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            Abstract: 

This paper discusses various versions of TCP and their congestion control algorithm changes in TCP’s existing congestion 
control, limitation of older version of TCP variants. We discuss new version of TCP called TCP Westwood with sender side 
modification of the window congestion control scheme TCP Westwood continuously estimate at sender side packet rate of 
connection by monitoring ACK reception rate. In this paper we reviewed the comparison of performance of TCP Reno with 
TCP Westwood in good link and lossy link. In this paper we have discussed the fairness and friendliness issue of TCP 
Westwood. Also we discuss the mechanism called agile probing that improves the performance of TCP Westwood in slow start 
phase. This method improves the startup performance of TCP Westwood. This method improves the performance of TCP 
Westwood in congestion avoidance phase as well as when large amount of bandwidth that suddenly becomes available.  
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1.  Introduction: 
The Internet is an unreliable network that cannot guarantee 
all data sent by host will be delivered correctly to the 
destination .As a result, reliable end-to-end data delivery is 
delegated to transport layer protocols such as the 
transmission control protocol. 

The transmission control protocol is most widely used and 
established implementation of the reliable protocols but 
many different versions of TCP have been developed as the 
algorithms and techniques for increasing efficiency and 
performance have been refined. We examine the various 
versions of TCP and characterize the attributes of these 
protocols which contribute to their improved performance.    
 
2. TCP Variants: 
2.1 TCP Tahoe: 
The Tahoe TCP algorithms include Slow-Start, Congestion 
Avoidance, and Fast Retransmit. The idea of TCP Tahoe is 
to start the congestion window at the size of a single 
segment (the MSS) and send it when a connection is 
established. If the acknowledgement arrives before the 
retransmission timer expires, add one segment to the 
congestion window. This is a multiplicative increase 
algorithm and the window size increases exponentially. The 
window continues to increase exponentially until it reaches 

the threshold that has been set. This is the Slow Start Phase. 
Once the congestion window reaches the threshold, TCP 
slows down and the congestion avoidance algorithm takes 
over. Instead of adding a new segment to the congestion 
window every time an acknowledgement arrives, TCP 
increases the congestion window by one segment for each 
round trip time. This is an additive increase algorithm. To 
estimate a round trip time, the TCP codes use the time to 
send and receive acknowledgements for the data in one 
window. TCP does not wait for an entire window of data to 
be sent and acknowledged before increasing the congestion 
window. Instead, it adds a small increment to the congestion 
window each time an acknowledgement    t arrives. The 
small increment is chosen to make the increase averages 
approximately one segment over an entire window. When a 
segment loss is detected through timeouts, there is a strong 
indication of congestion in the network. The slow start 
threshold is set to one-half of the current window size (the 
minimum of the receiver’s advertised window and the 
sender’s congestion window). Moreover, the congestion 
window is set to 1 segment, which forces slow start [9]. 

2.1.1  Demerits Of TCP Tahoe: 
The problem with Tahoe is that it takes a complete timeout 
interval to detect a packet loss and in fact, in most 
implementations it takes even longer because of the coarse 
grain timeout.  Also since it doesn’t send immediate ACK’s, 
it sends cumulative acknowledgements, therefore it follows 
a ‘go back n ‘approach. Thus every time a packet is lost it 
waits for a timeout and the pipeline is emptied. This offers a 
major cost in high band-width delay product links. 
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2.2 TCP Reno: 
TCP Reno incorporated the fast recovery mechanism TCP 
Reno use same Slow-Start, Congestion Avoidance algorithm 
only change is that When a segment is detected by fast 
retransmit, the sender does Fast Recovery [9]: 

In TCP Reno, TCP source behaves in the same way as that 
in TCP Tahoe. However, when the segment loss is detected 
by fast retransmission algorithm, the slow start threshold is 
set to half the current size of the congestion window. The 
congestion window size is then set to be the same as the 
slow start threshold plus 3 times the segment size. This is 
the Fast Recovery Phase, in which the window size is then 
increased by one segment when a duplicate ACK is received. 
When the non-duplicate ACK corresponding to the 
retransmitted segment is received, the congestion window is 
restored to the slow start threshold [9]. 

