. In 

parallel, high recall leads to a large number of false positive 

thus prompting the analyst cut down large number of 

requirements, dimming recall. Overall reported results reveal 

that the analyst tends to balance precision and recall at the 

same levels. 

4.1.2. Data summarization 

From another perspective, text mining has been used in 

software engineering to validate the data from mailing lists, 

CVS logs, and change log files of open source software. In 

[11] they created a set of tools, namely SoftChange2, that 

implements data validation from the aforementioned text 

sources of open source software. Their tools retrieve, 

summarize and validate these types of data of open source 

projects. Part of their analysis can mark out the most active 

developers of an open source project. The statistics and 

knowledge gathered by SoftChange analysis has not been 

exploited fully though, since further predictive methods can be 

applied with regard to fragments of code that may change in 

the future, or associative analysis between the changes’ 

importance and the individuals (i.e. were all the changes 

committed by the most active developer as important as the 

rest, in scale and in practice?). 

 

4.2. Development analysis 

This section provides an overview of mining approaches used 

to assist with development process.  

4.2.1. Clustering 

Text mining has also been used in software engineering for 

discovering development processes. Software processes are 

composed of events such as relations of agents, tools, 

resources, and activities organized by control flow structures 

dictating that sets of events execute in serial, parallel, 

iteratively, or that one of the set is selectively performed. 

Software process discovery takes as input artifacts of 

development (e.g. source code, communication transcripts, 

etc.) and aims to elicit the sequence of events characterizing 

the tasks that led to their development. In [12] an innovative 

method of discovering software processes from open source 

software Web repositories is presented. Their method contains 

text extraction techniques, entity resolution and social network 

analysis, and it is based on the process of entity taxonomies. 

Automatic means of evolving the taxonomy using text mining 

tasks could have been levied, so that the method lacks strict 

dependency on the taxonomy’s actions, tools, resources and 

agents. An example could be the use of text clustering on the 

open software text resources and extraction of new candidate 

items for the taxonomy arising from the clusters’ labels.  

In [6], they used as text input the Apache developer mailing  

list. Entity resolution was essential, since many individuals 

used more than one alias. After constructing the social graph 

occurring from the interconnections between poster and 

replier, they made a social network analysis and came to really 

important findings, like the strong relationship between email 

activity and source code level activity. Furthermore, social 

network analysis in that level revealed the important nodes 

(individuals) in the discussions. Though graph and link 

analysis were engaged in the method, the use of node ranking 

techniques, like PageRank, or other graph processing   

techniques like Spreading Activation, did not take place. 

 

4.2.2. Classification 

Source code repositories stores a wealth of information that is 

not only useful for managing and building source code, but 

also provide a detailed log howthe source code has evolved 

during development. Information regarding the evidence of 

source code refactoring will be stored in the repository. Also 

as bugs are fixed, the changes made to correct the problem are 

recorded. As new APIs are added to the source code, the 

proper way to use them is implicitly explained in the source 

code. Then, one of the challenges is to develop tools and 

techniques to automatically extract and use this useful 

information. 

In [2], a method is proposed which uses data describing bug 

fixes mined from the source code repository to improve static 

analysis techniques used to find bugs. It is a two step approach 

that uses the source code change history of a software project 

to assist with refining the search for bugs.  

The first step in the process is to identify the types of bugs that 

are being fixed in the software. The goal is to review the  

historical data stored for the software project, in order to gain 

an understanding of what data exists and how useful it may be 

in the task of bug findings. Many of the bugs found in the 

CVS history are good candidates for being detected by statistic 

analysis, NULL pointer checks and function return value 

checks. 

The second step is to build a bug detector driven by these  

findings. The idea is to develop a function return value 

checker based on the knowledge that a specific type of bug has 

been fixed many times in the past. Briefly, this checker looks 

for instances where the return value from a function is used in 

the source code before being tested. Using a return value could 

mean passing it as an argument to a function, using it as part 

of calculation, dereferencing the value if it is a pointer or 

overwriting the value before it is tested. Also, cases that return 

values are never stored by the calling function are checked. 

