

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 6 June, 2014 Page No. 6438-6441

Seyed Vahid Sanei Mehri
1
 IJECS Volume 3 Issue 6 June, 2014 Page No.6438-6441 Page 6438

Distributed Segment Tree Using MapReduce
Seyed Vahid Sanei Mehri

1
, Ehsan Akhtarkavan

2
, Saeed Erfanian

3

1 Department of Computer Engineering, Garmsar Branch,

Islamic Azad University, Garmsar, Iran

Email: Vahid.sanei@gmail.com

2 Department of Computer Engineering, Garmsar Branch,

Islamic Azad University, Garmsar, Iran

Email: Akhtarkavan@iau-garmsar.ac.ir

3 Department of Electrical Engineering, Garmsar Branch,

Islamic Azad University, Garmsar, Iran

Email: serfanian@iau-garmsar.ac.ir

ABSTRACT: In this paper we aim to propose an efficient method to implementing a distributed segment tree. For this purpose we use

MapReduce which is a powerful tool in parallel data processing to divide the task among P separate processors. We will exploit parallel

processing in order to decrease the time complexity of segment tree implementation and range queries.

Keywords – Data Structure, Segment Tree, MapReduce, Parallel Processing

1 INTRODUCTION

Segment tree is one of the most important data structures for

facilitating rapid searching in a set of items, which is widely

used in computational geometry, for instance in Klee’s measure

problem [1]. Segment tree is a full binary tree used to maintain

intervals of a given set. Actually, each node of the tree

maintains an interval of the given set. Using this innovative

data structure, it is possible to query which nodes in the tree

contain a desired range of set in logarithmic time. Every node

of segment tree can be updated in logarithmic time, too. In this

paper, we aim to implement a distributed segment tree using

MapReduce model. We will take advantage of parallel

processing in MapReduce in order to decrease the time

complexity of segment tree implementation and range queries.

2 SEGMENT TREE

In this section, we aim to introduce the features of

(undistributed) segment tree and review time complexity of

segment tree implementation and range queries in the given set.

Segment tree is a rooted full binary tree segment tree with the

following properties [2]:

1. The segment tree representing the range of length

L (henceforth the range is called segment tree range) has a

height 1log  LH .

2. Each node on a segment tree represents a node interval

],,[,, klkl ts (]log,0[Ll and]12,0[ lk). Its length is

1,,,  klklkl stl . Clearly, the root node interval equals to

the segment tree range and leaf node interval is one.

3. Each non-leaf node has two children. The left child and the

right child represent the intervals]
2

,[
,,

, 






  klkl

kl

ts
s and

],,1
2

[,

,,

kl

klkl
t

ts








 
respectively. The union of the two

children covers the same interval as the parent does.

4. For neighboring nodes on the same layer, we have

11,,  klkl ts for any]12,1[ lk . This property ensures

the continuity of the segment tree.

mailto:Vahid.sanei@gmail.com
mailto:Akhtarkavan@iau-garmsar.ac.ir
mailto:serfanian@iau-garmsar.ac.ir

Seyed Vahid Sanei Mehri
1
 IJECS Volume 3 Issue 6 June, 2014 Page No.6438-6441 Page 6439

5. All the nodes from the same layer span the whole segment

tree range. That is, 
12

0

,,],[






lk

k

klkl Lts for]log,0[Ll .

This property ensures the integrity of the segment tree.

An exemplar segment tree representing the range [0, 7] (i.e., L

= 8) is depicted in Figure 1. We can easily verify all above

properties.

Theorem 1. Any segment with a range)(, LRR  , can be

represented by a union of some node intervals on the segment

tree. There exist multiple possible unions for any range with

1R . Since the segment tree is a full binary tree, it is trivial

to prove the first half of the theorem. For instance, the segment

[2, 6] can be represented by the union of intervals [2, 3], [4, 5]

and [6, 6], as shown in Figure 1. The second half of the

theorem is also evident from the third property of segment tree.

Although there are multiple possibilities to represent a larger

range with unions of smaller subranges, the following theorem

ensures the existence of the optimal representation.

