
www.ijecs.in

 International Journal Of Engineering And Computer Science ISSN:2319-7242

 Volume – 5 Issue -03 March, 2016 Page No. 16038-16040

Ajay Kumar, IJECS Volume 05 Issue 3 March 2016 Page No.16038-16040 Page 16038

Advance Dynamic Malware Analysis Using Api Hooking
Ajay Kumar , Shubham Goyal

Department of computer science

Shivaji College, University of Delhi, Delhi, India
ajay.cs@shivaji.du.ac.in imshubhamgoyal@gmail.com



Abstract— As in real world, in virtual world also there are

people who want to take advantage of you by exploiting you

whether it would be your money, your status or your personal

information etc. MALWARE helps these people

accomplishing their goals. The security of modern computer

systems depends on the ability by the users to keep software,

OS and antivirus products up-to-date. To protect legitimate

users from these threats, I made a tool

(ADVANCE DYNAMIC MALWARE ANAYSIS USING API

HOOKING) that will inform you about every task that

software (malware) is doing over your machine at run-time

Index Terms— API Hooking, Hooking, DLL injection, Detour

I. INTRODUCTION

Malwares are most commonly used in security breach and

plays an important part in security incidents. Malware Analysis

is an art used to dissect any malware to understand how it

works, how to identify it and how to eliminate it. Sometimes

we are provided with only malware executable, which won’t be

human-readable. In order to make sense of it, Malware Analyst

has to use a variety of tools and tricks, each revealing a small

amount of information.

II. OBJECTIVE

My aim is to perform malware analysis on any windows

based software during runtime. Many of the programmers use

API calls to access system resources like files, processes,

changing registry files etc. We can check what these

malware/software(s) are doing by monitoring the relevant APIs

and their parameters. I have used API hooking for this.

III. MALWARE ANALYSIS

Malware Analysis is the study of a malware by dissecting its

different components and studying its behavior on the host

computer's operating system. Two types of analysis could be

done:

A. Static Malware Analysis

Analyzing software without executing it, this is usually done

by dissecting the different resources of the binary file and

studying each component. The binary file can also be

disassembled using a disassembler.

Basic static analysis consists of examining the executable file

without viewing the actual instructions. Basic static analysis

can confirm whether a file is malicious, provide information

about its functionality, and sometimes provide information that

will allow you to produce simple network signatures. But this

type of Analysis is ineffective against many sophisticated

software. Advanced static analysis consists of reverse-

engineering the malware’s internals by loading the executable

into a disassembler and looking at the program instructions in

order to discover what the program does. Advanced static

analysis tells you exactly what the program does.

B. Dynamic Malware Analysis

 This is done by watching and monitoring the behavior of the

malware while running on the host. Virtual machines and

Sandboxes are extensively used for this type of analysis. The

malware is debugged while running using a debugger to watch

the behavior of the malware step by step while its instructions

are being processed by the processor and their live effects on

RAM. This technique provides very fast and accurate way to

extract detailed information from an executable.

One possibility to monitor what functions are called by a

program is to intercept these calls. The process of intercepting

function calls is called hooking. The analyzed program is

manipulated in a way that in addition to the intended function,

a so-called hook function is invoked. This hook function is

responsible for implementing the required analysis

functionality

IV. HOOKING

API hooking is a technique by which we can instrument and

modify the behavior and flow of API calls.

A. IAT Hooking

Import Address Table (IAT) is an array of links representing

the various DLLs imported by the PE loader during process

initiation. IAT hooking is a technique of modifying the address

of a particular DLL in the IAT with address of hook function.

Before performing IAT hooking we must make sure that we

are able to put the hook function in the user’s address space

through any of the DLL injection methods

B. Inline Hooking

An inline function hook is implemented by overwriting the

beginning of target function with an unconditional jump to a

http://www.ijecs.in/

DOI: 10.18535/ijecs/v5i3.32

Ajay Kumar, IJECS Volume 05 Issue 3 March 2016 Page No.16038-16040 Page 16039

Detour function. Detour function calls a Trampoline function,

which contains the overwritten bytes of the original target

function, and then calls the target function. The target function

returns to the detour function which finally gives control back

to the source function.

V. DLL INJECTION

DLL injection is a technique used for running code within

the address space of another process by forcing it to load a

DLL. DLL injection is used by almost every malware to place

malicious routines in user memory. Though DLL Injection will

just place a DLL in memory, executing code present in the

DLL is triggered after API hooking is done.

