
www.ijecs.in

 International Journal Of Engineering And Computer Science ISSN:2319-7242

 Volume – 5 Issue -03 March, 2016 Page No. 16050-16057

Ajay Kumar, IJECS Volume 05 Issue 3 March 2016 Page No.16050-16057 Page 16050

File Encryption System Based on Symmetric Key Cryptography

Ajay Kumar, Ankit Kumar
Department of Computer Science

Shivaji College, University of Delhi, Delhi, India
ajay.cs@shivaji.du.ac.in

Department of Computer Science

Shivaji College, University of Delhi, Delhi, India
ankit491995@gmail.com

Abstract—In Today’s scenario, files are not secure. They are fetch by any means of attack by eavesdropper like cracking the pins,

crashing the OS by viruses, malwares, and plenty of ways. We today can’t sure that files protection wizards are secure and data can’t

be reached to the attacker. But if files are encrypted then even files are accessed original data remains confidential. Therefore, this

paper represents the File Encryption System based on Symmetric Key Cryptography. I proposed the strategy to encrypt the files/even

multiple files can be encrypted by compressing the files into one ‘rar’ file and it uses Blowfish as encryption/decryption standard and

Cipher Block Chain Mode to perform the operations. I implemented compression function for 64-bit Initialization Vector(IV), use

CBC mode with Blowfish and RC4 for 256-bit keystream. It is more efficient and secure then other general encryption process.

Keywords—Blowfish, RC4, SHA1, CBC, Plaintext, Ciphertext,

Feistel, eavesdropper, IV

I. INTRODUCTION

Today, files are stored in a digitalized manner by scanning its

content and making it secure in person’s computer or in other

storage devices. But those files can be accessed by theft by any

means and the confidential and private data can be explored by

the theft. So, in order to make the data more confidential, it is

best to encrypt the files and store them in your storage devices,

as those files data are useless for the theft even extracted. Only

the user having that encrypted file key can decrypt the file and

can explore the original content of the file. Original data

remains original and even the attacker tries to decrypt the

encrypted file, but without its key it is useless, and decryption

of file can’t be done.

In the File Encryption System, there are four phases – [1] Key

Generation, [2] Initialization Vector (IV) generation, [3]

Blowfish Encryption Algorithm [4] Cipher Block Chain Mode.

In Key Generation, first random seed is generated by the

mouse cursor position, process ID and system current time to

have a 32-bit key and it is passed as an input for the RC4

(Rivest Cipher 4). The RC4 is a stream cipher, that generates

key-stream of 256-bit key. Then, the 256-bit key is provided as

an input to the SHA-1 (Secure Hash Algorithm 1) which

generates an infeasible 160-bit message digest. The value

evaluated is being compressed by a compressed function to

bind 160-bit message digest into 64-bit Initialization vector

(IV) generation. After the 64-bit IV and 256-bit random key

produced, Blowfish Algorithm is placed in Cipher Block Chain

(CBC) Mode. Then the IV generated is XORed with the 64-bit

block of Plaintext (source file data in bit blocks for generating

cipher block) and the value evaluated is passed as a Plaintext to

the Blowfish Algorithm. After Algorithm finished its process,

it generates 64-bit cipher text (target encrypted file data in bit

Algorith

m

Develop

ed By

Key

Size

(in

bits)

Numb

er

of

Round

s

Mathemati

cal

Operations

Application

s

Bloc

k

Size

DES 56 16
XOR, fixed

Sboxes

SET,

Kerberos

64

Triple

DES

Tuchma

n

112 or

168

48 XOR, fixed

Sboxes

Financial

key

manageme

nt, PGP,

S/MIME

64

IDEA Xuejia

Lai and

James

Massey

128 8 XOR,

addition,

multiplicati

on

PGP

Blowfis

h

Bruce

Schneir

variabl

e to

448

16 XOR,

variable S-

boxes,

addition

 64

RC5 Ron

Rivest

variabl

e to

2048

Variab

le to

255

Addition,

subtraction

, XOR,

rotation

CAST-

128

Carlisle

Adamsa

n

Stafford

Tavares

40 to

128

16 Addition,

subtractio

n, XOR,

rotation,

fixed S-

boxes

PGP

AES Dr.

Joan

Daeme

n and

Dr.

Vincent

Rijmen

128,

192,

256

10 Substitutio

n,

Shift Row,
Mix
Column,
Add round

key

 128

Table I

http://www.ijecs.in/

DOI: 10.18535/ijecs/v5i3.35

Ajay Kumar, IJECS Volume 05 Issue 3 March 2016 Page No.16050-16057 Page 16051

blocks) and the chain repeat itself by replacing IV with cipher

text evaluated in previous iteration till all blocks are processed.

