

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 4 April, 2013 Page No. 1147-1155

P. Ranjeet Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 1147-1155 Page 1147

Software Quality Prediction: A Review and Current Trends

P. Ranjeet Kumar *, R. Ramesh**, T.Venkat Narayana Rao ***, Shireesha Dara****

* Student B.Tech, Third Year, C.S.E, KKR & KSR Institute of Technology and Sciences [KITS],
Vinjanampadu, Guntur., A.P, INDIA

**Professor, Computer Science and Engineering, KKR & KSR Institute of Technology and Sciences
[KITS], Vinjanampadu, Guntur. A.P, INDIA

***Professor, Computer Science and Engineering, Guru Nanak Institutions Technical Campus
****Asst. Professor, Computer Science and Engineering, Guru Nanak Institutions Technical Campus

R.R. District, Ibrahimpatnam, A.P, INDIA, tvnrbobby@yahoo.com
Abstract:
Software Engineering is the area to analysis, design, development and maintenance of software. Quality is the main constraint
about the success of the software design. Works on testability of components or component-based software have proposed several
techniques for increasing testability of component-based software systems. This work aims at reviewing these techniques for
understanding their similarities and differences. This helps in evaluating proposed techniques as per their contribution in solving
the concerned problems. The major quality attribute of a software product is the degree to which it can be relied upon to perform
its intended function. Evaluation, prediction, and improvement of this attribute have been of concern to designers and users of
computers and software from the early days of their evolution. Idea behind code reuse is that a partial or complete computer
program written at one time can be written into another program at later time. Simulators also calculate the mean relative error
between original effort and calculated efforts. Selecting the right software tool is one of the most important decisions taken by
company; the success of the company will depend predominantly on it. Moreover, it is hard to recognize which tool is most
appropriate technology transfer is an issue of major significance for organisations wishing to use reuse technology. This paper
gives overview about the software models and reuse technology of software and the trends, which are currently used.
.
Keywords: Software design, software reliability, program, QC, software development tools

I. INTRODUCTION

 Software engineering is the profession to analysis, design,
development and maintenance of software. Software
engineering mainly focuses on management process of
software development and expenditure representations with
cost effective software development [2]. Quality of the
software can be improved by the fault prediction in software
using the different metrics like size or performance or
complexity or combination of these. These metrics are
evaluated to predict the fault to produce the quality in
software. These problems require better testing and quality
assurance techniques. Testability of a software system is an
effective and viable technique of reducing the testing cost,
and, increasing testing effectiveness. Testability is not only
the indicator of testing effectiveness, but, also, a measurable
indicator of quality of a software development process.
Testing involves test-case generation, test-case execution
and test evaluation. All the aspects of software development
that ease these activities directly or indirectly make a

software system more testable. The role of computer
software has undergone significant change over a time span
of little more than 50 years. Today, software takes on a dual
role. It is a product and, at the same time, the vehicle for
delivering a product. As a product, it delivers the computing
potential embodied by computer hardware or, more broadly,
a network of computers that are accessible by local
hardware. Whether it resides within a cellular phone or
operates inside a mainframe computer, software is
information transformer, producing, managing, acquiring,
modifying, displaying, or transmitting information that can
be as simple as a single bit or as complex as a multimedia
presentation. The primary grounds influencing these issues
are either requirements of company or goals set by the
company [1].
Thus it is important to get a tool which can be configured
with needs of users and adaptable with newer technologies.
The portability of tool also plays a crucial role in selecting a
tool Software reuse exploits a collaboration process in
which designers working on new problems can take

http://www.ijecs.in/�

P. Ranjeet Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 1147-1155 Page 1148

advantage of the work of designers who have encountered
similar problems in the past. Not only technical problems
but also cognitive and social factors inhibit the widespread
success of systematic software reuse. An important
paradigm shift is to reconceptualize reuse as a collaborative
process, in which software designers should not only take
advantage of existing reuse repositories, but, through their
own work, modify components and evolve reuse
repositories.

