
 

www.ijecs.in 

International Journal Of Engineering And Computer Science ISSN:2319-7242 

Volume 3 Issue 6 June, 2014 Page No. 6442-6447 

 

 

Mamta Mor
1IJECS Volume 3 Issue 6 June, 2014 Page No.6442-6447 Page 6442 

A Genetic Algorithm Approach for Clustering 
Mamta Mor

1
, Poonam Gupta

2
, Priyanka Sharma

3 

 
1 OITM, Dept. Of CSE, GJUS&T, 

India 

    mamtamor12121990@gmail.com 
 

2 OITM, Dept. Of CSE, GJUS&T, 

India 

poonamjindal3@gmail.com 

  
3GJUS&T, Dept. Of CSE, 

India 

            pinki.sharma2912@gmail.com 
 

Abstract: The paper deals with the applicability of GA to clustering and compares it with the standard K-means clustering technique. K-

means clustering results are extremely sensitive to the initial centroids, so many a times it results in sub-optimal solutions. On the other hand 

the GA approach results in optimal solutions and finds globally optimal disjoint partitions. Fitness calculated on the basis of intra-cluster 

and inter-cluster distance is the performance evaluation standard in this paper. The experimental results show that the proposed GA is more 

effective than K-means and converges to more accurate clusters. 
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1.   Introduction 

Data mining is the process of extracting useful and hidden 

information or knowledge from data sets. The information so 

extracted can be used to improve the decision making 

capabilities of a company or an organization [1][2][3]. Data 

mining consists of six basic types of tasks which are Anomaly 

detection, Association rule learning, Clustering, Classification, 

Regression and Summarization. Clustering is one of the 

important tasks of data mining. Clustering is defined as the 

task of grouping objects in such a way that the objects in the 

same group/cluster share some similar properties/traits. There 

is a wide range of algorithms available for clustering like 

hierarchical, K-means clustering [4][5][6]. K-means is one of 

the most popular and frequently used clustering algorithm. It 

clusters objects into K number of groups, where K is a positive 

integer. But K-means has a major drawback that many a times 

it converges to a sub-optimal solution due to large clustering 

search space. Therefore, Evolutionary algorithms like genetic 

algorithm are suitable for clustering task. A good GA explores 

the search space properly as well as exploits the better 

solutions to find the globally optimal solution [7]. 

       A GA is a stochastic search method[8][9] which works on 

a population of individuals (chromosomes) and produces new 

population with every generation by applying genetic 

operators. The proposed GA has been applied to UCI 

repository [19] of Machine Learning datasets i.e.  „Seeds‟, 

„Data_User_Modeling‟, „Wholesale customers data‟. The 

experimental results show that the proposed GA is consistently 

better and more effective than the k-means algorithm.   

      The rest of the paper is organized as follows: Section 2 

presents the related work. Section 3, 4 discusses the proposed 

GA design and an example respectively. Section 5 presents the 

data set descriptions and experimental results. Section 6 

discusses the future scope and conclusion. Section 7 gives the 

references. 

2.   Related Work 

Data mining is a field with a large area of application. 

Evolutionary algorithm particularly genetic algorithm and 

genetic programming have been used in the field of data 

mining & knowledge discovery [10]. Several GAs have been 

used for mining real world datasets in medical domain and in 

the field of education etc. [11][12]. A number of researchers 

have focused on using GA for data mining tasks of 

classification & clustering. Interest in the field of clustering 

has increased recently due to the emergence of several areas 

of application including bioinformatics, web use data analysis 

and image analysis etc. [13][14]. A few of the earlier models 

proposed for clustering are „Genetic K- means‟ and „Fastest 

Genetic K- means‟ models, which find a globally optimal 

partition of a given data into a specified number of clusters 

[15][16]. Many other GA models have also been proposed for 

clustering [17][18]. The GA model proposed earlier for 

clustering have particularly used intra-cluster distance as the 

parameter for calculating fitness function. This paper 

proposes a GA model which uses both intra-cluster as well as 

the inter-cluster distance to calculate the fitness. 
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3.   Proposed GA Design 

GA takes as input a population of individuals (binary or real 

valued) which evolves over generation by applying genetic 

operators (crossover and mutation). 

3.1   Encoding Scheme: 

  

 Initialization: The initial population corresponds to X no. of 

centroids (where X=pop_size*k) randomly selected from the   

.normalized data set, where k is the number of clusters to be 

formed. The data sets taken from the UCI repository are 

normalized before applying GA.  