Testing a return value means that some control flow decision 

relies on the value. The checker does a data flow analysis on 

the variable holding the returned value only to the point of 

determining if the value is used before being tested. It simply 
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identifies the original variable the returned value is stored into 

and determines the next use of that variable. Moreover, the 

checker categorizes the warnings it finds into one of the 

following categories: – Warnings are flagged for return values 

that are completely ignored or if the return value is stored but 

never used. – Warnings are also flagged for return values that 

are used in a calculation before being tested in a control flow 

statement. Any return value passed as an argument to a 

function before being tested is flagged, as well as any pointer 

return value that is dereferenced without being tested 

.However there are types of functions that lead the static 

analysis procedure to produce false positive warnings. If there 

is no previous knowledge, it is difficult to tell which function 

does not need their return value checked. Mining techniques 

for source code repository can assist with improving static 

analysis results. Specifically, the data we mine from the source 

code repository and from the current version of the software is 

used to determine the actual usage pattern for each function. In 

general terms, it has been observed that the bugs cataloged in 

bug databases and those found by inspecting source code 

change histories differ in type and level of abstraction. 

Software repositories record all the bug fixed, from every step 

in development process and thus they provide much useful 

information. Therefore, a system for bug finding techniques is 

proved to be more effective when it automatically mines data 

from source code repositories.  

4.3. Testing 

The evaluation of software is based on tests that are designed 

by software testers. Thus the evaluation of test outputs is 

associated with a considerable effort by human testers who 

often have imperfect knowledge of the requirements 

specification. Data mining approaches can be used for 

extracting useful information from the tested software which 

can assist with the software testing. Specifically, the induced 

data mining models of tested software can be used for 

recovering missing and incomplete specifications, designing a 

set of regression tests and evaluating the correctness of 

software outputs when testing new releases of the system. A 

regression test library should include a minimal number of 

tests that cover all possible aspects of system functionality. 

To ensure effective design of new regression test cases, one  as 

to recover the actual requirements of an existing system. Thus, 

a tester has to analyze system specifications, perform 

structural analysis of the system’s source code and observe the 

results of system execution in order to define inputoutput 

relationships in tested software. 

 

5. CONCLUSION 

This paper presents good understanding of existing 
research on mining SE data. This discuss the  
categorization of the existing research in this field into 

three major perspectives: data sources being mined, 
tasks being assisted, and mining techniques being used.  

6. REFERENCES 

[1]  T. Xie, S. Thummalapenta, D. Lo, and C. Liu. Data ining 

for software engineering. IEEE Computer, 42(8):35–42, 

August 2009. 

[2]  C.C.Williams and J.K.Hollingsworth,Automatingmining of  

source code repositories to improve bug finding techniques, IEEE 

Transactions on Software Engineering 31(6) (2005), 466–480. 
 [3] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. 

Zhang, and A. Michail. CVSSearch: Searching through source 

code using CVS comments. In Proceedings of the 17th 

Interna- tional Conference on Software Maintenance, pages 

364–374, Florence, Italy, 2001. 

[4] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical 

coupling based on product release history. In Proceedings of 

the 14th International Conference on Software Maintenance, 

pages 190–198, Bethesda, Washington D.C., 1998. 

[5] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. 

Predicting fault incidence using software change history. IEEE 

Trans. Softw. Eng., 26(7):653–661, 2000. 

[6]  J. Huffman Hayes, A. Dekhtyar and J. Osborne, Improving 

requirements tracing via information retrieval. In Proceedings of the 

International Conference on Requirements Engineering, 2003. 

[7]  J. Huffman Hayes, A. Dekhtyar and S. Sundaram, Text mining 

for software engineering: How analyst feedback impacts 

final results. In Proceedings of International Workshop on Mining 

Software Repositories (MSR), 2005. 
[8] A. Mockus, D. M. Weiss, and P. Zhang. Understanding 

and predicting effort in software projects. In Proceedings of 

the 25th International Conference on Software Engineering, 

pages 274–284, Portland, Oregon, 2003. 
[9] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as 

partial orders from source code: From usage scenarios to 

specifications. In Proceedings of 6th joint meeting of the European 

Software Engineering Conference and the ACMSIGSOFT Symposium 

on the Foundations of Software Engineering (ESEC/FSE 2007), 

pages 25–34, September 2007. 

[10] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, 

and P. Devanbu. The promises and perils of mining git. In roceedings 

of the 6th IEEE International Working Conference on Mining 

Software Repositories (MSR 2009),pages 1–10, May 2009. 
[11] D. German and A. Mockus, Automating the measurement 

of open source projects. In Proceedings of the 3rd Workshop 

on Open Source Software Engineering, 25th International 

Conference on Software Engineering (ICSE03),2003. 

[12]  C. Jensen andW. Scacchi, Datamining for software 

process discovery in open source software development 

communities.In Proceedings of International Workshop on 

Mining Software Repositories (MSR), 2004. 

 