The Encryption Algorithm used is a Block Cipher Algorithm

where data is processed in block of bits. It follows Feistel

Cipher structure where Plaintext bits are divided into two equal

halves and there are rounds to be followed in which

permutation of bits by Substitution, XOR, addition,

multiplication etc. are performed with keys of different length

as shown in Table I.

In the Application Interface, user can login/register himself and

after providing login details he can use Encryption/Decryption

of the file.

Key points for the interface to be used are as follows: -

1. User need to secure its secret key by moving the key at

secure place from the File Encryption System Folder after

encryption is done

2. File Encryption System Folder have the files used by the

Application interface need to be copied at D drive due to the

operating system protection to the C: Drive where amendment

of files is denied for the third party Software

3. Just encrypt your file and go to the File Encryption Folder

then move the key and save it in the secure place if want to

decrypt your file then copy your key to the File

Encryption Folder with the name as Secret_key and do

Decryption

II. BLOWFISH ALGORITHM

Bruce Schneier designed blowfish in 1993 . As a fast, free

alternative to existing encryption algorithms. Since then it has

been analyzed considerably, and it is slowly gaining

acceptance as a strong encryption algorithm. Blowfish is a

secret-key block cipher algorithm, unlike Rajendial, it is still

based on Feistel model. Taking the weakness of the existing

encryption algorithm into consideration, blowfish has good

resistance to differential attack. The algorithm has the

following properties: (1) fast, using 32bit microprocessor,

encrypt 1Byte data just take 18 clock cycles; (2) compact, easy

to implement and determine the strength of algorithm; (3)

variable security level, a variable key length of at most 448

bits, which makes the user can trade-off between security and

speed. With high speed and reliable security standard, blowfish

has a good performance on the file-encryption application. The

algorithm consists mainly of two parts: the key-expansion part

and the data-encryption part.

It is a 16-round Feistel cipher and uses large key-dependent

S-boxes. In structure it resembles CAST-128, which uses

fixed S-boxes.

In this Figure 1 64-bit plaintext divided into 32-bits. The

algorithm keeps two subkeys arrays: the 18-entry P-array

and four 256-entry Substitution boxes. The S-boxes accept

8-bit input and produce 32-bit output. One entry of the P-

array is used in every round, and after the final round, each

half of the data block is XORed with one of the two

remaining unused P entries.

The Figure 2 shows Blowfish’s Feistel-function. The

function splits the 32-bit input into four eight bit quarters,

and uses 8-bits as input to the S-boxes. The outputs are

added modulo 2
32

 and XORed to produce the final 32-bit

output.

 (A) Blowfish Implementation

 1) Blowfish Initialization

 Blowfish’s key schedule starts by: -

 The P-array and S-boxes are initialized with the

hexadecimal digits of π which are non-repeating and

non-recurring.

 The secret key is byte by byte, cycling the key

XORed with all the P-entries in order. A 64-bit all

zero-block is then encrypted with the algorithm.

 The ciphertext evaluated replaces P1 and P2. The

ciphertext is then encrypted again with new subkeys

and new ciphertext replaces P3 and P4. This

continues, replaces all the entire P-array and the

Substitution box entries.

 The Algorithm will run 521 times to generate all the

subkeys and about 4KB of data is processed.

 As the P-array is 576 bits long (32 x 18), and the key

bytes are XORed through all these 576 bits during

initialization, many implementation support key sizes

upto 576 bits.

 The 448 bits’ limit is present to ensure that every bit

of every subkey depends on every bit of the key, as

P-array last four values doesn’t affect every bit of the

ciphertext.

for i = 1 to 18

Pi = Pi ⊕ Ki mod keylength

Endfor

XL =0 and XR = 0

for i = 1 to 18

encrypt(XL,XR)

DOI: 10.18535/ijecs/v5i3.35

Ajay Kumar, IJECS Volume 05 Issue 3 March 2016 Page No.16050-16057 Page 16052

Pi = XL Pi+1 = XR

Endfor

for i = 1 to 4

for j = 1 to 256

encrypt(XL,XR)

Si, j = XL Si, j+1 = XR

Endfor

Endfor

2) Feistel Function

f(x: 32 bit integer unsigned value)

h: unsigned integer value

h = S[0][x >> 24] + S[1][x >> 16 & 0xff]

return (h ⊕ S[2][x >> 8 & 0xff]) + S[3][x & 0xff]

3) Blowfish Encryption/Decryption

At Encryption

for i = 1 to 16

XL = XL ⊕ Pi

XR = XR ⊕ f(XL)

XR = XR ⊕ Pi+1

XL = XL ⊕ f (XR)

Endfor

XL = XL ⊕ P17

XR = XR ⊕ P18

Swap(XL, XR)

In Decryption, P1, P2, ……, P18 are used in the

reverse order. Then on following reverse order of P-

entries, it follows the same operation as follows in

Encryption process.