 II. REVIEW OF LITERATURE

Cagatay Catal (2010) gives the detailed literature review and
current trends in software fault prediction. The problem
occurs to predict the software fault then the previous
software fault data was missing and if it may be the new
project. To overcome this problem X-means clustering
based method used, also fuzzy clustering and k-means
clustering-based methods used in the experiments. But the
system effecting cost of metrics collection tools are
expensive, so need influential model to predict fault with
limit fault data. Edward Allen (1998) describes the
reliability enhancement of targeting software modules based
on genetic programming (GP). In this paper case study,
using CBR predicted the quality of Command, Control, and
Communications written in Ada. This system provides high
accuracy and useful.

A) Testability Techniques for CBS Systems
Researchers have been concerned with testability in order to
make software testing more efficient. CBS development
aims at maximising reuse of COTS and in house
components. Widespread use of COTS and in-house
components makes testability more crucial and relevant to
software development. This explains why most of the
techniques addressing CBS testability are concerned with
component testability. Gross etal (2005) proposed the use of
models for generating built-in-test for automation and effort
reduction[3][4].

 B) Problems Addressed By CBS Testability
In order the understand CBS testability, we will try to
concentrate on the problems of concern of various testability
techniques. This gives a ground for categorising the
proposed testability techniques. Further, this lets us
understand the contribution of different techniques more
explicitly. What are the problems, which are being
considered under the purview of CBS testability? Below, we
classify the testability techniques as per nature of the
addressed problems. This would let us evaluate testability
techniques in a realistic manner. Classification is not
disjoint; rather, it has to do with major problems that have
been considered by researchers. Following are the major
problems that have been considered under purview of CBS
testability[5].

i) Modeling Component testability
These studies considered the aspects related to the form of a
testable component and the way testability can beanalysed

and measured. Freedman (1991) showed that it is essential
to recognize hidden inputs and outputs [1]. Further, he
stressed on the fact that we should specify output domain so
that it matches the set of outputs caused by input values.
This is because if we don’t know what are inputs and
outputs, then, it would be impossible to evaluate the result
of test case execution. It may not be possible to specify
outputs according to exact set of outputs obtained by
executing the set of inputs in every case. We should be able
to analyze the testability on the basis of its code and internal
structure. This is important because certain decision
regarding testability can be made only after the analysis of
its structure or code. A work entitled “Testability Analysis
for Software Components” aims at testability analysis of C
or Ada component to recognize those control flows which
can be used to test a part of code more easily. A qualitative
model incorporating the factors that affect component
testability was proposed by Gao and Shih (2005) in a work
entitled “A Component Testability Model for Verification
and Measurement”.

ii) Facilitating User-Oriented Component Testing
Validating the COTS components as per an application
context is a key step in successfully developing the CBS
systems .A work entitled “Constructing Self-Testable
Software Components” aims at providing built in test
capability incorporating generation of test cases,
implementation of assertions relative to class invariants and
class methods pre and post conditions, test driver
generation, test retrieval, test history creation and
aintenance. Work entitled “Contract-based It integrates
STECC method and metamorphic testing to accomplish the
specified features. Next, a work tries to capture the
dependency between two components. It devises a method
of providing dependency information in form of metadata
which can be used for generating test cases when integrating
components. It also aims at increasing observability based
observation points. This helps in modulating the separate
concerns, and, facilitates maintenance and evolution of
software systems.

iii) Test Support and Automation at Architecture Level
A work entitled “A study on Design for testability in
Component-Based Embedded Software” is concerned with
test support at architecture level. It identified that techniques
for control of messaging, simulation of stubs and
deployment environment, testing support in form of built-in
test, trace support and support for ad-hoc testing support are
required at architectural level[6].

iv) Deployment and run-time test support

Run-time testing is a viable option for integrating
components that cannot be tested during traditional
integration time testing. Performing tests during deployment
or in-service time introduces interference problems, such as
undesired side effect in the state of a system or the outside
of the system. Major issue with runtime testability is
devising models for analyzing interference, and, come up
with built-in test support and test infrastructure support to

P. Ranjeet Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 1147-1155 Page 1149

deal with the interference. A qualitative model was proposed
by the work entitled “A Model for the Measurement of the
Runtime Testability of Component-based Systems”.

 III. DISCUSSIONS

Testability techniques for software systems aim at devising
methods and guidelines, setting standards, and analyzing
artifacts so as to make testing easy. Many testability
techniques have been proposed in connection with issues
that can make testing easier. We will discuss the various
challenges and problems falling in the categories presented
in previous section.