2.2.1  Demerits Of TCP Reno: 
Segments not be acknowledged cumulatively but should be 
acknowledged selectively. The selective acknowledgment 
extension uses two TCP options. The first is an enabling 
option, "SACK-permitted", which may be sent in a   SYN 
segment to indicate that the SACK option can be used once 
the   connection is established.  The other is the SACK 
option itself, which may be sent over an established 
connection once permission has been given by SACK-
permitted. The SACK option is to be included in a segment 
sent from a TCP that is receiving data to the TCP that is 
sending that data; The SACK option is to be used to convey 
extended acknowledgment information from the receiver to 
the sender over an established TCP connection. Thus each 
ACK has a block which describes which segments are being 
acknowledged. Thus the sender has a picture of which 
segments have been acknowledged and which are still 
outstanding. [9]. 

2.3 TCP New Reno: 
New Reno is a slight modification over TCP Reno. It is able 
to detect multiple packet losses and thus is much more 
efficient that Reno in the event of multiple packet losses. 
Like Reno, New-Reno also enters into fast-retransmit when 
it receives multiple duplicate packets, however it differs 
from Reno in that it doesn’t exit fast-recovery until all the 
data which was out standing at the time it entered fast 
recovery is acknowledged. Thus it overcomes the problem 
faced by Reno of reducing the cwnd multiples times. The 
fast-transmit phase is the same as in Reno. The difference in 
the fast recovery phase which allows for multiple re-
transmissions in new-Reno. Whenever new-Reno enters fast 
recovery it notes the maximums segment which is 
outstanding. The fast-recovery phase proceeds as in Reno, 
however when a fresh ACK is received then there are two 
cases:  

If it ACK’s all the segments which were outstanding when 
we entered fast recovery then it exits fast recovery and sets 
cwnd to ssthresh and continues congestion avoidance like 
Tahoe. 

 If the ACK is a partial ACK then it deduces that the next 
segment in line was lost and it re-transmits that segment and 

sets the number of duplicate ACKS received to zero. It exits 
Fast recovery when all the data in the window is 
acknowledged [9]. 

2.3.1  Demerits Of TCP New Reno: 
New-Reno suffers from the fact that it’s taking one RTT to 
detect each packet loss. When the ACK for the first 
retransmitted segment is received only then can we deduce 
which other segment was lost 

2.4  TCP SACK: 
TCP with ‘Selective Acknowledgments’ is an extension of 
TCP Reno and it works around the problems face by TCP 
Reno and TCP New-Reno, namely detection of multiple lost 
packets, and re-transmission of more than one lost packet 
per RTT. SACK retains the slow-start and fast retransmits 
parts of Reno. SACK TCP requires that segments not be 
acknowledged cumulatively but should be acknowledged 
selectively. The selective acknowledgment extension uses 
two TCP options. The first is an enabling option, "SACK-
permitted", which may be sent in a   SYN segment to 
indicate that the SACK option can be used once the   
connection is established.  The other is the SACK option 
itself, which may be sent over an established connection 
once permission has been given by SACK-permitted. The 
SACK option is to be included in a segment sent from a 
TCP that is receiving data to the TCP that is sending that 
data; The SACK option is to be used to convey extended 
acknowledgment information from the receiver to the sender 
over an established TCP connection. Thus each ACK has a 
block which describes which segments are being 
acknowledged. Thus the sender has a picture of which 
segments have been acknowledged and which are still 
outstanding. [9]. 

2.4.1  Demerits Of TCP SACK: 
The biggest problem with SACK is that currently selective 
acknowledgements are not provided by the receiver to 
implement SACK we’ll need to implement selective 
acknowledgment which is not a very easy task. 

2.5  TCP Vegas: 

2.5.1  New Re-Transmission Mechanism: 
It keeps track of when each segment was sent and it also 
calculates an estimate of the RTT by keeping track of how 
long it takes for the acknowledgment to get back. Whenever 
a duplicate acknowledgement is received it checks to see if 
the (current time segment transmission time)> RTT estimate; 
if it is then it immediately retransmits the segment without 
waiting for 3 duplicate acknowledgements or a coarse 
timeout [12]. 

