

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 4 April, 2013 Page No. 1355-1360

Niraj Nake, IJECS Volume 2 Issue 4 April, 2013 Page No. 1355-1360 Page 1255

A Study of Fundamentals and Principles of Software Engineering Process

Niraj Nake
Department of Electronics and Telecommunication,
PRMCEAM ,Badnera-Amravati, Maharashtra, India

Email:nirajnake24@gmail.com

Abstract-Software engineering (SE) is the application of a systematic, disciplined, quantifiable approach to the design, development,
operation, and maintenance of software and the study of these approaches; that is, the application of engineering to software.
A software development process is concerned primarily with the production aspect of software development as opposed to the
technical aspect, such as software tools. These processes exist primarily for supporting the management of software development and
are generally skewed toward addressing business concerns. Many software development processes can be run in a similar way to
general project management processes. Software process is defined as a set of activities that leads to the production of a software
product. Although most of the softwares are custom built, the software engineering market is being gradually shifted towards
component based. There is no any ideal approach to a software process that has yet been developed. Some fundamental activities like
software specification, design, validation and maintenance are common to all the process activities.

Index Terms-Software Engineering, Discipline,
Strategy,Software Management, Software Development,
Development Models, Software Development Life Cycle,
Requirements Engineering, Quality Assurance.

I. INTRODUCTION

In today’s world system developers are faced to produce
complex, high quality software to support the demand for new
and revised computer applications. This challenge is complicated
by strict resource constraints, forcing management to deploy new
technologies, methods and procedures to manage this
increasingly complex environment. Often the methods,
procedures and technologies are not integrated. Therefore, they
achieve less than desired improvements in productivity or force
management to make trade off decisions between software
quality and developer efficiency. Thus the production lines have
to be developed faster, too. A very important role in this
development is Software Engineering because many production
processes are 'computer aided ', so software has to be designed
for this production system. It seems very important to do the
software engineering right and fast. So, it is necessary to
understand the fundamentals and the concepts of software

engineering. There are process models which provide a specific
way to develop the software. We need to focus on the constraints
or parameters which have a high impact on a quality of software.

II. SOFTWARE ENGINEERING

Over the years software developers have understood that
software development is not merely coding. It is something
which starts long before one actually starts programming and
continues even after the first version of the software is delivered.
Hence it consists
of number of activities in addition to programming. Software
engineering as a discipline provides methods of systematically
developing and maintaining that software. It can be simply stated
as strategy for producing quality software or the establishment
and use of sound engineering principles in order to obtain
economically software that is reliable and works efficiently on
real machines.
Software engineering can serve the purpose of acting like an
application of scientific principles to
(i) Systematic transformation of a problem into a working
software solution.

http://www.ijecs.in/�
http://en.wikipedia.org/wiki/Software�
http://en.wikipedia.org/wiki/Software_development_process�
http://en.wikipedia.org/wiki/Software_development�
http://en.wikipedia.org/wiki/Software_tools�

Niraj Nake, IJECS Volume 2 Issue 4 April, 2013 Page No. 1355-1360 Page 1256

(ii) The subsequent maintenance of that software after delivery
until the end of its life.
So, we can define software engineering as
(i) The application of a systematic, disciplined, quantifiable
approach to the development, operation and maintenance of
software i.e. the application of engineering to software.
(ii) A discipline which provides tools and techniques for
developing the software in an orderly fashion.
The advantages of using software engineering for developing
software are:

• Improved quality
• Improved requirement specification
• Improved cost and schedule estimates
• Better use of automated tools and techniques
• Less defects in final product
• Better maintenance of delivered software
• Well defined processes
• Improved productivity
• Improved reliability

III. FUNDAMENTALS

3.1 Software Development Life Cycle (SDLC)

The duration of time that begins with conceptualization of
software being developed and ends after system is discarded after
its usage, is denoted by Software Development Life Cycle
(SDLC). The steps present in this cycle are shown in figure 1.

Figure 1: Steps in SDLC

3.1.1 Requirements analysis: This phase focuses on
understanding the problem domain and representing the
requirements in a form which are understandable by all the
stakeholders of the project i.e. analyst, user, programmer, tester
etc. The output of this stage is a document called Requirements

Specification Document (RSD) or Software Requirements
Specification (SRS). All the successive stages of software life
cycle are dependent on this stage as SRS produced here is used in
all the other stages of the software lifecycle.