A) Challenges and Problems in Modeling Component
Testability
What is a testable component? Jerry Gao has identified
factors affecting component testability. According to him
component testability depends on understadability,
observability, component traceability and test support
capability of a component .Another challenge is to provide
well defined guide lines to incorporate the above mentioned
attributes[7].

B) Challenges and Problems in Facilitating User-
Oriented Testing
User-oriented testing has to be accomplished without access
to source code. This means that user needs to stick to some
form of specification based testing. If user wants code based
testing, then, vendor of component needs to supply those
test cases along with the component. Further, component
should facilitate test execution and evaluation. This is
supported by self-testable component. A self-testable
component requires Built-in-test capabilities, test case set or
some specification for creating test case set and
infrastructure supporting self-testability. Problem with this
approach is that user can not choose test-criteria at his
discretion. It is prefixed by the vendor of a component.

C) Challenges and Problems for Test and Automation
Support at Architecture Level
Testability is an important concern at architectural level.
Test implementation, control of messaging, simulation of
stubs and execution environment and built-in test support
from components are challenges at architecture level [9].
What are effective ways to accomplish the above mentioned
tasks? How can we support the testing of non-functional
requirements at architectural level? It has been argued that
COTS components must be verified early in the software
development life cycle for support of functional and
nonfunctional requirements.

D) Challenges and Problems for Run-Time Testing
Challenges in this category comprised of understanding and
separating the requirements according to type of affect they
produce on a running system. Next, each of the requirements
has to be analysed for the possible test support required. In
order to meet these challenges, we need to develop models
and techniques to understand the way the components

interact with each other, and, the affect functionalities to be
tested have on functionalities of other components [10].

E) Challenges and problems in measuring component
testability
Since, testability may be related to almost all the activities
of the software development life cycle, a testability
technique needs to be evaluated in terms goodness of
solution of the practical problems it helps in solving so as to
make testing easier. This implies that we cannot compare
testability gain due to a specification standard with that of
testability gain resulting from coding standard. This is
because we do not have so much refined understanding of
Testability gain obtained by following these two standards.
Both techniques help in making testing easier in different
ways.

IV.SOFTWARE AND HARDWARE
RELIABILITY

However, the concepts and theories developed for software
reliability could really be applied to any design activity,
including hardware design. Once a software (design) defect
is properly fixed, it is in general fixed for all time. Although
manufacturing can affect the quality of physical
components, there application process for software (design)
is trivial and can be performed to very high standards of
quality. Since introduction and removal of design faults
occur during software development, software reliability may
be expected to vary during this period [8]. The “design
reliability” concept has not been applied to hardware to any
extent. It was possible to keep hardly generally less complex
logically then software.

A) Software Reliability
Software Reliability is a subfield of software engineering in
which practitioners are concerned with measuring and
managing software quality. This valuable discipline has
inherited much of its theory from hardware reliability and
has gained mixed acceptance from the software
community[1]. Software Reliability has been regarded as
one of the important quality attributes because low reliable
software systems have high possibilities of causing serious
problems such as the loss of human life, catastrophic
mission failures, and the waste of valuable resource
investments. Software Reliability is defined as: the
probability of failure-free software operation for a specified
period of time in a specified environment. It is evident from
the definition that there are four key elements associated
with the reliability namely element of probability, function
of the product, environmental conditions, and time.
Software

B) Hardware Reliability
Hardware Reliability is concerned with the random
occurrences of undesirable events, or failures, during the life
cycle of a physical system. Since a failure phenomenon can
only be described in probability terms, the definition of
reliability depends heavily on probability concepts. The
reliability of a system is defined as the probability that the

P. Ranjeet Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 1147-1155 Page 1150

system will adequately perform its intended function for a
specified interval of time under stated environment
conditions. Reliability evaluation using probability methods
provides a quantitative measure of system performance.
Hence it allows comparison between systems or provides a
logical basis for reliability improvement in a system[11] .

C) Modeling
A model is a simple representation of the system or real
process comportment or structure. The goal of the modeling
process is to reproduce the fundamental relationships in
order to realize their clear understanding.

