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Abstract 
Fractals appear from a various sources and have been observed in nature .One of the substantial characteristics of fractals is that 
they can be described by a non-integer dimension. The geometry and the mathematics of fractal dimension have contributed 
useful tools for a variety of scientific speciality. The fractal dimension quantifies its dimension across the curves and trajectories. 
In recent years, various  numerical methods have been developed for quantifying the dimension directly from the observations of 
the natural  system. The purpose of this paper is to quantify dimensions  of fractals that arise in nature by two fractal quantifiers 
to quantify the dimensions i.e. compass dimension and box counting dimension thereby deducing an algorithm of chord length and 
the number of solution steps used in computing fractacality. Results demonstrate that trajectory’s fractal dimension can be nearly 
approximated. We expect this paper could make the fractal theory understood absolutely, and could expand fractal application in 
numerous fields. 
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I. INTRODUCTION 
The twin subjects of fractal geometry and chaotic dynamics 
have been behind an enormous change in the way scientists 
and engineers perceive, and subsequently model, the world 
in which we live. Chemists, biologists, physicists, 
physiologists, geologists, economists, and engineers 
(mechanical, electrical, chemical, civil, aeronautical etc) 
have all used methods developed in both fractal geometry 
and chaotic dynamics to explain a multitude of diverse 
physical phenomena: from trees to turbulence, cities to 
cracks, music to moon craters, measles epidemics, and much 
more. Many of the ideas within fractal geometry and chaotic 
dynamics have been in existence for a long time, however, it 
took the arrival of the computer, with its capacity to 
accurately and quickly carry out large repetitive 
calculations, to provide the tool necessary for the in-depth 
exploration of these subject areas. In recent years, the 
explosion of interest in fractals and chaos has essentially 
ridden on the back of advances in computer development. 
There are many definitions of a fractal. Possibly the simplest 
way to define a fractal is as an object which appears self-
similar under varying degrees of magnification. A diagram 
is possibly the best way to illustrate what is meant by a 
fractal object.. As we zoom into the coastline, we find that 
its ruggedness is repeated on finer and finer scales, and 
under rescaling looks essentially the same: the coastline is a 
fractal curve. The person, however, is not a self-similar 
object. As we zoom into various parts of the body, we see 
quite different forms. The hand does not resemble the whole 
body, the fingernail does not look like the hand and so on. 

Even viewing different parts of the body at the same scale, 
say the hand and the head, we would see that again they are 
not similar in form. We conclude that a person is not a 
fractal object. It is interesting to note at this stage that, 
although the body as a whole is not a fractal object, recent 
studies have attempted, with some success, to characterize 
certain parts of the body using fractal geometry, for 
example, the branching structure of the lung and the fine 
structure of the neuron (brain cell). 
four natural fractals: the boundary of clouds, wall cracks, a 
hillside silhouette and a fern. All four possess self-similarity 
The first three natural fractals possess the same statistical 
properties (i.e. the same degree of ruggedness) as we zoom 
in. They possess statistical self-similarity. On the other 
hand, the fern possesses exact self-similarity. Each frond of 
the fern is a mini-copy of the whole fern, and each frond 
branch is similar to the whole frond, and so on. In addition, 
as we move towards the top of the fern we see a smaller and 
smaller copy of the whole fern. The fractals  require a two-
dimensional (2D) plane to 'live in', that is all the points on 
them can be specified using only two co-ordinates. Put more 
formally, they have a Euclidean dimension of two.  
 
              II.  LITERATURE REVIEW 

 Haudroff dimension  
we used the similarity dimension to produce fractal 
dimensions for fractal objects. There are, however, many 
more definitions of dimension which produce fractal 
dimensions. One of the most important in 
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classifying,fractals is the Hausdorff dimension. In fact, 
Mandelbrot suggested that a fractal may be defined as an 
object which,has a Hausdorff dimension which exceeds its 
topological dimension. A complete mathematical 
description of the,Hausdorff dimension is outside the scope 
of this text. In addition, the Hausdorff dimension is not 
particularly useful,to the engineer or scientist hoping to 
quantify a fractal object, the problem being that it is 
practically impossible to calculate it for real data. We 
therefore begin this section by concentrating on the closely 
related box counting, dimension and its application to 
determining the fractal dimension of natural fractals before 
coming to a brief explanation of the Hausdorff dimension.(i) 
The box counting dimension. To examine a suspected fractal 
object for its box counting dimension we cover the,object 
with covering elements or 'boxes' of side length δ. The 
number of boxes, N, required to cover the object is related to 
δ through its box counting dimension, DB. The method for 
determining DB is illustrated in the simple 
example of figure 1.1, where a straight line (a one-
dimensional object) of unit length is probed by cubes 
(3Dobjects) of side length δ. We require N cubes (volume 
δ3) to cover the line.  