    Chromosome length: Each chromosome in the population  

..is a real valued vector of length k*nv where k is the number 

of clusters to be formed, nv is the number of 

attributes/variables in the data set, which means k rows are 

randomly selected from the dataset to represent an individual 

where each ki (i=1,2,…m) represents one of the centroid of 

chromosomex(x=1 to pop_size). 

  

  Initial population size: pop_size (no of rows), k*nv (no of 

attributes), which means pop_size*k number of centroids are 

actually selected for initial population. 

3.2   Fitness Function: 

        The objective of fitness function is to maximize inter-cluster 

distance and minimize intra-cluster distance. The objects are 

clustered on the basis of Euclidean distance, each object 

belongs to the cluster whose centroid to object Euclidean 

distance is minimum. Let {Xi; i=1,2,…n} be a set of n objects, 

each with p attributes. The n objects are divided into   k 

clusters with {Cm; m=1,2..k} be the set centroids 

corresponding to k clusters. 

Object-Centroid Distance (Euclidean distance): The 

distance between an object and a centroid can be calculated by 

Euclidean distances as follows: 

E
D
 (Xi, Cj) =√∑          

  
   

                                      (1), 

where i=1, 2,..n; j=1,2,….k 

  Intra-Cluster Distance: The intra-cluster distance is the 

distance between a cluster‟s elements. The intra-cluster 

distance of q
th 

cluster where q=1,2,..k is calculated as follows: 

 

  D
q

INTRA(Xi,Xj) =√∑ ∑        
      ⁄ 

   
 
          (2), 

where m is no of elements in the q
th  

cluster 

 

The total intra-cluster distance is computed as below: 

S (DINTRA) = ∑   
   (D

q
INTRA)                                  (3)            

Inter-Cluster Distance: The 

inter-cluster distance is the 

distance between two cluster‟s 

elements. The inter-cluster 

distance between q
th

 and r
th 

cluster 

where q, r=1,2..k is  calculated as 

follows: 

 

  

D
q,r

INTER(Xi,Xj)=

√∑ ∑        
      ⁄ 

   
 
       

(4) where m, n is no of elements 

in   q
th 

and r
th 

cluster  respectively. 

 

  It is to be noted that for r=q inter-

cluster distance is null and Inter-

cluster distance between r,q & q,r 

is same. 

 

 The total inter-cluster distance is computed as below: 

 

  S(DINTER)=∑ ∑   
     

   
   (D

q,r
INTER)                                    (5) 

 

Fitness: The fitness is computed by using the following 

formula: 

Fmax=max(S (DINTER)/S (DINTRA))                                (6)        

 

We have used the roulette wheel as the selection operator. 

3.3   Crossover Operator      

Genetic operators are applied to maintain genetic diversity. 

Genetic diversity/variation is necessary for the process of 

evolution. Crossover operator is one of the genetic operators. 

Crossover is applied to (pc*pop_size) chromosomes where pc 

is the probability of crossover [7]. The chromosomes are real 

valued vectors and the crossover applied is arithmetic 

crossover which works as follow: 

Offspring1= (α * parent1) + ((1-α) * parent2)  

  Offspring2= ((1-α) * parent1) + (α* parent2) 

 

  3.4   Mutation Operator 

   

The mutation applied is 

uniform mutation. Mutation is 

applied to (pm*pop_size*u) 

number of elements/gene 

where pm is the probability of 

mutation & u is the 

chromosome length. The 

uniform mutation replaces the 

value of chosen element/gene 

by a value randomly generated 

between the upper and lower 

bounds for that gene. Since the 

data is normalized, so the value 

of all genes lie between 0 & 1. 

 

4: An Example 

Table1 (The Example Dataset)      Table 2 (Normalized Example Dataset)    

10 20 10 

12 18 8 

11 21 11 

9 20 9 

10 17 11 

40 50 60 

42 48 58 

41 51 59 

38 47 60 

40 52 57 

80 100 120 

81 101 119 

78 98 118 

80 100 121 

82 102 120 

0.0137 0.0353 0.0177 

0.0411 0.0118 0 

0.0274 0.0471 0.0265 

0 0.0353 0.0088 

0.0137 0 0.0265 

0.4247 0.3882 0.4602 

0.4521 0.3647 0.4425 

0.4384 0.4000 0.4513 

0.3973 0.3529 0.4602 

0.4247 0.4118 0.4336 

0.9726 0.9765 0.9912 

0.9863 0.9882 0.9823 

0.9452 0.9529 0.9735 

0.9726 0.9765 1.0000 

1.0000 1.0000 0.9912 
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Let us consider a dataset with n=15 & nv= 3, where n is the 

number of rows and nv is the number of attributes. Table 1 

shows the actual dataset whereas Table 2 shows the 

normalized dataset. Let pop_size be 4 & k=3.For pop_size=4, 

rows actually selected (X=pop_size*k) =4*3=12. Let Y= 

[4,12,14,7,9,1,2,3,5,13,11,15] be the indices returned of the 

selected 12 rows. The rows corresponding to the first 3 

indices represent the 1
st
 chromosome, where 1

st
 index 

represents the 1
st
 centroid, 2

nd
 index represents the 2

nd
 

centroid, and 3
rd

 index represents the 3
rd

 centroid. Each 

chromosome has a length (u=k*nv) =3*3=9. It will become 

clear with the Table 3 given below: 