Ideally, these models provide a means of characterizing
the development process and enable software reliability
practitioners to make predictions about the expected future
reliability of software under development. Such techniques
allow managers to accurately allocate time, money, and
human resources to a project, and assess when a piece of
software has reached a point where it can be released with
some level of confidence in its reliability.

 Characteristics of a Software Reliability Model
A good model presents following properties.
a)It should provide good prediction of future behavior.
b) It should compute useful quantities.
c) It should be simple.
d) It should be widely applicable.
e) It should be based on sound assumptions.
The software reliability modeling is a functional
representation of the debated system and the better model
offers a viable mechanism for reliability estimation.

ii) Analytical Models
A number of analytical models have been proposed to
address the problem of software reliability measurement.
These approaches are based mainly on the failure history of
software and can be classified according to the nature of the
failure process studied as indicated below.

A)Times between Failures Models
In this class of models, the process under study is the time
between failures. The most common approach is to assume
that the time between, say, the and the failures, follows a
distribution whose parameters depend on the number of
faults remaining in the program during this interval. Another
approach is to treat the failure times as realizations of a
stochastic process and use an appropriate time-series model
to describe the underlying failure process.

b) Failure Count Models
The interest of this class of models is in the number of faults
or failures in specified time intervals rather than in times
between failures. The failure counts are assumed to follow a
known stochastic process with a time dependent discrete or
continuous failure rate. Parameters of the failure rate can be
estimated from the observed values of failure counts or from
failure times. Estimates of software reliability mean time to
next failure, etc., can again be obtained from the relevant
equations[8].

c) Fault Seeding Models
The basic approach in this class of models is to "seed" a
known number of faults in a program which is assumed to
have an unknown number of indigenous faults. The program
is tested and the observed numbers of seeded and indigenous
faults are counted. From these, an estimate of the fault
content of the program prior to seeding is obtained and used
to assess software reliability and other relevant measures.

d) Input Domain Based Models
The basic approach taken here is to generate a set of test
cases from an input distribution which is assumed to be
representative of the operational usage of the program.
Because of the difficulty in obtaining this distribution, the
input domain is partitioned into a set of equivalence classes,
each of which is usually associated with a program path. An
estimate of program reliability is obtained from the failures
observed during physical or symbolic execution of the test
cases sampled from the input domain

 D) Reliability of Open Source Technology
Open source technology has gained a significant amount of
mind share and has been the subject of much debate. Often
promoted as being better than proprietary software (from an
ethical and social point of view), and criticized as being
unrealistic or too idealistic. The concept itself is based on
the philosophy of free software, which advocates freely
available source code as a fundamental right. However,
open source extends this ideology slightly to present a more
commercial approach that includes both a business model
and development methodology.

E)Error Estimation For Open Source Software
Many models have been proposed to assess whether a
software-testing objective has been met to determine when
to stop testing. These models are based on various sets of
assumptions about the software and its execution
environment. Software reliability growth models (SRGM`s)
use data about the times that failures occur to estimate the
number of remaining failures in a system .Generally,
SRGM`s estimate the number of failures in a system.

V.SOFTWARE PROCUREMENT PROCESS
Some investigation intended to improve the acquisition of
software intensive systems has been conducted by , but they
focused on large scale governmental procurements. Since
the largest number of the procurements is made by small
and medium sized organizations, thus additional research is
needed. To elicit these needs, this section identifies six steps
involved in basic procurement of tool, which addresses
problems and challenges experienced by small and medium
sized organizations procuring software intensive systems.

A) The Procurement cycle

The procurement of software can be regarded as a
never-ending cyclical process. During the monitoring and
evaluation of operational systems, i.e. installed, accepted

P. Ranjeet Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 1147-1155 Page 1151

and running systems, the detection of the need for new
software appears.
This cycle can be segregated into six step procurement
process where several approaches can be used to detail the
process. These are as listed below
• Requirement - Defines a set of requirements for the

intended software system. These requirements are
meant to ensure that the final system will meet the
needs detected in the previous phase by describing the
required functionality.

• Evaluate responses – The evaluation is performed after
collecting responses from the suppliers, to determine
the ones that have met the mandatory requirements.
Suppliers’ failing to meet these requirements are
eliminated.