Theorem 2. Any segment with a range)(, LRR  , can be

expanded by a union of no more than Llog2 node intervals.

Proof: Due to the space limitation, we only give a short

intuitive proof. For a given segment S , suppose the longest

part on S represented by a single node is P , then the left part

to P should always be represented by the right children on

segment tree, and the right part should be represented by the

left children. There are at most Llog consecutive left children

on the tree and at most Llog consecutive right children. So

segment can be represented at most Llog2 nodes on the tree.

Therefore building a segment tree data structure can be done in

)log(LL and range queries in)(log L .

Figure 1. Illustration of a segment tree with a range [0,7]

and the optimal representation of range [2,6].

3 MAPREDUCE

Nowadays, parallel data processing has become one of the most

practical methods in the field of data processing. MapReduce

which has been popularized by Google [3] is a modern

approach for processing data which has a high fault tolerance.

In this approach, low-end machines can be used for data

processing. MapReduce has valuable features such as

scalability, simplicity and high fault tolerance, which make it a

special and useful tool in both academic and industrial projects

[4-7]. Programs which are written in MapReduce model are

executed parallelly and automatically. The input data will be

distributed among a number of machines on a cluster and then

will be processed [8].

The MapReduce model consists of two primitive functions:

Map and Reduce. The input for MapReduce is a list of (key1,

value1) pairs and Map() is applied to each pair to compute

intermediate key-value pairs, (key2,value2). The intermediate

key-value pairs are then grouped together on the key equality

basis, i.e. (key2,list(value2)). For each key2, Reduce()works on

the list of all values, then produces zero or more aggregated

results. Users can define the Map() and Reduce() functions

however they want the MapReduce framework works [9].

Figure 2. MapReduce data flow[10].

0

1

0

1

2

Map phase Reduce Phase

Set X

Seyed Vahid Sanei Mehri
1
 IJECS Volume 3 Issue 6 June, 2014 Page No.6438-6441 Page 6440

The data flow with three map and two reduce tasks is illustrated

in Figure 2. The dotted boxes indicate nodes, the light arrows

show data transfers on a node and the heavy arrows show data

transfers between nodes . The goal of this paper is to

implement a distributed segment tree with the help of

MapReduce.

4 DISTRIBUTED SEGMENT TREE

A distributed solution is proposed to build segment tree using

MapReduce to exploit parallel processing. We will represent

the time complexity of the segment tree implementation and

range queries are reduced using our proposed solution since

the segment tree is distributed among P processors.

4.1 Distribtued segment tree implementation

Let us assume that set X contains n elements. X is partitioned

among P processors where each processor contains at most










P

n
 consecutive elements of X . The set of elements

maintained by processor i, is denoted by Xi. More formally,

)0(,, Pi
P

n
XXXX iii 








  . In the Map

phase, each processor implements the segment tree of its own

elements. Since the number of elements in each processor is at

most 








P

n
, implementing the segment tree in each processor

can be done with)log(
P

n

P

n
 time complexity. In the other

hand, in the Map phase, processors act parallelly, therefore

implementing segment tree by all processors will be done in

)log(
P

n

P

n
 , too.

4.2 Range queries on the distributed segment tree

Since in each processor a segment tree maintains 








P

n

elements, finding a desired interval in the tree can be done

in)(log
P

n
 . Besides, it is possible that two or more

processors contain the desired interval, which increases the

overall time complexity for finding the interval to

)(log P
P

n
 .

Figure 3. Range query on the distributed segment tree.

In Figure 3, which illustrates searching requested intervals in

the distributed segment tree, a set containing 7 elements is

given, and the interval [0,4] is requested. As processor 1

maintains interval [0,3] and processor 2 maintains interval

[4,6], the obtained results from processors 1 and 2 are [0,3] and

[4,4], respectively, which should be returned in the Map phase.

In the Reduce phase, the obtained results from the Map phase

are gathered and processed in one processor and then the final

result is written into an output file.