3.1.2 System design: This phase translates the SRS into the
design document which depicts the overall modular structure of
the program and the interaction between these modules. This
phase focuses on the high level design and low level design of
the software. High level design describes the main components
of software and their externals and internals. Low level design
focuses on transforming the high level design into a more
detailed level in terms of an algorithms used, data structures used
etc.

3.1.3 Implementation: This phase transforms the low level
design part of software design description into a working
software product by writing the code.

3.1.4 Testing phase: This phase is responsible for testing the
code written during implementation phase. This phase can be
broadly divided into unit testing (tests individual modules),
integration testing (tests groups of interrelated modules) and
system testing (testing of system as a whole). Unit testing
verifies the code against the component’s high level and low
level design. It also ensures that all the statements in the code are
executed at least once and branches are executed in all directions.
Additionally it also checks the correctness of the logic.
Integration testing tests the intermodular interfaces and ensures
that the module drivers are functionally complete and are of
acceptable quality. System testing validates the product and
verifies that the final product is ready to be delivered to the
customers. Additionally several tests like volume tests, stress
tests, performance tests etc., are also done at the system testing
level.

3.1.5 Deployment of System: This phase makes the system
operational through installation of system and also focuses on
training of user.

3.1.6 Maintenance: This phase resolves the software errors,
failures etc and enhances the requirements if required and
modifies the functionality to meet the customer demands. This is
something which continues throughout the use of product by the
customer.

3.2 Software Process Models

A software process model is a simplified description of a
software process which is presented from a particular
perspective. Models, by their very nature, are simplifications so a
software process model is an abstraction of the actual
process which is being described. Process models may include
activities which are part of software process, software products
and the roles of people involved in software engineering. Some

Niraj Nake, IJECS Volume 2 Issue 4 April, 2013 Page No. 1355-1360 Page 1257

examples of the types of software process model which may
be produced are:

1. A workflow model: This shows the sequence of activities in
the process along with their inputs, outputs and dependencies.
The activities in this model represent human actions.

2. A dataflow or activity model: This represents the process as
a set of activities each of which carries out some data
transformation. It shows how the input to the process such as a
specification is transformed to an output such as a design. The
activities here may be at a lower-level than activities in
a workflow model. They may represent transformations carried
out by people or by computers.

3. A role/action model: This represents the roles of the people
involved in the software process and the activities for which they
are responsible.

4. Iterative Processes: This prescribes the construction of
initially small but ever larger portions of a software project to
help all those involved to uncover important issues early before
problems or faulty assumptions can lead to disaster. Iterative
processes are preferred by commercial developers because it
allows a potential of reaching the design goals of a customer who
does not know how to define what they want.

5. Capability Maturity Model Integration (CMMI): This is
one of the leading models and based on best practice.
Independent assessments grade organizations on how well they
follow their defined processes, not on the quality of those
processes or the software produced. There are a number of
different general models or paradigms of software development:
1. The waterfall approach: This takes the above activities and
represents them as separate process phases such as requirements
specification, software design, implementation, testing and so on.
After each stage is defined it is 'signed off' and development goes
on to the following stage.

2. Evolutionary development: This approach interleaves the
activities of specification, development and validation. An initial
system is rapidly developed from very abstract specifications.
This is then refined with customer input to produce a system
which satisfies the customer's needs. The system may then be
delivered. Alternatively, it may be re-implemented using a more
structured approach to produce a more robust and
maintainable system.

3. Formal transformation: This approach is based on producing
a formal mathematical system specification and transforming this
specification, using mathematical methods to a program. These

transformations are 'correctness preserving'. This means that we
can be sure that the developed program meets its specification.

4. System assembly from reusable components: This technique
assumes that parts of the system already exist. The system
development process focuses on integrating these parts rather
than developing them from scratch.

3.3 Software Quality Assurance

It is defined as the Conformance to explicitly state functional and
performance requirements, explicitly documented development
standards, and implicit characteristics that are expected of all
professionally developed software. This definition serves to
emphasize following important points:

• Software requirements are the foundation from which
quality is measured. Lack of conformance to
requirements is lack of quality.

• Specified standards define a set of development criteria,
if the criteria are not followed, lack of quality will
almost surely result.