• Contract negotiation - The supplier of the software
product negotiates with the management in order to
agree upon details of delivery. The contract should be
legally enforceable agreement and include guarantees
and criteria in accordance with the requirements
defined in the initial phase.

• Installation/ Testing/ Acceptance - This phase is to give
the procurer the possibility to test the system before
final acceptance. Criteria for acceptance should be
defined in the requirement phase and agreed upon in the
contract. When the procurer is satisfied with the
delivered system, the procurement project is signed-off.

B) Risk Management In Software Procurement
We have seen that “exposure to the consequences of
uncertainty. It includes the possibility of loss or gain, or
variation from a desired or planned outcome, as a
consequence of the uncertainty associated with following a
particular course of action”. To be able to do this, risk
management plans and procedures are helpful tools. This is
an ongoing task throughout the whole project, and has to be
monitored continuously. The following are approaches to
project risk management according to;
i) Establish the risk context
The purpose of this step is to gather the information needed
to establish a structure for the execution of the following
steps in the process. The input to this activity is
documentation describing the purpose and scope of the
project . Identification and analysis of the stakeholders is
included in the context establishment. This is done to get an
overview of all parties involved in the project, and also to be
able to evaluate their needs in relation with the
requirements.
ii) Identify the risks
This process must be extensive and thorough, so that as
many risks as possible are identified. Risks that are not
recorded during this phase will not be assessed in the
following phase, and they might threaten the success of the
project later on. During the risk identification, the key
elements defined in the first step of the process ease the
systematical examination of the project .

iii) Analyzing the risks

 When all the risks are identified, an assessment of the risks
is performed. This assessment can be performed qualitative,
semi-quantitative or quantitative. One of the activities that
are conducted during the risk analysis phase is the
establishment of a priority-setting matrix. This matrix is
used in the priority rating of the risks later on. The priority-
setting matrix can be of different sizes, depending on the
desired scaling.

iv) Evaluating the risks

The purpose of the risk evaluation step is to
establish a final documentation of the risks, including rating,
treatment actions and the name of the responsible person.
Some risks may involve inherent risks if they occur.
Procurers often face fixed budgets in software procurement
projects . With this limitation, the risk prioritizing becomes
an important task.

v)Treating the Risks
The final step in the risk management process is to
determine, which mitigating actions should be carried out to
reduce the risk exposure.

 IV. PROPOSED MODEL
The simulator will calculate the effort for the project over
several simulation runs. After calculated efforts there will be
clear idea to reuse managers how to allocate resources. And
after calculated optimal size, we can measure the optimal
efforts for the software. On the basis of efforts estimation
reuse managers can decide how to allocate resources to the
different activities, how to divide work within a phase. We
can modify the parameter size. The concept of reuse plays
very important role in the industries.
Effective size of existing software can be calculated as
Effective size = existing size * (0.4 * redesign% + 0.25 *
reimplementation% + 0.35 * retest %)
Effective size of new software can be calculated as
Effective size1 = new code + existing size * (0.4 *
redesign% + 0.25 * reimplementation% + 0.35 * retest %)
Reuse% = (RSI/Total Statement) * 100
RSI (Reused Source Instruction)
Formula used for calculation the efforts for the project is
EFFORT = a * Effective Size of a project measures in
KLOC (Kilo Lines of Code).
EAF is effort adjustment factor, which will be calculated
using cost drives. A cost estimation model calculates efforts
using a function of program size and a set of cost drivers
attributes.
Value of a, b depends on the complexity of software.
EAF which will be calculated using cost drivers factors.
The projects are categorized into three types:
a. Organic
b. Semidetached
c. Embedded
These categories roughly characterize the complexity of the
project with organic projects being those that are relatively
straight forward and developed by a small team, and
embedded are those that are ambitious and high