2.5.2  Modified congestion avoidance algorithm: 

Instead of increasing the congestion window size blindly 
until losses occur, TCP Vegas tracks the changes in the 
throughput (or more specifically, changes in the sending 
rates) and then adjusts the congestion window size. It 
observes changes in the round-trip times of the segments 
that the connection has sent before. It then calculates and 
compares the measured throughput against the expected 
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throughput. If the expected sending rate is higher than the 
actual sending rate by a or less, TCP Vegas fears that it is 
not utilizing the bandwidth efficiently by occupying some 
router buffers and thus increases the congestion window by 
one. If the expected rate is higher than the actual rate by b or 
more, TCP Vegas assumes that congestion starts to build up 
and thus decreases the congestion window by one. 
Otherwise, the congestion window remains unchanged [12]. 

2.5.3  Modified slow-start: 

TCP Reno doubles its window size every RTT during the 
slow start phase. TCP Vegas, on the other hand, doubles the 
window size only every other RTT during slow-start [12]. 

2.5.4  Demerits Of TCP Vegas: 
TCP Vegas uses a conservative algorithm to decide how and 
when to vary its congestion window. Thus, when TCP 
Vegas and TCP Reno connections share a bottleneck link, 
Reno uses up most of the link and router buffer space. TCP 
Vegas, interpreting this as a sign of congestion, decreases 
the congestion window, which leads to an unfair sharing of 
available bandwidth in favour of TCP Reno. 

 In TCP Vegas, the parameter baseRTT denotes the smallest 
round-trip delay the connection has encountered and is used 
to measure the expected throughput. When rerouting occurs 
in between a connection, the RTT of a connection can 
change. When the new route has a longer RTT, the Vegas 
connection is not able to deduce whether the longer RTTs 
experienced are caused by congestion or route change. 
Without this knowledge, TCP Vegas assumes that the 
increase in RTT is due to congestion along the network path 
and hence decreases the congestion window size. 

2.6  TCP Westwood: 
TCP Westwood exploits two basic concepts: the end-to-end 
estimation of the available bandwidth, and the use of such 
estimate to set the slow start threshold and the congestion 
window. TCPW source continuously estimates the packet 
rate of the connection by properly averaging the rate of 
returning ACKs. The estimate is used to compute the 
“permissible” congestion window and slow start threshold to 
be used after congestion episode is detected, that is, after 
three duplicate Acknowledgments or after a timeout. It 
selects a slow start threshold and a congestion window that 
is consistent with the effective connection rate at the time 
congestion is experienced. We call such mechanism faster 
recovery. 
 
3.  Overview of TCP Westwood: 

 
In TCP Westwood the sender continuously computes the 
Connection Bandwidth Estimate (BWE) which is defined as 
the share of bottleneck bandwidth used by the connection. 
Thus, BWE is equal to the rate at which data is delivered to 
the TCP receiver. The estimate is based on the rate at which 
ACKs are received after a packet loss indication, (i.e. 
reception of 3 duplicate ACKs, or timeout expiration). , the 
sender resets the congestion window and the slow start 
threshold based on BWE. This BWE varies from flow to 
flow sharing the same bottleneck; it corresponds to the rate 
actually achieved by each INDIVIDUAL flow. Thus, it is a 

FEASIBLE (i.e. achievable) rate by definition. 
Consequently, the collection of all the BWE rates, as 
estimated by the connections sharing the same bottleneck, is 
a FEASIBLE set. When the bottleneck becomes saturated 
and packets are dropped, TCPW selects a set of congestion 
windows that correspond exactly to the measured BWE 
rates and thus reproduce the current individual throughputs. 
Another important element of this procedure is the RTT 
estimation. RTT is required to compute the window that 
supports the estimated rate BWE. 