• A set of implicit requirements often goes unmentioned.
If software conforms to its explicit requirements but
fails to meet implicit requirements, software quality is
suspect

Software quality can be affected by means of the characteristics
which are shown in figure 2.

• Functionality: It is assessed by evaluating the feature

set and capabilities of the program. Functions that are
delivered and security of the overall system.

• Usability: It is assessed by considering human factors,
consistency & documentation.

• Reliability: It is evaluated by measuring the frequency
and severity of failure, by finding accuracy of output
results and by checking the ability to recover from
failure and predictability of the program.

Figure 2: Characteristics of Software Quality

Niraj Nake, IJECS Volume 2 Issue 4 April, 2013 Page No. 1355-1360 Page 1258

• Performance: It is measured by processing speed,

response time, resource consumption, efficiency.

• Efficiency: It is especially important for applications in
high execution speed environments such as algorithmic
or transactional processing where performance and
scalability are paramount.

• Scalability: It is the ability of the software to handle
growing amount of work. For example, in web
applications this is generally related to the increasing
amount of web users or visitors. Alternatively this can
be caused by an increasing amount of data. At some
point one of the resources reaches hardware limits
which are called a bottleneck. In reality, very often limit
is reached because software is not using resources
efficiently. Systems designed in a better way would not
demand so much resource and would have an improved
overall performance.

• Extensibility: It is the ability of a software system to
allow and accept significant extension of its capabilities,
without major rewriting of code or changes in its
basic architecture.In software
engineering, extensibility is a system design principle
where the implementation takes into consideration
future growth. It is a systemic measure of the ability to
extend a system and the level of effort required to
implement the extension. Extensions can be through the
addition of new functionality or through modification of
existing functionality.

• Security: It is a measure of the likelihood of potential

security breaches due to poor coding practices and
architecture. This quantifies the risk of encountering
critical vulnerabilities that damage the business.

• Maintainability: It is the most costly phase of the
software life cycle. Maintenance of the software
configuration nearly always means maintenance of the
procedural design representation.

3.4 Software Project Management
It is the art or mechanism of planning and leading software
projects. It is a sub-discipline of project management in
which software projects are planned, implemented, monitored
and controlled. We need to consider all the following
management stages while managing a software project.

1. Risk management: It is the process of measuring
or assessing risk and then developing strategies to

manage the risk. In general, the strategies employed
include transferring the risk to another party, avoiding
the risk, reducing the negative effect of the risk, and
accepting some or all of the consequences of a
particular risk. Risk management in software project
management begins with the business case for starting
the project, which includes a cost-benefit analysis as
well as a list of fallback options for project failure,
called a contingency plan.

2. Requirements management: It is the process of
identifying, eliciting, documenting, analyzing, tracing,
prioritizing and agreeing on requirements and then
controlling the change and communicating to relevant
stakeholders. Requirements management, which
includes Requirements analysis, is an important part of
the software engineering process; whereby business
analysts or software developers identify the needs or
requirements of a client; having identified these
requirements they are then in a position to design a
solution.

3. Change management: It is the process of identifying,
documenting, analyzing, prioritizing and agreeing on
changes to a scope of a project and then controlling
changes and communicating to relevant
stakeholders. Change impact analysis of a new or
altered scope, which includes Requirements analysis at
the change level, is an important part of the software
engineering process; whereby business analysts
or software developers identify the altered needs or
requirements of a client; having identified these
requirements they are then in a position to re-design or
modify a solution. Theoretically, each change can
impact the timeline and budget of a software project,
and therefore by definition must include risk-benefit
analysis before approval.

4. Release management: It is the process of identifying,
documenting, prioritizing and agreeing on releases of
software and then controlling the release schedule and
communicating to relevant stakeholders. Most software
projects have access to three software environments to
which software can be released; Development, Test, and
Production. In very large projects, where distributed
teams need to integrate their work before releasing to
users, there will often be more environments for testing,
called unit testing, system testing, or integration testing,
before release to User acceptance testing (UAT).

