

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 6 June, 2014 Page No. 6722-6725

Pooja Arora, IJECS Volume 3 Issue 6, June, 2014, Page No.6722-6725 Page 6722

Application of Data Mining Techniques on Software

Engineering Data for Software Quality

Pooja Arora

BCIIT

Delhi, India

poojadhanrajani@gmail.com

Abstract—The processes of Software engineering are complex and produces large number and variety of artifacts. The potential of data

mining technique on this large valuable data is to better manage the software projects and to produce high-quality software systems

that are delivered on time and within budget. This paper present the latest research in mining software engineering data, software

engineering task helped by data mining, kind of software engineering data, data mining techniques used in software engineering.

Index Terms—Software Engineering, Data mining, software

Quality

I. INTRODUCTION

Software Engineering data contains large amount of

information about software project’s status, progress and

evolution. Working with Nokia, Gall et al. [4] have shown

that software repositories can help developers change legacy

systems by pointing out hidden code dependencies. Working

with Bell Labs and Avaya, Graves et al. [5] andMockus et al.
[8] demonstrated that historical change information can

support management in building reliable software systems by

predicting bugs and effort. Working on open source projects,

Chen et al. [3] have shown that historical information can

assist developers in understanding large systems. SE data can

be used to gain empirically-based understanding of software

development. It can be also used to prdict, plan and understand

various aspects of a project and support future development

and project management activities.

 Types of SE Data

• Historical data

 • Multi-run and multi-site data

 • Source code data

 Data Mining Techniques in SE

 • Association rules and frequent patterns

 • Classification

 • Clustering

Software engineering data can be broadly categorized into:

 Sequences such as execution traces collected at

runtime, static traces extracted from source code, and

cochanged code locations. Examples of mining

algorithms used here are Frequent Item set

/Sequence/ Partial ordering mining, sequence

matching/clustering/classification. Examples of

software engineering tasks here are Programming,

maintenance, bug detection and debugging.

 Graphs such as dynamic call graphs collected at

runtime and static call graphs extracted from source

code;Examples of mining algorithms used here are

Frequent Sub-graph mining, Graph

matching/clustering/classification. Examples of

software engineering tasks here are bug detection and

debugging.

 Text such as bug reports, e-mails, code comments,

and documentation. Examples of mining algorithms

used here are Text Matching/

Clustering/Classification. Examples of software

engineering tasks here are Maintenance, Bug

Detection and Debugging.

Figure 1. overview of mining SE data

2. SOFTWARE ENGINEERING DATA

Pooja Arora, IJECS Volume 3 Issue 6, June, 2014, Page No.6722-6725 Page 6723

SE data concerns the 3Ps: people, processes, and products.

People include software developers, testers, project managers,

and users. Processes include various development phases and

activities such as requirements, design, implementation,

testing, debugging, maintenance, and deployment. Products

can be structured, such as source code (including production

and test code), or nonstructured,

such as documentation and bug reports. As the first column of

Table 1 shows, SE data can be broadly categorized into

• sequences such as execution traces collected at runtime,

static traces extracted from source code, and co-changed code

locations;

• graphs such as dynamic call graphs collected at runtime and

static call graphs extracted from source code; and

• text such as bug reports, e-mails, code comments, and

documentation.

To improve both software productivity and quality, software

engineers are increasingly applying data mining algorithms to

various SE tasks. For example, such algorithms can help

engineers figure out how to invoke APImethods provided by a

complex library or framework with insufficient

documentation. In terms of maintenance, such algorithms can

assist in determining what code locations must be changed

when another code location is changed.

Software engineers can also use data mining algorithms to

hunt for potential bugs that can cause future in-field failures as

well as identify buggy lines of code (LOC) responsible for

already-known failures. The second and third columns of

Table 1 list several example data mining algorithms and the

SE tasks to which engineers apply them.

Table 1. Software engineering data, mining algorithms,

and software engineering tasks [1]

3. MINING METHODOLOGY FOR SOFTWARE

ENGINEERING DATA

Figure 3 shows an overview of the five main steps in mining SE data.