3.1  TCP Westwood: Algorithm: 
TCPW, congestion window increments during slow start 
and congestion avoidance remain the same as in Reno, i.e. 
they are exponential and linear, respectively. A packet loss 
is indicated by (a) the reception of 3 DUPACKs, or (b) a 
coarse timeout expiration The general idea is to use the 
estimated bandwidth BWE to set the congestion window 
(cwin) and the slow start threshold (ssthresh) after a 
congestion episode 

3.1.1  Algorithm after n duplicate ACKS [5]: 
if (n DUPACKs are received) 
ssthresh = (BWE * RTTmin) / seg_size; 
if (cwin > ssthresh) /* congestion avoid. */ 
cwin = ssthresh; 
endif 
endif 

In the pseudo-code, seg_size identifies the length of a TCP 
segment in bits. Note that the reception of n DUPACKs is 
followed by the retransmission of the missing segment, as in 
the standard Fast Retransmit implemented by TCP Reno. 
Also, the window growth after the cwin is reset to ssthresh 
follows the rules established in the Fast Retransmit 
algorithm (i.e., cwin grows by one for each further ACK, 
and is reset to ssthresh after the first ACK acknowledging 
new data). During the congestion avoidance phase we are 
probing for extra available bandwidth. Therefore, when n 
DUPACKs are received, it means that we have hit the 
network capacity (or that, in the case of wireless links, one 
or more segments were dropped due to sporadic losses). 
Thus, the slow start threshold is set equal to the window 
capable of producing the measured rate BWE when the 
bottleneck buffer is empty (namely, BWE*RTTmin). The 
congestion window is set equal to the ssthresh and the 
congestion avoidance phase is entered again to gently probe 
for new available bandwidth.. Note that after ssthresh has 
been set, the congestion window is set equal to the slow start 
threshold only if cwin > ssthresh.  

3.1.2  algorithm after coarse timeout expiration [5]: 
if (coarse timeout expires) 
cwin = 1; 
ssthresh = (BWE * RTTmin) / seg_size; 
if (ssthresh < 2) 
ssthresh = 2; 
endif; 
endif 

The rationale of the algorithm above is that after a timeout, 
cwin and the ssthresh are set equal to 1 and BWE, 
respectively. Thus, the basic Reno behavior is still captured, 
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while a speedy recovery is ensured by setting ssthresh to the 
value of BWE. 

3.2 Strategy for Bandwidth Estimation : 
The TCPW sender uses ACKs to estimate BWE. More 
precisely, the sender uses the following information: (1) the 
ACK arrival times and, (2) the increment of data delivered 
to the destination. Let assume that an ACK is received at the 
source at time tk, notifying that dk bytes have been received 
at the TCP receiver. We can measure the sample bandwidth 
used by that connection as bk=dk/(tk–tk–1), where tk−1 is 
the time the previous ACK was received. Letting Δtk=tk–
tk–1, then bk=dk/Δtk. Since congestion occurs whenever the 
low-frequency input traffic rate exceeds the link capacity, 
we employ a low pass filter to average sampled 
measurements and to obtain the low-frequency components 
of the available bandwidth. More precisely, we use the 
following discrete approximation of the low pass filter due 
to Tustin. 

Let bk be the bandwidth sample, and bˆk the filtered 
continuous first order low-pass filter using the Tustin 
estimate of the bandwidth at time tk. Let αk be the time-
varying exponential filter coefficient at tk. The TCPW filter 
is then given by [4] 

b̂k  = αk b̂k-1 + (1- αk) (bk+ bk-1)/2 
where, 
αk  = (2τ-Δ tk)/ (2τ+Δtk) 

 1/ τ   is the filter cut-off frequency 

Notice the coefficients αk depend on Δtk to properly reflect 
the variable inter-arrival times.  