 
Figure 1 .A line (1D)  using boxes (3D). 
 
.obtained by covering the object with N hyper cubes of side 
length δ. Note that the above expression is of rather limited 
use. It assumes the object is of unit hyper volume and in 
general will produce erroneous results for large δ The 
definition of the similarity dimension DS given in equation 
However, do not confuse the two: the calculation of DS 
requires that exactly self-similar parts of the fractal are 
identified, whereas DB requires the object to be covered 
with self-similar boxes. Hence, DB allows us greater 
flexibility in the type of fractal object that may be 
investigated. 

 
Figure 2.Determining the fractal dimension of a coastline 
using the box counting method. 

 

 
The general expression for the dimension of an object with a 
hypervolume (i.e. length, area, volume or fractal 
hypervolume) not equal to unity, but rather given by V*, is 

 
where N is the number of hypercubes of side length δ 
required to cover the object, i.e. N = . Rearrange equation 
(3.2) gives 

 
 which is in the form of the equation of a straight line where 
the gradient of the line, DB, is the box counting dimension 
of the object. This form is suitable for determining the box 
counting dimension of a wide variety of fractal objects by 
plotting log(N) against log (1/δ) for probing elements of 
various side lengths, δ. Figure 1.2 illustrates three popular 
methods of covering a coastline curve using boxes and 
circles to obtain a box counting dimension estimate. One 
may place boxes against each other to obtain the minimum 
number required to cover the curve. Alternatively, one may 
use a regular grid of boxes and count the number of boxes, 
N, which contain a part of the curve for each box side length 
δ. Circles of diameter δ may also be used as probing 
elements to cover the curve, placing them so that they 
produce the minimum covering of the curve. In this case, δ 
corresponds to the diameter of the covering circles. 
Whichever method is used, we obtain the box counting 
dimension from the limiting gradient (as δ tends to zero) of 
a plot of log(N) against log(l/δ), i.e. the derivative 

 
. In practice, the box counting dimension may be estimated 
by selectingtwo sets of [log(1/δ) log(N)] co-ordinates at 
small values of δ  (i.e. large values of log(1/δ)). An estimate 
of DB is then given by 

 

 
Figure 3.Estimating the box counting dimension of 
experimental data. 
Alternatively, a more refined estimate may be obtained by 
drawing a best fit line through the points at small values of δ 
and calculating the slope of this line (see figure1.3). For this 
case the N and δ values of equation (3.4b) are taken from 
two points on the best-fit line. This is particularly advisable 
where the data fluctuate at the limits of resolution. The box 
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counting dimension is widely used in practice for estimating 
the dimension of a variety of fractal objects. The technique 
is not confined to estimating the dimensions of objects in the 
plane, such as the coastline curve. It may be extended to 
probe fractal objects of high fractal dimension in multi-
dimensional spaces, using multidimensional covering 
hypercubes. Its popularity stems from the relative ease by 
which it may be incorporated into computer algorithms for 
numerical investigations of fractal data. The grid method  
lends itself particularly to encoding within a computer 
program. By covering the data with grids of different box 
side lengths, δ, and counting the number of boxes, N, that 
contain the data, the box counting dimension is easily 
computed using equation (3.4b).  
When using the box counting dimension we are asking, 
'How many boxes or hypercubes do we need to cover the 
object?': in this case we only need use probing elements, or 
hypercubes, which have an integer dimension equal to or 
exceeding that of the object. In contrast, when using the 
Hausdorff dimension we are asking instead, 'What is the 
'size' of the object?', that is we are trying to measure it. To 
measure its size or hypervolume we need to use the 
appropriate dimension of covering hypercubes, this 
appropriate dimension being the Hausdorff dimension DH. 
In the rest of this section a brief overview of the Hausdorff 
dimension is given for completeness of the text. 
 

 
Figure 4.Measuring a smooth curve. 
 