P. Ranjeet Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 1147-1155 Page 1152

requirements for such aspects as interfacing and
reliability[6].
The Steps are to be followed from the start of Testing of
software to the end of the testing as follows:
1) Before the dynamic testing, there is a static testing. Static
testing includes review of documents required for the
software development. This includes following activities.
Static testing includes review of documents required for the
software development. This includes following activities:
(a) All the documents related to customer requirements and
business rules that are required for software design and
development should be handed over to QA signed by the
Project Manager.
(b) QA reviews these documents. The reviewing of
documents includes comprehensive and thorough study of
the documents
(c) After this there should be a formal meeting between the
QA and development team regarding these documents, the
agenda of this meeting mainly includes what is missing in
the document, QA queries to be answered by
Development/Project Team and/or clarification required for
any confusions.
2) After the Software development or build of a module,
QA starts dynamic testing. If during the development the
requirement has been changed on customer demand or due
to any other reason, then that should be documented and a
copy of this revised document is given to the QA and also
discussed as explained in point 1 above.
3) Development and Testing environment should be made
clear to the QA by the Development team. It include the
following activities:
(a)Server to hit for Testing
(b)Installation of latest build on the test server.
(c)Modules/Screens to test.
(d)Test duration as decided by test manager and project
manager mutually based on scope
of work and team strength.
(e)Demo of the software on test server by development team
to the QC members.
4) After this Test cases and test scenarios are prepared and
then the Test execution by QC.
5) A comprehensive Report of Bugs is prepared by the
Testers and a review/verification by QC/QA/Testing Head
takes place. Before handing over this report to Development
Team there is a thorough review of Bugs List by Test
Manager and in case of any clarification required on a bug
submitted, the Testing Head discusses the bugs with the
assigned tester.
6) Release of bug report by QC Team to Development
Team.
7) Discussion/simulation of bugs by QC with development
team if development team requires and time required for
fixing the bugs should be made clear by Dev team at this
stage.
8) Feedback from Development team on reported bugs with
the stipulated time frame required to fix all bugs.
9) Any changes in the software being made in respect to fix
these bugs should be made clear to the QA team by the
Development team.

10) Testing team then Retests or verifies the bugs fixed by
the development team.
11) Submitting the retesting bug report to the Test manager
and after this the step 5 to step 10 are followed until the
product has reached a stage where it can be released to
customer.
12) Criteria for ending the testing should be defined by
management or Test Manager Like when all major bugs are
reported and fixed. Major bugs mean the bugs that affect the
Business of the Client.

 V. NEW SOFTWARE PROCESS MODELS

A. C.RAD Model

RAD is a linear sequential software development process
model that emphasis an extremely short development cycle
using a component based construction approach as shown in
figure 1. If the requirements are well understood and
defines, and the project scope is constraint, the RAD process
enables a development team to create a fully functional
system with in very short time period

.

 Figure 1. RAD development Model
This model assumes the requirements to remain static during
the life of the project, so there is little or no chance of
incorporating new changes to the software once work
begins. If changes are tried to be incorporated it leads to
more confusion and further delays.
The major weakness of the Waterfall Model as in figure is
that it does not allow for much reflection or revision. Once
an application is in the testing stage, it is very difficult to go
back and change something that was not well-thought out in
the concept stage. Often the product that is implemented at
the end of the process is obsolete as it goes into
production[1].

B . Incremental Model

The incremental model is a method of software development

where the model is designed, implemented and tested
incrementally until the product is finished. It involves both

development and maintenance This model combines the
elements of the waterfall model with the iterative

philosophy of prototyping as shown in figure 2. That is basic

P. Ranjeet Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 1147-1155 Page 1153

requirements are addressed, but many supplementary
features (some known, others unknown) remain undelivered.

 Figure 2.The Incremental model.

A lot of problem may become the reason of unsuccessful
project. Lack of management, Lack of well Communication,
Lack of well communication between costumer and
organization, Technical problem and lack of resources, Lack
of man power, not provided a good training.

C. Software Reuse Model
Software reuse is the process of creating software systems
from existing software rather than building them from
scratch Software reuse is still an emerging discipline. It
appears in many different forms from horizontal reuse and
vertical reuse to systematic reuse, and from white-box reuse
to black-box reuse. Many different products for reuse range
from ideas and algorithms to any documents that are created
during the software life cycle Source code is most
commonly reused in software systems; thus many people
misunderstands software reuse as the reuse of source code
alone. Recently source code and design reuse have become
popular with (object-oriented) class libraries, application
frameworks, and design patterns. Software components
provide a vehicle for planned and systematic reuse.