3.3 TCP Westwood fairness and friendliness: 
Fair bandwidth sharing implies that all connections are 
provided with similar opportunity to transfer data. 
Friendliness is another important property of TCP protocol. 
TCP Westwood must be friendly to other TCP variants. That 
is TCP Westwood connection must be able to coexist with 
connections running TCP variants while providing 
opportunity for all connections to progress satisfactorily  

 
Figure. 3.1 Convergence towards the fair bandwidth sharing [5] 

Consider the case of two connections with the same RTTs. 
Suppose, for the sake of example that the RTT is X packet 
Transmission times, and the bottleneck has X buffers. One 

connection, say A, starts first. Its window “cycles” between 
X and 2X each cycle terminating when buffer overflow. 
Later, connection B starts, first in slow start mode, and then 
in congestion avoidance mode. In congestion avoidance, 
during each cycle the A and B windows grow approximately 
at the same rate, i.e. one segment per RTT. Eventually, the 
bottleneck buffer overflows, terminating the cycle. One can 
show that the window at overflow is: 

Wi = Ri (b/C +RTT), for i = A, B 

Where, R is the achieved rate (i.e. BWE), b is the bottleneck 
buffer size, and C is the bottleneck link capacity.  

This is a general property true for all TCP protocols, and in 
particular TCPW. After overflow, TCPW reduces the 
windows to new values Wi’ as follows: 

Wi’= Ri (RTT) for i = A, B 

Thus, the ratios of the windows of connections A and B are 
preserved after overflow. Yet, the ratio WB/WA keeps 
increasing during congestion avoidance. Consequently, the 
B window and throughput ratchet up at each cycle. 
Equilibrium is reached when the two connections have the 
same windows and the same fair share of the bandwidth. 
The Figure 3.1 graphically illustrates the convergence to the 
fix point WA=WB.  

It can also be applied to the case when the\ bottleneck is 
affected by random errors equally hitting all connections. 
The same method can also be used to evaluate reciprocal 
“friendliness” of TCPW and TCP Reno. If two connections - 
TCPW and Reno - are sharing the bottleneck, and the buffer 
size is exactly equal to the optimal window size to “fill the 
pipe”, then the two connections spilt the bottleneck fairly. In 
fact, at equilibrium, each has window = X when buffer 
overflows. After overflow, the TCPW connection gets 
window = C*RTT/2 = X/2; TCP Reno simply half the 
current window, to X/2. Thus, friendliness is preserved Note 
that sizing the buffer to match the “pipe size” is a common 
and intuitively acceptable design choice. If the buffer is 
much smaller than pipe size, TCPW returns a larger CWIN 
than Reno, and thus tends to capture the channel. If, on the 
other hand, the buffer is several times larger than pipe size, 
Reno tends to prevail over TCPW. 

Here represented simulation result illustrating the accuracy 
of TCP Westwood bandwidth estimation scheme 

 
 

Figure. 3.2 TCPW with concurrent UDP traffic-bandwidth estimation [8] 
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Figure.3.2 shows a single TCP connection sharing the 
bottleneck link with two background UDP ON/OFF sources 
of varying data rates with no flow control. TCP packets are 
1400 bytes in length including TCP/IP headers. TCP and 
UDP packets are assigned the same priority. The 5 Mbps 
bottleneck link has a round trip propagation time of 70 ms. 
Each UDP connection transmits at a constant bit rate of 1 
Mbps while ON. Both UDP connections start in the OFF 
state; after 25s, the first UDP connection is turned ON, 
joined by the second one at 50s; the second connection 
follows an OFF-ON-OFF pattern at times 75s, 125s and 
175s; at time 200s the first UDP connection is turned off as 
well..  

The results in Figure.3.2 confirm the effectiveness of the 
TCP Westwood bandwidth estimation perfectly tracks the 
UDP fluctuations, adjusting throughput accordingly. 

 TCP Westwood performance in presence of link error 

Here represented simulation result in figure 3.3 comparing 
the throughput of Reno and TCPW as a function of error 
rates. The bottleneck bandwidth is set to 45Mbps, and the 
two-way propagation time is 70ms. With no errors, the 
performance of TCPW and Reno is virtually identical. As 
error rate increases, TCPW outperforms Reno. At 1 % error 
rates, appropriate for wireless links, the throughput 
improvement is615 %. As the error rate increases further, 
say above 10%, even TCPW collapses, as expected. 

 

 
Figure. 3.3 Impact of error rates [8] 

Experimental results seen in figure 3.3 confirms that new 
control scheme converges to fair share at steady state under 
uniform path conditions, also TCP Westwood handle losses 
caused by link errors or wireless channel  more efficiently 
than TCP Reno.  