Software engineers can start with either a problem-driven approach

(knowing what SE task to assist) or a data-driven approach (knowing

what SE data to mine), but in practice they commonly adopt a

mixture of the first two steps: collecting/investigating data to mine

and determining the SE task to assist. The three remaining steps are,

in order, preprocessing data, adopting/adapting/developing a mining

algorithm, and post processing/applying mining results.

Preprocessing data involves first extracting relevant data from the

raw SE data—for example, static method- call sequences or call

raphs from source code, dynamic method-call sequences or call

graphs from execution traces, or word sequences from bug report

summaries.

This data is further preprocessed by cleaning and properly formatting

it for the mining algorithm. For example, the input format for

sequence data can be a sequence database where each sequence is a

series of events.

The next step produces a mining algorithm and its supporting tool,

based on the mining requirements derived in the first two steps. In

general, mining algorithms1 fall into four main categories:

• frequent pattern mining—finding commonly occurring patterns;

• pattern matching—finding data instances for given patterns;

• clustering—grouping data into clusters; and

• classification—predicting labels of data based on already-labeled

data.

The final step transforms the mining algorithm results into an

appropriate format required to assist the SE task. For example, in the

preprocessing step, a software engineer replaces each distinct method

call with a unique symbol in the sequence database being fed to the

mining algorithm.

The mining algorithm then characterizes a frequent pattern with these

symbols. In postprocessing, the engineer changes each symbol back

to the corresponding method call. When applying frequent pattern

mining, this step also includes finding locations that match a mined

pattern—for example, to assist in programming or maintenance—and

finding locations that violate a mined pattern—for example, to assist

in bug detection.

Figure 3. Five basic steps for mining software engineering

data

4. DATA MINING FOR SOFTWARE ENGINEERING

Due to its capability to deal with large volumes of data and its

efficiency to identify hidden patterns of knowledge, data

mining has been proposed in a number of research work as

mean to support industrial scale software maintenance,

debugging, testing. The mining results can help software

engineers to predict software failures, extract and classify

common bugs, identify relations among classes in a libraries,

analyze defect data, discover reused patterns in source code

and thus automate the development procedure. In general

terms, using data mining practitioners and researchers can

explore the potential of software engineering data and use the

mining results in order to better manage their projects and to

produce higher quality software systems that are delivered on

time and on budget. In the following sections we discuss the

main features of mining approaches that have been used in

software engineering and how the results can be used in the

Pooja Arora, IJECS Volume 3 Issue 6, June, 2014, Page No.6722-6725 Page 6724

software engineering life cycle. We classify the approaches

according to the software engineering tasks that they help and

the mining techniques that they use.

4.1. Requirement elicitation and tracing

In this section we discuss how data analysis techniques can

contribute to educe or trace system requirements. The works

for requirement analysis refers to data mining in its broadest

sense, including certain related activities and methodologies

from statistics, machine learning and information retrieval.

4.1.1. Classification

A recent approach, presented in [6], has focused on

improving the extraction of high level and low level

requirements using information retrieval. More specifically,

they consider the documents’ universe as being the union of

the design elements and the individual requirements and they

map the problem of requirements tracing into finding the

similarities between the vector space representations of high

leveland low level requirements, thus reducing it into an IR

task. As an expansion of this study, in [7], the authors focused

on discovering the factors that affect an analysts’ behavior

when working with results from data mining tools in software

engineering. The whole study was based on the verified

hypothesis that the accuracy of compute regenerated

candidate traces affects the accuracy of traces produced by

the analyst. The study presents how the performance of tools

that extract high level and low level requirements through the

use of information retrieval, affects the time consumed by an

analyst to submit feedback, as well as her performance.

Results reveal that data mining systems exhibiting low recall

result in a time consuming feedback from the analyst. In

parallel, high recall leads to a large number of false positive

thus prompting the analyst cut down large number of

requirements, dimming recall. Overall reported results reveal

that the analyst tends to balance precision and recall at the

same levels.