                                                                                             

 

The first three elements in each row corresponds to the 1
st
 

centroid, the next three elements in each row corresponds to 

the 2
nd

centroid and the last three elements in each row 

corresponds to the 3
rd

 centroid of every chromosome 

The fitness of each chromosome will be calculated by the 

fitness formula proposed above: 

Let us consider chromosome No. 1 where, 1
st
 centroid (C1) = 0    

0.0353    0.0088 represents cluster1, 2
nd

 centroid (C2) = 0.9863    

0.9882   0.9823 represents cluster2 and 3
rd

 centroid (C3) = 

0.9726    0.9765    1.0000, represents cluster3. 

Fitness Function returns a 1-by-15 vector IDX containing the 

cluster indices of each of the 15 points/rows by using squared 

Euclidean distances equation (1) given above: 

                           Table 4 (IDX) 

 

, which shows that the first 10 points of the example dataset 

belong to the 1
st
 cluster1, 11

th
,13

th
,14

th
 points belong to the  2

nd
 

cluster, 12
th

 and 15
th

 belong to the 3
rd

 cluster. 

The intra-cluster (Table 5) and inter-cluster distance (Table 6) 

of the clusters calculated by the equation No. 2 & 4 

respectively  given above is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inter-cluster distance between clusters 1-1, 2-2, 3-3 is zero and 

between 1-2and 2-1, 2-3 and 3-2, 1-3 and 3-1 is same. So, it 

needs not to be calculated twice. 

The total intra-cluster and inter-cluster distance is 5.0420 and 

2.7763 respectively. 

The fitness corresponding to chromosome No.1 = 2.7763 / 

5.0420 = 0.5506 

 

     

 

Similarly, the fitness corresponding to chromosome No. 2, 3 

and 4 calculated are 0.4368, 0.1907 & 0.3434 respectively. We 

can see that chromosome No.1 has the best fitness among all 

chromosomes for 1
st
 iteration. 

The crossover operator is applied on two parents to produce 

two new off springs. Let us apply crossover on 3
rd

 & 2
nd

 

chromosome of Table 3.   

So, Parent 1= 0.0411    0.0118      0        0.0274   0.0471    0.0265   

0.0137     0     0.0265 

Parent 2= 0.4521    0.3647   0.4425   0.3973    0.3529   0.4602   

0.0137   0.0353   0.0177 

Let α= 0.6, then 

Offspring 1= 0.2055    0.1530    0.1770    0.1754    0.1694    0.2000   

0.0137    0.0131    0.0230 

Offspring 2= 0.2877    0.2235    0.2655    0.2493    0.2306    0.2867   

0.0137    0.0212    0.0212 

The mutation operator is applied to the genes/elements. Let 

us apply mutation on the 5
th

 element of 1
st
 chromosome of 

table 3. The selected element is replaced by a random 

element between the lower and upper limit of that element 

which is 0 &1 respectively in this case.  

Parent 3= 0   0.0353    0.0088 0.9863    0.9882    0.9823 0.9726    

0.9765    1.0000 

Offspring 3= 0   0.0353    0.0088 0.9863    0.7982    0.9823 0.9726    

0.9765    1.0000 

Chromosome No.  Selected rows indices  Chromosome 

 1 4,12,14 0             0.0353    0.0088  0.9863    0.9882    0.9823  0.9726    0.9765    1.0000 

2 7,9,1 0.4521    0.3647   0.4425   0.3973    0.3529   0.4602   0.0137   0.0353   0.0177 

3 2,3,5 0.0411    0.0118           0     0.0274   0.0471    0.0265   0.0137        0     0.0265 

4 13,11,15 0.9452    0.9529    0.9735  0.9726    0.9765    0.9912   1.0000    1.0000   0.9912 

Table 3 

1 1 1 1 1 1 1 1 1 1 3 2 3 3 2 

Cluster No. Intra-cluster distance 

  1 4.9275 

  2 0.0284 

  3 0.0861 

  Cluster1-Cluster2 Inter-cluster distance 

  1-2 1.3805 

  1-3 1.3505 

  2-3 0.0452 

Table 6 (Inter-cluster distance b/w two clusters)                          

 

Table 5 (Intra-cluster distance of each cluster)                          
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5.   Experimental Data & Results 

5.1 Datasets & platform description 

The proposed GA design in the paper is implemented in 

MATLAB version 7.12.0 on a machine having 1 GB of RAM 

and INTEL core duo processor with 1.66 GHz speed. 