DOI: 10.18535/ijecs/v5i3.35

Ajay Kumar, IJECS Volume 05 Issue 3 March 2016 Page No.16050-16057 Page 16053

III. FILE ENCRYPTION SYSTEM DESIGN

 (A) Random Seed (32 bit)

System Current time, processor id and current mouse

cursor position are XORed and input to the srand()

function and 32-bit random seed is generated.

This seed is passed as a plaintext to the RC4.

(B) RC4 Implementation

1) Key-scheduling algorithm (KSA)

The KSA is used to initialize the permutation in the

array “S”-”keylength” is defined as the number of

bytes in the key and can be in the range [1,256]. [1]

The array “S” is initialized to the identity

permutation. S is then processed for 256 iterations in

a similar way to the main PRGA.

For i from 0 to 255

S[i] : = i

endfor

j : = 0

for i from 0 to 255

 j : = (j+S[i] + key[i mod keylength]) mod

256

swap values of S[i] and S[j]

endfor

Refer Fig 4 for more details

2) Pseudo-random generation algorithm (PRGA)

The Algorithm modifies the state and outputs a byte of the

keystream. In each iteration, (1) the PRGA increments i, looks

up the ith element of S, S[i], (2) adds that to j, exchanges the

values of S[i] and S[j], (3) uses the sum of S[i] + S[j] (modulo

256) as an index to fetch a third element of S, (the keystream

value K below) which is XORed with the next byte of either

ciphertext or plaintext. (4) Each element of S is swapped with

another element at least once every 256 iterations.

i : = 0

j : = 0

while GeneratingOutput:

i : = (i +1) mod 256

j : = (j + S[i]) mod 256

Swap values of S[i] and S[j]

k : = S[(S[i]+S[j]) mod 256]

Output k

Endwhile

(C) Secure Hash Algorithm (SHA1)

Implementation

First, the message is padded so that it is a multiple of 512

bits long. It is done as: first append a 1, then as many 0’s as

Figure 3 System Structure

DOI: 10.18535/ijecs/v5i3.35

Ajay Kumar, IJECS Volume 05 Issue 3 March 2016 Page No.16050-16057 Page 16054

necessary to make it 64 bits short of a multiple of 512, and

finally a 64-bit representation of the length of the message

before padding as shown in figure 5.

Five 32-bit variables are initializing as follows:

A = 67 45 23 01 B = EF CD AB 89

C = 98 BA DC FE

D = C3 D2 E1 F0

The main loop of the algorithm then begins. It processes the

message 512 bits at a time and continues as many 512-bit

block as are in the message First the five variables are copied

into different variables: A as AA, B as BB, C as CC, D as

DD, and E as EE.

The main loop has four rounds of 20 operations each. Each

operations performs a nonlinear operation on three of A, B,

C, and D and then does shifting and adding. SHA’s set of

nonlinear function is:

Ft(X,Y,Z) = XY OR (NOT X)Z, for the first 20

operations.

Ft(X,Y,Z) = X XOR Y XOR Z, for the second 20

operations.

Ft(X,Y,Z) = XY OR XZ OR YZ, for the third 20

operations.

Ft(X,Y,Z) = X XOR Y XOR Z, for the fourth 20

operations.

There are also four constants used in the algorithm:

Kt = 5A827999, for the first 20 operations.

Kt = 6ED9EBA1, for the second 20 operations.

Kt = 8F1BBCDC, for the third 20 operations.

Kt = CA62C1D1, for the fourth 20 operations.

The message block is transformed from sixteen 32-bit

words (M0 to M15) to eighty 32-bit words (W0 to W79)

using the following algorithms:

Wt = Mt, for t =0 to 15

Wt = Wt-3 XOR Wt-8 XOR Wt-14 XOR Wt-16, for t =16

to 79

If t is the operation number (from 1 to 80), Mj

represents the j
th

 sub-block of the message (from 0 to

15) and <<<s represents a left shift’s bits, then the 80

operations look like:

TEMP = (A <<< 5) + Ft(B,C,D) + E + Wt + Kt

 E = D

 D = C

 C = (B <<< 30)

 B = A

 A = TEMP

After all of this, A, B, C, D and E are added to AA, BB, CC,

DD, and EE, respectively, and the algorithm continues with

the next block of data. The final output is the concatenation of

A, B, C, D, and E as shown in figure 6.

(D) Compression Function

160-bit message digest from SHA-1 is divided into two equal

80-bits data in increasing order of bit storage and these x1 and

DOI: 10.18535/ijecs/v5i3.35

Ajay Kumar, IJECS Volume 05 Issue 3 March 2016 Page No.16050-16057 Page 16055

x2 are XORed and data bits stores in x1. Then 64-bit data is

being write to the IV from x1.