The Structured Walk Technique and the Divider Dimension 
 
A commonly used method for determining a fractal 
dimension estimate of fractal curves in the plane is the 
structured walk technique, illustrated in figure 5 The 
technique is much faster to perform by hand than the box 
counting dimension and requires the use of a compass or a 
set of dividers. (A ruler may also be used if neither of the 
first two pieces of equipment is available, but this does 
result in a more laborious task.) The method is outlined as 
follows. 
 

 
  Figure 5 Structured walk technique 
 

 
Figure 6 Divider Dimension 
 
Hence, the dimension of the curve may be found by 
measuring S from the best fit line of the plotted points of 
steps. The slope of the Richardson plot is negative, i.e. the 
best fit line falls from left to right, thus DD > 1. Note that 
when drawing successive arcs  one may obtain slightly 
different dimension estimates depending  upon the direction 
of approach of the arc. One may repeatedly swing clockwise 
into the coastline from the 'sea' (the inswing method), anti-
clockwise out of the coastline from the 'land' (the outswing 
method), or alternate between the two (the alternate 
method). It is good practice to try all three methods and, in 
addition, to use various starting locations on the curve. 
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Figure 7 Richardson plot of country boundaries. 
 
Figure.7 contains a Richardson plot of original data by L F 
Richardson who noted that reported lengths of the border 
between two countries were often claimed to be different by 
the two countries involved. For example, he noted that the 
Spanish–Portuguese border was stated as being 987 km and 
1214 km by Spain and Portugal respectively, and similarly 
the Dutch–Belgian border was stated as being 380 km and 
449 km respectively by the two countries. After 
investigation he reasoned that the differences could be 
attributed to the length of the measuring stick used in the 
calculation of the boundary length. The smaller the 
measuring stick length, λ, the longer the measured length L 
was found to be. On the Richardson plot of figure 3.11 the 
data points for a circle are also plotted. Notice that the circle 
boundary slope tends to zero for small values of λ, as the 
divider dimension, DD, tends to the topological dimension, 
DT (= 1). This implies that the circle boundary is not a 
fractal, and more, in that it is a smooth curve with 
measurable length. 
   
Figure8(a) contains a simulated soot particle made up of 
circles connected tangentially. The outer boundary of the 
particle reproduces the general features of profiles typically 
found in agglomerations of soot particles from exhaust 
emissions. Figure 8(b) contains the Richardson plot of the 
particle boundary in figure 8(a). Notice the two distinct 
slopes associated with the structure and texture of the 
particle. 
The divider dimension is therefore an extremely useful tool. 
However, its main shortcoming is that it is limited to the 
investigation of curves in the plane. Should we wish to 
measure fractal objects other than curves, say for example 
the surface of a cloud or fractal landscape, the box counting 
dimension should be used; this, due to its versatility, may be 
used to probe all manner of fractal objects occurring in 
multi-dimensional spaces. 

 
Figure 8. Richardson plot of a synthetic particle 
boundary.(a) Synthetic particle.  (b) Richardson plot. 

 
Figure 9.A selection of natural fractal objects. 
   
Both the divider and box counting dimensions have been 
used to measure the fractal dimension of many natural 
fractals, including of course real coastlines and fine particle 
boundaries, other examples include (see figure 9) cloud 
boundaries, smoke plume boundaries, chromatograph 
diffusion fronts, landscape profiles, and so on. Both 
dimension estimates are also useful in the estimation of the 
fractal dimension of crossing curves, such as fBm, We leave 
this section by looking at the relationship between the box 
counting dimension and divider dimension on a fractal 
curve. First, we consider the box counting dimension. 
Rearranging equation (3.2) for non-unit hypervolumes we 
obtain where D is the box counting dimension. As an aid to 
clarity in the following discussion, we omit the subscript B 
of  
the box counting dimension and include δ in parenthesis to 
denote that N is a function of the box size δ.  