IV. PRINCIPLES

http://en.wikipedia.org/wiki/Requirements_management�
http://en.wikipedia.org/wiki/Requirements_elicitation�
http://en.wikipedia.org/wiki/Requirements_traceability�
http://en.wikipedia.org/wiki/Requirements_analysis�
http://en.wikipedia.org/wiki/Software_engineering�
http://en.wikipedia.org/wiki/Software_developers�
http://en.wikipedia.org/wiki/Change_management�
http://en.wikipedia.org/wiki/Change_impact_analysis�
http://en.wikipedia.org/wiki/Requirements_analysis�
http://en.wikipedia.org/wiki/Software_engineering�
http://en.wikipedia.org/wiki/Software_engineering�
http://en.wikipedia.org/wiki/Software_engineering�
http://en.wikipedia.org/wiki/Software_developers�
http://en.wikipedia.org/wiki/Risk-benefit_analysis�
http://en.wikipedia.org/wiki/Risk-benefit_analysis�
http://en.wikipedia.org/wiki/Release_management�
http://en.wikipedia.org/wiki/Unit_testing�
http://en.wikipedia.org/wiki/System_testing�
http://en.wikipedia.org/wiki/Integration_testing�
http://en.wikipedia.org/wiki/User_acceptance_testing�

Niraj Nake, IJECS Volume 2 Issue 4 April, 2013 Page No. 1355-1360 Page 1259

4.1 Modularity
Following the principle of modularity implies separating
software into components according to functionality and
responsibility. In other words, Software is divided into separately
named and addressable components, sometimes called modules,
which are integrated to satisfy problem requirement. Modularity
is the single attribute of software that allows a program to be
intellectually manageable. It leads to a “divide and conquer”
strategy. It is easier to solve a complex problem. Referring figure
3, we can state that effort (cost) to develop an individual software
module does decrease if total number of modules increase.
However as the no. of modules grows, the effort (cost) associated
with integrating the modules also grows.

Figure 3: Effort (cost) Vs Number of modules

4.2 Abstraction
Following the principle of abstraction implies separating the
behaviour of software components from their implementation. It
requires learning to look at software and software components
from two points of view: what it does, and how it does it. Failure
to separate behaviour from implementation is a common cause of
unnecessary coupling. For example, it is common in recursive
algorithms to introduce extra parameters to make the recursion
work. When this is done, the recursion should be called through a
non-recursive shell that provides the proper initial values for the
extra parameters. Otherwise, the caller must deal with a more
complex behaviour that requires specifying the extra parameters.
If the implementation is later converted to a non-recursive
algorithm then the client code will also need to be changed.

4.3 Anticipation of Change
Computer software is an automated solution to a problem. The
problem arises in some context or domain that is familiar to the
users of the software. The domain defines the types of data that
the users need to work with and relationships between the types
of data. Software developers, on the other hand, are familiar with
a technology that deals with data in an abstract way. They deal
with structures and algorithms without regard for the meaning or
importance of the data that is involved. A software developer can
think in terms of graphs and graph algorithms without attaching
concrete meaning to vertices and edges. Working out an
automated solution to a problem is thus a learning experience for

both software developers and their clients. Software developers
are learning the domain that the clients work in. They are also
learning the values of the client: what form of data presentation
is most useful to the client, what kinds of data are crucial and
require special protective measures. If the problem to be solved
is complex then it is not reasonable to assume that the best
solution will be worked out in a short period of time. The clients
do, however, want a timely solution. In most cases, they are not
willing to wait until the perfect solution is worked out. They
want a reasonable solution soon; perfection can come later. To
develop a timely solution, software developers need to know the
requirements: how the software should behave. The principle of
anticipation of change recognizes the complexity of the learning
process for both software developers and their clients.
Preliminary requirements need to be worked out early, but it
should be possible to make changes in the requirements as
learning progresses. Coupling is a major obstacle to change. If
two components are strongly coupled then it is likely that
changing one will not work without changing the other.
Cohesiveness has a positive effect on ease of change. Cohesive
components are easier to reuse when requirements change. If a
component has several tasks rolled up into one package, it is
likely that it will need to be split up when changes are made.

4.4 Generality
The principle of generality is closely related to the principle of
anticipation of change. It is important in designing software that
is free from unnatural restrictions and limitations. For example
where the principle of generality applies, consider a customer
who is converting business practices into automated software.
They are often trying to satisfy general needs, but they
understand and present their needs in terms of their current
practices. As they become more familiar with the possibilities of
automated solutions, they begin seeing what they need, rather
than what they are currently doing to satisfy those needs. This
distinction is similar to the distinction in the principle of
abstraction, but its effects are felt earlier in the software
development process.