 
Figure. 3.4 Good put as function of one-way end-to-end delay [7] 

Figure 3.4 represents simulation results that confirmed that 
Westwood performs better than Reno under all tested RTTS 
but it slightly out performed by Sack if it end-to-end delay is 
smaller than 0.2 seconds as depicted in Figure3.4(10 
connections,45 Mb/s link capacity). 

Simulation seen that for small RTTs Sack manages to 
recover fast enough  on other hand TCP Westwood suffer 
from being too aggressive for small RTTS and result poorly 
accurate bandwidth estimation forces it into slow start state. 
 
Internet measurements 

Here researcher test TCPW in an actual Internet 
environment, test carried out a set of Internet experiments 
using the configuration depicted in Figure 3.5 The sources 
are at UCLA, while 

 
Table 1 Internet throughput measurements [5] 

 

 
Fig.3.5. Internet measurement scenario [5] 
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The destinations are chosen in three different continents 
(Europe, South America, and Asia). The destination hosts 
are, of course, unaware whether the source host runs TCPW 
or Reno. Tests were scheduled during normal working hours 
at the destination sites. Experiments included either single or 
multiple file transfers. Throughput results were obtained by 
averaging repeated single file transfers. Multiple file transfer 
experiments were used to assess TCPW fairness. A rather 
large file size was used (10Mbytes) to capture only steady 
state behavior. A standard FTP client (ncftp-3.0.2) was used 
as testing software with additional code for obtaining 
detailed logging at 1s intervals. Here measured application 
throughput in terms of user data/s as reported by ncftp. The 
average throughput achieved by Reno and TCPW on the 
various intercontinental connections is shown in table 1. 
Tests were repeated about 200 times throughout the day. 
The results show that TCPW performs marginally better that 
Reno on the Italy and Taiwan connections. It performs 
significantly better on the Brazil connection.  

TCP Westwood introduce faster recovery to avoid over 
shrinking cwin after three duplicate ACKs by taking into 
account the end-to-end estimation of the bandwidth 
available to the TCP. 

4.  Changes done in existing algorithm: 

4.1 Reno Friendly TCP Westwood based on   
Router Buffer Estimation: 

In this method, we represent an improved version of TCP 
Westwood to overcome unfriendliness of TCP Westwood 
according to buffer size of bottleneck link router. Here first 
investigate the friendliness of TCP Westwood through 
mathematical analysis using throughput model, then 
estimate the buffer size of the bottleneck link router by 
applying a bandwidth estimation technique known as RCE 
(Residual Capacity Estimator) [5], and set the parameter 
ssthresh. 

4.1.1 Router buffer problem of TCP Westwood: 
TCP Westwood uses the minimum RTT ( min RTT ) to set 
the ssthresh, but this means that TCP Westwood does not 
consider RTT oscillation which happens when network 
begins to be congested. The fact that RTT relies on link 
delay (approximately min RTT ) and buffering delay means 
that TCP Westwood performance  will depend on buffer size 
of a bottleneck link router.  

In this research, researcher investigated the friendliness 
between TCP Reno and TCP Westwood when they share the 
same bottleneck link. They firstly pointed out a problem 
through mathematical Analysis and simulations; the 
friendliness between TCP Reno and TCP Westwood is 
deteriorated according to buffer sizes of a bottleneck link 
router. That is, when the buffer size is smaller than the 
bandwidth delay product, throughput of TCP Reno is 
degraded. On the contrary, when the buffer size is larger 
than the bandwidth delay product, throughput of TCP 
Westwood is degraded by the TCP Reno connection. Here 
represent an improved version of TCP Westwood that 
achieves friendliness to TCP Reno. Key points are as 
follows (1) applying a bandwidth estimation technique, RCE, 
along with the original rate estimation technique, (2) 

estimating the buffer size of a bottleneck link router and 
deriving compensation parameters to force friendliness 
based on TCP throughput estimation models, and (3) 
updating the ssthresh parameter with the compensated 
RTTmin value. representd Simulation results show that 
represent scheme indeed achieves friendliness with TCP 
Reno versions without impact of router buffer sizes.  