4.1.2. Data summarization

From another perspective, text mining has been used in

software engineering to validate the data from mailing lists,

CVS logs, and change log files of open source software. In

[11] they created a set of tools, namely SoftChange2, that

implements data validation from the aforementioned text

sources of open source software. Their tools retrieve,

summarize and validate these types of data of open source

projects. Part of their analysis can mark out the most active

developers of an open source project. The statistics and

knowledge gathered by SoftChange analysis has not been

exploited fully though, since further predictive methods can be

applied with regard to fragments of code that may change in

the future, or associative analysis between the changes’

importance and the individuals (i.e. were all the changes

committed by the most active developer as important as the

rest, in scale and in practice?).

4.2. Development analysis

This section provides an overview of mining approaches used

to assist with development process.

4.2.1. Clustering

Text mining has also been used in software engineering for

discovering development processes. Software processes are

composed of events such as relations of agents, tools,

resources, and activities organized by control flow structures

dictating that sets of events execute in serial, parallel,

iteratively, or that one of the set is selectively performed.

Software process discovery takes as input artifacts of

development (e.g. source code, communication transcripts,

etc.) and aims to elicit the sequence of events characterizing

the tasks that led to their development. In [12] an innovative

method of discovering software processes from open source

software Web repositories is presented. Their method contains

text extraction techniques, entity resolution and social network

analysis, and it is based on the process of entity taxonomies.

Automatic means of evolving the taxonomy using text mining

tasks could have been levied, so that the method lacks strict

dependency on the taxonomy’s actions, tools, resources and

agents. An example could be the use of text clustering on the

open software text resources and extraction of new candidate

items for the taxonomy arising from the clusters’ labels.

In [6], they used as text input the Apache developer mailing

list. Entity resolution was essential, since many individuals

used more than one alias. After constructing the social graph

occurring from the interconnections between poster and

replier, they made a social network analysis and came to really

important findings, like the strong relationship between email

activity and source code level activity. Furthermore, social

network analysis in that level revealed the important nodes

(individuals) in the discussions. Though graph and link

analysis were engaged in the method, the use of node ranking

techniques, like PageRank, or other graph processing

techniques like Spreading Activation, did not take place.

4.2.2. Classification

Source code repositories stores a wealth of information that is

not only useful for managing and building source code, but

also provide a detailed log howthe source code has evolved

during development. Information regarding the evidence of

source code refactoring will be stored in the repository. Also

as bugs are fixed, the changes made to correct the problem are

recorded. As new APIs are added to the source code, the

proper way to use them is implicitly explained in the source

code. Then, one of the challenges is to develop tools and

techniques to automatically extract and use this useful

information.

In [2], a method is proposed which uses data describing bug

fixes mined from the source code repository to improve static

analysis techniques used to find bugs. It is a two step approach

that uses the source code change history of a software project

to assist with refining the search for bugs.

The first step in the process is to identify the types of bugs that

are being fixed in the software. The goal is to review the

historical data stored for the software project, in order to gain

an understanding of what data exists and how useful it may be

in the task of bug findings. Many of the bugs found in the

CVS history are good candidates for being detected by statistic

analysis, NULL pointer checks and function return value

checks.

The second step is to build a bug detector driven by these

findings. The idea is to develop a function return value

checker based on the knowledge that a specific type of bug has

been fixed many times in the past. Briefly, this checker looks

for instances where the return value from a function is used in

the source code before being tested. Using a return value could

mean passing it as an argument to a function, using it as part

of calculation, dereferencing the value if it is a pointer or

overwriting the value before it is tested. Also, cases that return

values are never stored by the calling function are checked.

Testing a return value means that some control flow decision

relies on the value. The checker does a data flow analysis on

the variable holding the returned value only to the point of

determining if the value is used before being tested. It simply

Pooja Arora, IJECS Volume 3 Issue 6, June, 2014, Page No.6722-6725 Page 6725

identifies the original variable the returned value is stored into

and determines the next use of that variable. Moreover, the

checker categorizes the warnings it finds into one of the

following categories: – Warnings are flagged for return values

that are completely ignored or if the return value is stored but

never used. – Warnings are also flagged for return values that

are used in a calculation before being tested in a control flow

statement. Any return value passed as an argument to a

function before being tested is flagged, as well as any pointer

return value that is dereferenced without being tested

.However there are types of functions that lead the static

analysis procedure to produce false positive warnings. If there

is no previous knowledge, it is difficult to tell which function

does not need their return value checked. Mining techniques

for source code repository can assist with improving static

analysis results. Specifically, the data we mine from the source

code repository and from the current version of the software is

used to determine the actual usage pattern for each function. In

general terms, it has been observed that the bugs cataloged in

bug databases and those found by inspecting source code

change histories differ in type and level of abstraction.