II. PROPOSED WORK 
 
DEVELOPMENT  OF THE FRACTAL TRAJECTORY 
ALGORITHM  
 
The following original algorithm is based on the earlier 
empirical work performed by Richardson (1961) and later 
extended by Mandelbrot (1967).Richardson measured the 
lengths of several frontiers by manually walking a pairof 
dividers along the outline so as to count the number of steps. 
The opening of the dividers (n) was fixed in advance and a 
fractional side was estimated at the end of the walk. The 
main purpose in this section of Richardson's research was to 
study the broad variation of In with n. 
Richardson produced a scatterplot in which he plotted log 
total length against log step size for five land frontiers and a 
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circle. Mandelbrot (1967) discovereda relationship between 
the slope (8) of the lines and fractal dimension (D). To 
Richardson the slope had no theoritical meaning, but to 
Mandelbrot it could beused as an estimate of 1-D, which 
leads to: 

D=1-β                       (1) 
The algorithm simulates walking a pair of dividers along a 
curve and counts the 
number of steps. In cases where more than one intersection 
occurs, the intersection which comes first in order forward 
along the curve is selected. To be more accurate, step size 
(prescribed opening of the dividers) is called chordlength 
(cl) and the number of steps is called the number of chord 
lengths. 
In order to begin walking the dividers along the curve, the 
dividers must be set to some opening. The curves used in 
this research are not infinitely subdivided fractal curves so 
that selection of the initial chord length must be based on 
some attribute of the curve. For a very contorted curve it 
would be meaningless to choose a chord length many times 
shorter than the shortest line segment. If an extremely short 
chord length is selected, an attempt to examine 
the fractal character of a curve would extend beyond the 
primitive sub elements used to represent the geometry of the 
resulting form. In other words, beyond this lower limit of 
primitive subelements, the curve's fractal dimension behaves 
as if it is a straight line. A suggested initial chord length is 
determined by calculating the distance between each two 
consecutive points on the curve and taking 1/2 the average 
distance. The average distance is divided by 2 because the 
sampling theorem states one should sample at 1/2 the 
wavelength so that no significant variation escapes. This 
presents an approximate lower limit as to the selection of the 
initial chord length. Although the accuracy of this method is 
dependent on the manner in which the curve is digitized, the 
form of the curve often dictates this manner. 
After the initial chord length is determined, the algorithm 
computes the distance between the first two points on the 
curve using the standard distanceformula. If the distance is 
greater than chord length (L), a new point is interpolated 
between points 1 and 2 using the following interpolation 
equations: 

D = (L-Dl) / (D1-DA)                    (2) 
Anew = A 1 + DP* (A2-Aj)          (3) 
Bnew = BJ +DP* (B Z -B I )        (4) 

 
where D = distance proportion 
D1 = distance between the present point and the first 
forward point on the curve 
DA = distance between the present point and the second 
forward point on the curve 
 
Anew = new A- coordinate 
Bnew = new B- coordinate 
A,B = A and B coordinates of point 1 and 2. 
 
If the distance is less than the chord length, the distance 
between points 1 and 3  is computed. If the distance is less 
than the chord length is greater than the chord length, it is 

known that the chord length segment intersects between 
points 2 and 3 and that the distance between these points is 
determined . 
 
The point of intersection is computed using trigonometric 
functions. An angle C is Determined using the law of 
cosines. 
C= cos-1 (DISTY2 + DISTX2 – DISTZ2 )/2* DISTY * 
DISTX                   (5) 
 
Since angle C is known, an angle A, which is the angle the 
chord length intersects between points 2  and 3, can be 
computed. 
         A=SIN-1 ((DISTX*sinZC)/L)                   (6) 
 
Now that two angles are known, angle 3 is easily computed. 
Because angles A and B are known, a side (DISTY') can be 
calculated; 
       DISTY' = (DISTX*sinY)/sinX                    (7) 
DISTY' provides the distance, from point 2, in which the 
chord length's intersection is located on the segment 
between points 2 and 3. A distance proportion D is 
calculated using 
 
        D=DISTY'/DISTY              (8) 
Since the distance proportion and the A,B coordinates for 
points 2 and 3 are known, the equations used to interpolate 
for a straight line segment can be used to determine the new 
coordinates. After the new point is located, this new point 
becomes point 1 and the next two forward points on the 
curve become points 2 and 3. Each time a chord length's 
intersection is determined, 1 is added to the number of chord 
lengths. 
In the case where DISTZ is less than the chord length, the 
third point is incremented by 1 (fourth point) and the 
distance again checked. This continues until the distance is 
greater than the chord length or the end of the curve is 
encountered 

 
Figure 10. More than three point interpolation 
 
When the distance does become greater than the chord 
length, the chord length's point of intersection is determined 
by using the same trigonometric equations as discussed 
above. The only difference is the sides of the triangles may 
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be longer. At the end of the curve, if the chord length is 
greater than DISTX, the portion of the remaining chord 
length is added to the number of chord lengths. 
After the dividers are walked along the curve with the initial 
chord length, the dividers are opened to another distance. 
This distance is a geometric adding of the first chord length. 
For example, if the initial chord length is 2, then the 
subsequent chord lengths would be 4, 8, 16, 32, 64, and so 
on. This eliminates biasing when using linear regression 
because on a logarithmic scale, geometric adding provides 
equal spacing between the chord lengths. 
 