4.1.2  Throughput Ratio for Variants Buffer Sizes: 
Here researcher evaluates the impact of buffer sizes on 
friendliness. The network topology consists of two sender 
hosts (S1 and S2), two receiver hosts (D1 and D2) and two 
routers (R1 and R2). Host S1 uses TCP Westwood scheme 
for data transmission, and host S2 using TCP Reno versions 
shares the same link between routers R1 and R2. That is, 
one connection of TCP Westwood scheme and another 
connection of TCP Reno versions compete on the bottleneck 
link. The bandwidth and the propagation delay of each link 
between the routers and sender/receiver hosts is 100[Mbps] 
and 5[ms]. The bandwidth and the propagation delay of the 
link between R1 and R2 is 50[Mbps] and 35[ms]. The total 
round trip delay between the sender hosts and the receiver 
hosts is 90[ms]. Here when assume the packet size is 1500 
byte, the bandwidth delay product becomes 375[packets]. 
Researcher use a Tail Drop discipline for buffer 
management of router R1.Here researcher analyses   
throughput ratio in the steady state between TCP Reno 
versions and TCP Westwood scheme with variant buffer 
sizes. From the calculated ratio of average  throughput of 
Reno and TCP Westwood  it can be noted that TCP 
Westwood achieves friendliness to TCP Reno versions only 
when the buffer size of a bottleneck link router is set to 
375[packets], that is the exact BDP in our simulation 
condition. However, when the buffer size is not set to 
375[packets], friendliness with TCP Reno versions is 
deteriorated. other hand, it should be emphasized that TCP 
Westwood scheme achieves friendliness with TCP Reno 
versions for variant buffer sizes, because represented 
scheme adapts the min RTT according to the buffer size of a 
bottleneck link router. 

From the calculated value of ratio we can see friendliness 
between TCP Reno and TCP Westwood is deteriorated 
according to buffer sizes of a bottleneck link router. That is, 
when the buffer size is smaller than the bandwidth delay 
product, throughput of TCP Reno is degraded. On the 
contrary, when the buffer size is larger than the bandwidth 
delay product, throughput of TCP Westwood is degraded by 
the TCP Reno connection. 

4.2 Improve Slow Start threshold and congestion 
window: 

TCP is able to work in wired, wireless as well as 
heterogeneous network. However, the bandwidth of such 
network may change frequently for many different reasons. 
Therefore, TCP needs to probe the extra bandwidth of a 
network to use the available bandwidth efficiently. Here 
represented scheme that improves the slow start state and 
the congestion avoidance state. Here represented scheme 
dynamically sets the slow start threshold and adjusts the 
congestion window in dynamic bandwidth environment. 

4.2.1  Slow Start Threshold Estimation: 
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Here represented a slow start threshold estimation scheme 
that improves TCP performance during the slow start state. 
The ssthresh estimation dynamically adjusts the slow start 
threshold. The ssthresh estimation combines the expected 
rate and the actual rate to obtain an appropriate rate. Then 
the appropriate rate is used to obtain an appropriate ssthresh. 
The appropriate ssthresh can enhance TCP performance. 
Assume that RTTmin is the minimum RTT measured by the 
TCP source. 

  

Figure. 4.1 Expected rate, appropriate rate, and actual rate with β = 0.3 [2] 

We define the appropriate rate (AppR) as below, where 
AppR with β = 0.3 and 0 < β < 1. 

Expected Rate = cwnd/RTTmin 
Actual Rate = cwnd/RTT 
Appropriate Rate (AppR) = Expected Rate × β + Actual 
Rate × (1 − β) 

Figure 4.1 shows the relationships among the expected rate, 
the actual rate, and the appropriate rate. If parameter β is 
close to 1, the appropriate rate would get closer to the 
expected rate. Therefore, the appropriate ssthresh would be 
set too high. On the other hand, if parameter β is close to 0, 
the appropriate ssthresh would be too conservative (small) 
to degrade TCP performance. Here set appropriate rate 
conservative by setting β to 0.3. If the appropriate rate is too 
large, ssthresh would be set too high. This would cause 
multiple packet loss if the exponential increase of cwnd 
generates too many packets too quickly. 