4.5 Incremental Development
In this process, we build the software in small increments; for
example, adding one use case at a time. This process simplifies
verification. If we develop software by adding small increments
of functionality then, for verification, we only need to deal with
the added portion. If there are any errors detected then they are
already partly isolated so they are much easier to correct. A
carefully planned incremental development process can also ease
the handling of changes in requirements. To do this, the planning
must identify use cases that are most likely to be changed and put
them towards the end of the development process.

4.6 Consistency
The principle of consistency is recognition of the fact that it is
easy to do things in a familiar context. For example, coding style
is a consistent manner of laying out code text. This serves two

Niraj Nake, IJECS Volume 2 Issue 4 April, 2013 Page No. 1355-1360 Page 1260

purposes. First, it makes reading the code easier. Second, it
allows programmers to automate part of the skills required in
code entry, freeing the programmer's mind to deal with more
important issues. At a higher level, consistency involves the
development of idioms for dealing with common programming
problems. Consistency serves two purposes in designing
graphical user interfaces. First, a consistent look and feel makes
it easier for users to learn to use software. Once the basic
elements of dealing with an interface are learned, they do not
have to be relearned for a different software application. Second,
a consistent user interface promotes reuse of the interface
components. Graphical user interface systems have a collection
of frames, planes, and other view components that support the
common look. They also have a collection of controllers for
responding to user input, supporting the common feel. Often,
both look and feel are combined, as in pop-up menus and
buttons. These components can be used by any program.

V. CONCLUSION

In this paper, we talked about the principles and the concepts to
be considered which developing a software. The obvious
presence of software in every corner of the society and the ever-
growing demands for high quality and secure software indicate
the needs of Software Engineering as a discipline. We saw that
there are many existing models for developing systems for
different sizes of projects and requirements. Each model has
advantages and disadvantages for the development of systems, so
each model tries to eliminate the disadvantages of the previous
model. Hopefully this study may stimulate the software
engineering community as a whole so that we, software
engineering professionals, will be able to flesh out our visions as
to where we are heading from here and what we are going to do
in terms of making improvement to our products in-the-small and
to our civilization in-the-large.

REFERENCE
S

[1] Binghui Helen Wu. On Software Engineering and Software Methodologies
A Software Developer’s Perspective.

[2] Mary Shaw. What Makes Good Research in Software Engineering?
http://www.cs.cmu.edu/~shaw/

[3] Don Gotterbarn. Reducing Software Failures: Addressing the Ethical Risks of
the Software Development Lifecycle, Australian Journal of Information Systems

[4] Hany H Ammar, Walid Abdelmoez, and Mohamed Salah Hamdi.Software
Engineering Using Artificial Intelligence Techniques: Current State and Open
Problems

[5]Rainer Koschke. Software visualization in software maintenance, reverse
engineering, and re-engineering:a research survey.Journal Of Software
Maintenance And Evolution: Research And Practice J. Softw. Maint. Evol.: Res.
Pract. 2003; 15:87–109 (DOI: 10.1002/smr.270)

[6] Nishant Dubey. A Paper Presentation On Software Development Automation
By Computer Aided Software Engineering (CASE). IJCSI International Journal

of Computer Science Issues, Vol. 8, Issue 1, January 2011 ISSN (Online): 1694-
0814. www.IJCSI.org

[7] Nabil Mohammed Ali Munassar1 and A. Govardhan. A Comparison Between
Five Models Of Software Engineering. IJCSI International Journal of Computer
Science Issues, Vol. 7, Issue 5, September 2010. ISSN (Online): 1694-0814
www.IJCSI.org

[8] Anthony Finkelstein , Jeff Kramer. Software Engineering: A Roadmap.

[9] Josh Dehlinger and Jeremy Dixon . Mobile Application Software
Engineering: Challenges and Research Directions

http://www.cs.cmu.edu/~shaw/�
http://www.ijcsi.org/�
http://www.ijcsi.org/�

	4.1 Modularity
	4.2 Abstraction
	4.3 Anticipation of Change
	4.4 Generality
	4.5 Incremental Development
	4.6 Consistency