After each time the dividers are walked along the trajectory, 
the number of chord lengths and the corresponding chord 
lengths are saved. These are used in the linear regression 
where log line length (number of chord lengths *chord 
length) is regressed against log chord length. A trajectory 's 
fractal dimension is determined by using equation 1. 
 

III.   RESULTS 
The length of an island can be quantifying by the map of an 
island and a pair of a divider withan opening of d and 
counting no of steps as M(d) required for one circumference 
as given in figure. 

 
      Figure 11. Measuring the length of Greenland 
 
 Table shows the number M of steps and the length L of the 
outline for different openings d.It is natural  that the 
measured length increases as the opening of the divider is 
reduced. 
 
 
S 
No. 

d (Km) M L=M. 
d[Km] 

ln d ln L 

1. 300 8 2400 5.7 7.78 
2. 150 18 2700 5.01 7.9 
3. 120 28 3360 4.7 8.1 
4. 60 62 3720 4.1 8.22 
5. 30 150 4500 3.4 8.4 
  Table 1: length of Greenland’s boundary 
 
If the outline has a well defined length, then L should refer a 
constant value L0  as d=0,The double algorithmic plot shows 
that L does not reach a fixed value as d is reduced 
 

 
Figure 12 graph for d and L as x-axis & y-axis  
Thus we are about to know length of the coastline , that 
depends upon someone wants to do. If somebody wants to 
build a fence around the boundary with fence posts at every  
ten meters , for him the boundary is longer than for someone 
who wants to place lighthouses every fifty kilometers , 
Since the values are lying on a straight line  a power law is 
properly fit. 

L(d) = cont. r1-Dc 

DC  is the divider/  compass dimension. It can be calculated 
from the slope of the regression line. The slope is  

 1-DC = 8.4-7.9/3.4-5.5≈ - 0.23 ⇒  DC = 1.23 
 

With a constant of 8.5 for the man with the fence the 
coastline would have a length of L(0.01 km) =e8.5. 0.01-0.23 ≈ 
14000 Kms for the man with the lighthouses L(50km )= e8.5. 
50-0.23≈1800. The coast length differs by  a factor of eight 
approx.The compass dimension is a measure to compute the 
fractal dimension of natural objects since it is an estimator 
of hausdorff dimension . 
 
Box Dimension  
An appropriate estimator for the fractal dimension of nearly 
any autonaomous structure  is the box dimension . The 
length of the coastline was estimated by L=M.d where M is 
the number of steps needed for a roundtrip along the coast 
and d is the opening of a pair of compasses. Alternatively 
the coast can be covered  with a grid of square cells with cell 
size d.   
The number M(d) of squares needed to cover the coastline is 
roughly equal to the number of steps when using a pair of 
compasses with opening d . This holds for small d. 
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Figure 13 different values of d and N  
 

Fig
ure 14   M versus d (logarithmic ) graph 
 
The straight line corresponds to the relation  : 

M(d)=const. dDb 

Db is the box dimension of the coastline  and can be 
ascertained from the slope of regression line as Db= 1.26  . 
This matches with the compass dimension of  Dc=1.23. 
Thus the coastlength can be expressed as : 
                                     L(d) =M(d).d = 4506.d-1.26. d 
For the calculation of the box dimension it doesn’t matter if 
the number of boxes is counted for the entire structure . 
For binary images it is appropriate to choose the grid length 
as nmber of pixels The box dimension  which is an estimator 
of the hausdorff dimension  is Db= 1.77 . 
 

V. CONCLUSION 
Box-counting estimators are popular for estimating fractal 
dimension. However, very little is known of their 
speculative properties, instead increasing statistical interest 
in their application. We show that, if the irregular curve to 
which the estimators are applied , concise formulae may be 
developed for asymptotic bias and variance of box-counting 
estimators. These formulae point to crucial differences 
between a native form of the box-counting estimator, based 
directly on the capacity definition of fractal 
dimension.Eminently the box dimension can easily be 
unearthed if the structure is available in binary form . 
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