VI. DETOUR

Microsoft released a framework to help in placing inline hooks

on Win32 API functions called Detours. Microsoft actually

places a two-byte dummy instruction that does nothing at the

start of functions (the instruction is “MOV EDI, EDI”) to allow

space to overwrite with a jump instruction harmlessly. The

Detours package provides an API to enable custom hooks to be

placed on API functions in this way

API hooking consists of intercepting a function call in a

program and redirecting it to another function. By doing this,

the parameters can be modified , the original program can be

tricked if you choose to return an error code when really it

should be successful, and so on. All of this is done before the

real function is called, and in the end, after

modifying/storing/extending the original function/parameters,

control is handed back over to the original function until it is

called again.

The Microsoft Detours library is a library for intercepting

arbitrary Win32 binary functions on x86 machines.

Interception code is applied dynamically at runtime. Detours

replaces the first few instructions of the target function with an

unconditional jump to the user-provided detour function.

Instructions from the target function are placed in a trampoline.

The address of the trampoline is placed in a target pointer. The

detour function can either replace the target function, or extend

its semantics by invoking the target function as a subroutine

through the target pointer to the trampoline.

The function that drives all of this is the DetourAttach(…)

function.

LONG DetourAttach(PVOID * ppPointer,PVOID pDetour);

This is the function that is responsible for hooking the target

API. The first parameter is a pointer to a pointer of the function

that is to be detoured. The second one is a pointer to the

function that will act as the detour. However, before the

detouring begins, there are a few things that need to be done:

A detour transaction needs to be initiated.

A thread needs to be updated with the transaction.

This is easily done with the following calls:

DetourTransactionBegin()

DetourUpdateThread(GetCurrentThread())

After these two things are done, the detour is ready to be

attached. After attaching, it is important to call

DetourTransactionCommit() to make the detour go into effect

and check for success or failure, if need be.

VII. CONCLUSION

At last I made a tool, to intercept any executable and generate

text files containing list of all API’s and their parameters used

in that executable and changes made by it.

This API hooking tool is a GUI tool that has been made using

QT framework which is an open source framework to create

GUI. The DLL and The injection code is made in C language.

A. WORKING

Browse Button : Browse button is used to fetch the target

application or target malware which we want to analyse and

check which WINAPIs it is calling.

Hook Button: Once the target Application is fetched then to

hook the detour dll to the the application we will click on hook

On Clicking Hook Button, DLL named detourdll.dll is

injected into the memory space of the target application.

A safe option when finalizing your figures is to strip out the

fonts before you save the files, creating “outline” type. This

converts fonts to artwork what will appear uniformly on any

screen.

Now as soon as the target application call for example

send() WINAPI the DLL receives the function call and

output the data buffer that was passed to send() API and

DOI: 10.18535/ijecs/v5i3.32

Ajay Kumar, IJECS Volume 05 Issue 3 March 2016 Page No.16038-16040 Page 16040

then returns the same argument to the actual send() and

makes a function call thus allowing the target application

to perform its function

We have divided the APIs into five categories:

 Network APIs

 File APIs

 Service APIs

 Process APIs

 Other APIs

After the hooking is completed the output of the tool is stored

in five different directories named as per different categories

which contains the information about the function call relation

to that API type for example if target application makes send()

function call the details about the argument passed are stored

in network directory.

Each directory contains three text documents

 priority.txt : contains only the priority information about

the system call made.

 summary.txt : contains summary about the function calls.

 fullreport.txt: contains all the information about the

function calls.

API Type Radio button : We can select the type of API we

want to see the information about using this radio button

Summary/Priority/FullReport button: After selecting the type

of API on which we want to view the information we will go

ahead with selecting the type of report we want to view that we

want to view i.e. priority report, summary report of full report

Once we select the report type it will be displayed in the text

area we can change the API type and report type as per

whatever we need to see.

REFERENCES

[1] Practical Malware Analysis: The Hands-On Guide to Dissecting
Malicious Software By Michael Sikorski, Andrew Honig, Publisher:

No Starch Press 2012 ,800 Pages, ISBN: 1593272901

[2] M. Egele et al, “Survey on Automated Dynamic Malware Analysis

Techniques and Tools”, ACM Computing Surveys, Vol. V, No. N,

20YY.

[3] C Willems, T Holz, F Freiling, “Toward automated dynamic malware
analysis using cwsandbox”, IEEE Security & Privacy, 32-39, 2007.

[4] Galen Hunt and Doug Brubacher, Detours: Binary Interception of Win32
Functions, in Third USENIX Windows NT Symposium, USENIX, July

1999.