Software repositories record all the bug fixed, from every step

in development process and thus they provide much useful

information. Therefore, a system for bug finding techniques is

proved to be more effective when it automatically mines data

from source code repositories.

4.3. Testing

The evaluation of software is based on tests that are designed

by software testers. Thus the evaluation of test outputs is

associated with a considerable effort by human testers who

often have imperfect knowledge of the requirements

specification. Data mining approaches can be used for

extracting useful information from the tested software which

can assist with the software testing. Specifically, the induced

data mining models of tested software can be used for

recovering missing and incomplete specifications, designing a

set of regression tests and evaluating the correctness of

software outputs when testing new releases of the system. A

regression test library should include a minimal number of

tests that cover all possible aspects of system functionality.

To ensure effective design of new regression test cases, one as

to recover the actual requirements of an existing system. Thus,

a tester has to analyze system specifications, perform

structural analysis of the system’s source code and observe the

results of system execution in order to define inputoutput

relationships in tested software.

5. CONCLUSION

This paper presents good understanding of existing
research on mining SE data. This discuss the
categorization of the existing research in this field into

three major perspectives: data sources being mined,
tasks being assisted, and mining techniques being used.

6. REFERENCES

[1] T. Xie, S. Thummalapenta, D. Lo, and C. Liu. Data ining

for software engineering. IEEE Computer, 42(8):35–42,

August 2009.

[2] C.C.Williams and J.K.Hollingsworth,Automatingmining of

source code repositories to improve bug finding techniques, IEEE

Transactions on Software Engineering 31(6) (2005), 466–480.
 [3] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S.

Zhang, and A. Michail. CVSSearch: Searching through source

code using CVS comments. In Proceedings of the 17th

Interna- tional Conference on Software Maintenance, pages

364–374, Florence, Italy, 2001.

[4] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical

coupling based on product release history. In Proceedings of

the 14th International Conference on Software Maintenance,

pages 190–198, Bethesda, Washington D.C., 1998.

[5] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy.

Predicting fault incidence using software change history. IEEE

Trans. Softw. Eng., 26(7):653–661, 2000.

[6] J. Huffman Hayes, A. Dekhtyar and J. Osborne, Improving

requirements tracing via information retrieval. In Proceedings of the

International Conference on Requirements Engineering, 2003.

[7] J. Huffman Hayes, A. Dekhtyar and S. Sundaram, Text mining

for software engineering: How analyst feedback impacts

final results. In Proceedings of International Workshop on Mining

Software Repositories (MSR), 2005.
[8] A. Mockus, D. M. Weiss, and P. Zhang. Understanding

and predicting effort in software projects. In Proceedings of

the 25th International Conference on Software Engineering,

pages 274–284, Portland, Oregon, 2003.
[9] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as

partial orders from source code: From usage scenarios to

specifications. In Proceedings of 6th joint meeting of the European

Software Engineering Conference and the ACMSIGSOFT Symposium

on the Foundations of Software Engineering (ESEC/FSE 2007),

pages 25–34, September 2007.

[10] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German,

and P. Devanbu. The promises and perils of mining git. In roceedings

of the 6th IEEE International Working Conference on Mining

Software Repositories (MSR 2009),pages 1–10, May 2009.
[11] D. German and A. Mockus, Automating the measurement

of open source projects. In Proceedings of the 3rd Workshop

on Open Source Software Engineering, 25th International

Conference on Software Engineering (ICSE03),2003.

[12] C. Jensen andW. Scacchi, Datamining for software

process discovery in open source software development

communities.In Proceedings of International Workshop on

Mining Software Repositories (MSR), 2004.