(E) Cipher Block Chain Mode (CBC)

Implementation

In the cipher block chaining (CBC) mode, the input to the

encryption algorithm is the XOR of the current plaintext block

and the preceding ciphertext block. In effect, we have chained

together the processing of the sequence of plaintext blocks.

The input to the encryption function for each plaintext block

bears no fixed relationship to the plaintext block.

For decryption, each cipher block is passed through the

decryption algorithm. The result is XORed with preceding

ciphertext block to produce the plaintext block. To see that this

works, we can write

 Cj = E(K, |Cj-1 ⊕ Pj|)

where E[K,X] is the encryption of the plaintext X using key K,

and ⊕ is the exclusive OR operation. Then

D(K,Cj) = D(K,E(K, |Cj-1 ⊕ Pj|)

D (K,Cj) = Cj-1 ⊕ Pj

Cj-1 ⊕ D (K,Cj) = Cj-1 ⊕ Cj-1 ⊕ Pj = Pj

Initialization Vector must be known to authentic user. For

optimal security, the IV should be protected as well as the key.

The reason for protecting the IV is as follows: If an opponent

is able to recover into using a different value for IV, then the

attacker is able to modifies the selected bits in the first block

of plaintext. To see this, consider the following:

C1 = E(K, |IV ⊕ P1|)

P1 = IV ⊕ D(K, C1)

Now use the notation that X[j] denotes the jth bit of the bit

quantity X. Then

P1[i] = IV[i] ⊕ D(K, C1)[i]

Then, using the properties of XOR, we can

state

P1[i]’ = IV[i]’ ⊕ D(K, C1)[i]

The prime notation signifies bit complementation. This means

that if an attacker can predictably modify bits in IV, the bits of

the received value of P1 can be changed.

The process of CBC is showed in Figure 7

IV. TECHNIQUE/METHOD DEVELOPED

The Cipher Block Chain Mode Technique makes the

Blowfish Algorithm more secured and Initialization

vector (IV) in CBC mode acts as a secondary key to

cipher text for its decryption and it is independent of

the plaintext.

This increases the complexity of Blowfish Algorithm

and makes our file more secure and less efficient for

attacks.

Message digest generated by SHA1 make it infeasible

to get the IV and the compression function to convert

160-bit message digest value into 64-bit IV hides the

nature of the generated Initialization vector.

V. RESULT

Figure 7

Result IMG 1.

DOI: 10.18535/ijecs/v5i3.35

Ajay Kumar, IJECS Volume 05 Issue 3 March 2016 Page No.16050-16057 Page 16056

DATA Encryption

Time taken

(in seconds)

Decryption

Time Taken

(in seconds)

115 KB 0.63 s 0.65 s

1.04 MB 1.27 s 1.70 s

101 MB 98.42 s 103.75 s

Done in: - Intel i7 4710 HQ at 2.5 GHz

VI. CONCLUSION

The file remains secure till the attacker didn’t get the key

to decrypt it and the IV information which is appended at

the first in the processing of File Encryption/Decryption.

Even attacker fetches the algorithm but without the key

and IV information, algorithm can’t do nothing.

So, the key and IV must be secure enough to any means

of attack by the attacker.

This File Encryption Standard can be used with multiple

files encryption/decryption by collecting all files in a

compressed format for example in rar, zip, iso etc.

Result IMG 2.

Result IMG 3.

Result IMG 4.

DOI: 10.18535/ijecs/v5i3.35

Ajay Kumar, IJECS Volume 05 Issue 3 March 2016 Page No.16050-16057 Page 16057

Limitation:

For word documents, files corrupt, but can be recover by

Document recovery dialog.

Key and IV must be secured by the authentic user

VII. FUTURE SCOPE

This application can be further deduced by implementing

a key management system in order to make keys and

Initialization vector secured enough so that files cannot

be accessed by any means.

This can be implemented for external storage devices

(like Flash Drives) as well as internal storage devices to

get security by having protection mode with the device to

open, share and view files in protected mode and in this

way read and write of encrypted files are useless.

Also data sharing got secured in unsecure network

channels and it makes the user to easily share important

files and maintaining data integrity.

VIII. REFERENCES

[1] Applied Cryptography by Bruce Schneier

[2] Practical Cryptography by Neils Ferguson, Bruce

Schneier

[3] Network Security Essentials: Applications and

Standards by William Starlings

[4] Cryptography and Network Security- Principles and

Practice, Fifth Edition by William Starlings

[5] Fundamentals of Cryptology by Henk C.A van

Tilborg

[6] Cryptanalytic Attacks on Pseudorandom Number

Generators by John Kelsey, Bruce Schneier, David

Wagner, Chris Hall

[7] Implementing the RC4 Algorithm by Brian Whitley

[8] Yarrow-160: Notes on the Design and Analysis of the

Yarrow Cryptographic Pseudo Number

 [9] Generator by John Kelsey, Bruce Schneier and

 Niels F