The efficiency of the proposed GA design is evaluated by 

conducting experiments on three datasets downloaded from 

UCI repository [19]. The description of the data sets used for 

evaluating the proposed GA model is given below in Table 7: 
 

 

 

All the three datasets are converted into csv files and the 

attribute values of „string‟ type are converted into real values. 

5.2 Results 

 The results found during the simulation of the GA model are 

described as follows: Table1, 2 and 3 show the comparison of 

GA model with k-means algorithm of dataset „seeds‟, 

„Data_User_Modeling‟ and „Whole sale customers‟ 

respectively. Figure 1, 2 and 3 show the comparison of GA 

model with k-means algorithm of dataset „seeds‟, 

„Data_User_Modeling‟ and „Whole sale customers‟ 

respectively through bar charts. Figure 4, 5 shows the fitness 

versus generation graph and it can be seen that genetic 

algorithm has high fitness in all cases thus better and efficient 

to use. 

Comparison between GA (fitness) & K-means (fitness) for 

dataset ‘seeds’ 

                              

 

 
 
 
 
 

                             Figure 1 

 
 

 

Table 9               

 

 

 

 

 

 

 

Comparison between GA (fitness) & K-means (fitness) for 

dataset ‘Whole Sale Customer’    

                            

                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison between GA (fitness) & K-means (fitness)    

for dataset ‘Data_User_Modeling’‟ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Data Set No. of 

instances 

No. of 

attributes 

Data_User_Modeling  

(Training data) 

258 6 

Seeds 210 8 

Whole sale customers 440 8 

Table 7 

K GA(fitness) Kmeans(fitness) 

 
2 .0089 .0089 

3 .0379 .0223 

4 .0790 .0713 

5 .1345 .1259 

6 .2088 .1893 

K GA(fitness) Kmeans(fitness) 
2 .0044 .0044 

3 .0191 .0136 

4 .0483 .0358 

5 .0930 .0761 

6 .1542 .1256 

K GA(fitness) Kmeans(fitness) 

2 .0055 .0055 

3 .0184 .0173 

4 .0389 .0342 

5 .0690 .0615 

6 .1012 .0945 

0.0089 

0.0223 

0.0714 

0.1259 

0.1893 

0.0089 

0.0379 

0.079 

0.1345 

0.2088 

0

0.05

0.1

0.15

0.2

0.25

k=2 k=3 k=4 k=5 k=6

k-means GA

 

0.0044 
0.0136 

0.0358 

0.0761 

0.1256 

0.0044 

0.0191 

0.0483 

0.093 

0.1542 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

k=2 k=3 k=4 k=5 k=6

k-means GA

  Table 9 

  Figure 3 

  Table 10 

  Table 8 

  Figure 2 
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The above results makes it evident that GA gives 

consistently better results than k-means algorithm across all 

the three sets, except for the value of k=2.  

Fitness versus Generation graph of dataset 

‘Data_User_Modeling’ for k= 3, 4  

 

 

                         

                              Figure 4 (K=3) 

 

 

                               Figure 5 (K=4) 

 

It is clear from the figure shown below that fitness increases 

with no. of generations and then it stabilizes 

 

6. Conclusion and Future scope 

Clustering has a wide range of application. A good clustering 

algorithm yields a good quality cluster with high intra-cluster 

similarity/low intra-cluster distance and low-inter cluster 

similarity/high inter-cluster distance. It also produces a global 

optimal or near to global optimal solution/result. The paper 

proposed a genetic algorithm which produces better clusters 

with low intra-cluster & high inter-cluster distance as 

compared to k-mean algorithm. The proposed GA code also 

overcomes the problem of local optimal solution faced in k-

means by providing optimal solution for a given data set. 

Experimental results demonstrate that the proposed GA has 

clearly outperformed the standard K-means in terms of 

providing optimal solution. 

        The GA design presented in this paper overcomes one of 

the two major drawbacks of k-means clustering algorithm i.e. 

converging at sub optimal solution due to bad seed 

initialization. The other drawback of K-means is that K 

(number of clusters) has to be predetermined before applying 

k-means/clustering algorithm on a dataset. The future 

directions of the work presented in this paper would be to 

modify the GA in such a way that the best value of k will be 

calculated automatically by the GA model. 
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