5 EXPERIMENTS

We implemented distributed segment tree on a cluster of PCs

(Intel Core i5 processor, 2GB RAM) on Hadoop-1.2.1[11] .

The time complexity to implement distributed segment tree is

illustrated in Figure 4. As shown, two, three and four

processors as data nodes in the Hadoop cluster are used for

processing the input data.

Figure 4. Comparision of running time of 2, 3 and 4

processors in hadoop cluster to implement distributed

segment trees.

The obtained results indicate that an increase in the number of

processors in the cluster will lead to a decrease in running time.

Besides, more processors means less number of elements to be

Seyed Vahid Sanei Mehri
1
 IJECS Volume 3 Issue 6 June, 2014 Page No.6438-6441 Page 6441

maintained by each processor and hence a lower running time.

The measured running times in Figure 4 are obtained by taking

the mean of 50 running times of random input data.

Figure 5. Comparision of running time of 2, 3 and 4

processors in the hadoop cluster to range query on the

distributed segment trees.

The running time for range queries on a distributed segment

tree is shown in Figure 5. The relation between the number of

processors and range queries running time is the same as that

for building segment trees explained earlier. The measured

running times in Figure 5 are again obtained by taking the

mean of 50 running times of random input data.

6 CONCLUSION

In this paper we provided a distributed method to implement

segment tree using MapReduce. The described method splits

the given set among processors in the Map phase and each

processor implements the segment tree of its own elements.

Since the number of elements in each processor is at

most 








P

n
, implementing the segment tree in each of them can

be done with)log(
P

n

P

n
 time complexity. In the other hand,

in the Map phase, processors act parallelly, therefore

implementing segment tree by all processors is done in

)log(
P

n

P

n
 . Additionally, we presented finding a desired

interval in the distributed segment tree can be done

in)(log
P

n
 , too. Also, the obtained results in Figure 4 and

Figure 5 have indicated that an increase in the number of

processors in the cluster will lead to a decrease in running time.

REFERENCES

[1] Bentley, J.L., Algorithms for Klee's rectangle

problems. 1977, Technical Report, Computer.

[2] Zheng, C., et al. Distributed Segment Tree: Support of

Range Query and Cover Query over DHT. in IPTPS.

2006.

[3] Dean, J. and S. Ghemawat, MapReduce: simplified

data processing on large clusters. Commun. ACM,

2008. 51(1): p. 107-113.

[4] Deligiannis, P., H.-W. Loidl, and E. Kouidi,

Improving the diagnosis of mild hypertrophic

cardiomyopathy with MapReduce, in Proceedings of

third international workshop on MapReduce and its

Applications Date. 2012, ACM: Delft, The

Netherlands. p. 41-48.

[5] Mantha, P.K., A. Luckow, and S. Jha, Pilot-

MapReduce: an extensible and flexible MapReduce

implementation for distributed data, in Proceedings of

third international workshop on MapReduce and its

Applications Date. 2012, ACM: Delft, The

Netherlands. p. 17-24.

[6] Menon, R.K., G.P. Bhat, and M.C. Schatz, Rapid

parallel genome indexing with MapReduce, in

Proceedings of the second international workshop on

MapReduce and its applications. 2011, ACM: San

Jose, California, USA. p. 51-58.

[7] Qiu, J., Generalizing mapreduce as a unified cloud

and HPC runtime, in Proceedings of the 2nd

international workshop on Petascal data analytics:

challenges and opportunities. 2011, ACM: Seattle,

Washington, USA. p. 37-38.

[8] Mehri, S.V.S., et al., Calculating the Area of the

Union of Iso-oriented Rectangles Using MapReduce.

IJECS, 2014. 3(4).

[9] Lee, K.-H., et al., Parallel data processing with

MapReduce: a survey. AcM sIGMoD Record, 2012.

40(4): p. 11-20.

[10] White, T., Hadoop: The definitive guide. 2012: "

O'Reilly Media, Inc.".

[11] Welcome to Apache™ Hadoop®! ; Available from:

http://hadoop.apache.org/.

http://hadoop.apache.org/