4.2.2   Appropriate Congestion Window: 
Here represented scheme, set ssthresh to Actual Rate× (1−β) 
×RTTmin/seg_size after the fast retransmission. When the 
timeout occurs, ssthresh is set to AppR × RTTmin/seg_size. 
In this state, it can detect the extra bandwidth via 
consecutive observation RTT (COR). COR can observe 
variations of RTT and determine if there are three 
consecutive decreases of RTT or three consecutive increases 
of RTT. The COR period is three (P = 3). For three 
consecutive decreases of RTT, we calculate the variation as 
follows [1]: 

RTTdiff = RTTmax − RTTmin 
Variation = RTTdiff/RTTmax, 

Where RTTmax and RTTmin are the maximum and the 
minimum RTT measured by the TCP source, respectively. 
RTTdiff is the difference between RTTmax and RTTmin. 

Here dynamically adjust cwnd in the congestion avoidance 
state according to the degree of variation of RTT. For three 
consecutive decreases of RTT, there define three cases of 
the next cwnd below [2]. 
 

cwndnext =�
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  1, if Variation <  1/3

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  3, if 1/3 ≤  Variation <  2/3
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  5, if Variation ≥  2/3

� 

For three consecutive increases of RTT, calculate the 
variation in a same way as we calculated the variation for 
three consecutive decreases of RTT. For three consecutive 
increases of RTT, we define two cases of the next cwnd 
below [2]. 

cwndnext=�
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  1, if Variation < 1

2

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , if Variation ≥ 1
2

�  

4.3 Agile Probing: 
Here represented [2] Agile Probing scheme improve the 
performance of TCP during startup and over large leaky 
pipe with the help of persistent non congestion detection 
technique. Agile probing and PNCD are cooperated into 
TCP Westwood to overcome the “slow” slow-start and 
inefficient window increase. In slow-start, agile probing is 
always used, while in congestion avoidance, it is invoked 
only after PNCD detects persistent non congestion. 

4.3.1 Agile Probing Mechanism: 
Agile Probing uses Eligible Rate Estimation scheme to 
adaptively and repeatedly reset the value of ssthresh. During 
agile probing, when the current ssthresh is lower than 
Eligible Rate Estimation, the sender resets ssthresh higher 
accordingly, and increases cwnd exponentially. Otherwise, 
cwnd increases linearly to avoid overflow. In this way, agile 
probing probes the available network bandwidth for this 
connection, and allows the connection to eventually exit 
slow-start close to an ideal Window corresponding to its fair 
share of bandwidth. 

4.3.2 Persistent non congestion detection: 
Here presented [2] a PNCD mechanism that aims at 
detecting extra available bandwidth and invoking agile 
probing accordingly. In congestion avoidance, a connection 
monitors the congestion level constantly. If a TCP sender 
detects persistent non congestion conditions, which indicates 
that the connection may be eligible for more bandwidth, the 
connection invokes agile probing to capture such bandwidth 
and improve utilization of available bandwidth. 

5.  Conclusion and future research: 
In this paper we represent the brief over view of older 
version of TCP variants and their demerits. Here we also 
represent new version of TCP  called  TCP Westwood that 
improve the performance of TCP in lossy link where packets 
are drops due to link error .we also seen  the fairness and 
friendliness issued of TCP Westwood. In presence of error 
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rate it is difficult to establish the fairness between TCP 
Westwood and other coexisting TCP Variants.  

It was surveyed that TCP Westwood cannot efficiently use  
large amount of bandwidth that suddenly becomes available 
due to change in network conditions,  random loss during 
slow-start that causes the connection to prematurely exit the 
slow-start phase. 

There is a scope of improvement in refinement of bandwidth 
estimation and filtering method in order to improve the TCP 
Westwood friendliness in presence of error rate. ssthresh can 
be adjusted adaptively so the slow start phase can increase 
dynamically. It also improves the performance of TCP 
Westwood in congestion avoidance phase when large 
amount of bandwidth that suddenly become available. 
Improve the performance of TCP Westwood in wireless 
network where main reason for packet loss is link failure.  
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