Need to Reuse Software
A good software reuse process facilitates the increase of
productivity, quality, and reliability, and the decrease of
costs and implementation time. An initial investment is
required to start a software reuse process, but that
investment pays for itself in a few reuses. In short, the
development of a reuse process and repository produces a
base of knowledge that improves in quality after every
reuse, minimizing the amount of development work required
for future projects and ultimately reducing the risk of new
projects that are based on repository knowledge. Software
parts are shipped with the libraries available with SW. These
SW parts are called components. Four levels of reuse are
proposed:
1. code level components (modules, procedures,
subroutines, libraries, etc.)
 2. Entire applications
3. Analysis level products
4. Design level products

 VI. THE TYPES OF SOFTWARE REUSE

Concerning motivation and driving factors, reuse can be:

• Opportunistic - While getting ready to begin a project,
the team realizes that there are existing components that
they can reuse.

• Planned - A team strategically designs components so
that they'll be reusable in future projects.

 Opportunistic reuse can be categorized further:
• Internal reuse - A team reuses its own components. This
may be a business decision, since the team may want to
control a component critical to the project.
• External reuse - A team may choose to license a third-
party component. Licensing a third-party component
typically costs the team 1 to 20 percent of what it would cost
to develop internally. The team must also consider the time
it takes to find, learn and integrate the component.
Concerning form or structure of reuse, code can be:

• Referenced - The client code contains a reference to
reused code, and thus they have distinct life cycles and
can have distinct versions.

• Forked - The client code contains a local or private
copy of the reused code, and thus they share a single
life cycle and a single version.

Fork-reuse is often discouraged because it's a form of code
duplication, which requires that every bug is corrected in
each copy, and enhancements made to reused code need to
be manually merged in every copy or they become out-of-
date. However, fork-reuse can have benefits such as
isolation, flexibility to change the reused code, easier
packaging, deployment and version management [4].

Systematic software reuse
Independent of what a component is, Systematic Software
Reuse influences almost whole software engineering
process. For providing guidance in the creation of high
quality software systems at low-cost the software process
models were developed. The original models were based on
the (mis)conception that systems are built from scratch
according to stable requirements. Software process models
have been adapted since based on experience and several
changes and improvements have been suggested since the
classic waterfall model. With increasing reuse of software,
new models for software engineering are emerging. New
models are based on systematic reuse of well-defined
components that have been developed in various projects.
These trends are particularly evident in markets, such as
electronic commerce and data networking, where reducing
development cycle time is crucial to business success.

Horizontal reuse
Horizontal reuse refers to software components used across
a wide variety of applications. In terms of code assets, this
includes the typically envisioned library of components,
such as a linked list class, string manipulation routines, or
graphical user interface (GUI) functions. Horizontal reuse

P. Ranjeet Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 1147-1155 Page 1154

can also refer to the use of a commercial off-the-shelf
(COTS) or third-party application within a larger system,
such as an email package or a word processing program.

Vertical reuse
Vertical reuse, significantly untapped by the software
community at large, but potentially very useful, has far
reaching implications for current and future software
development efforts. The basic idea is the reuse of system
functional areas, or domains that can be used by a family of
systems with similar functionality. The study and
application of this idea has spawned another engineering
discipline, called domain engineering. Domain engineering
is "a comprehensive, iterative, life-cycle process that an
organization uses to pursue strategic business objectives.
The form and structure of the application engineering
activity are crafted by domain engineering so that each
project working in a business area can leverage common
knowledge and assets to deliver a high-quality product,
tailored to the needs of its customer, with reduced cost and
risk". Domain engineering focuses on the creation and
maintenance of reuse repositories of functional areas, while
application engineering makes use of those repositories to
implement new products[9].

VII. RISK ANALYSIS AND MANAGEMENT AND
CHALLENGES

Realistically, answers to the above questions will not be
found in the research laboratory. More likely, they are to be
found with the intelligent project manager who "knows the
risks, their degree, their causes, and the action necessary to
counter them, and shares this knowledge with colleagues
and clients" (Gilb 1988).
The figure 3 illustrate detail classification on risk analysis.
Indeed, a fundamental appreciation of the risks involved in
the institutionalization of reuse technology, their analysis
and management, can go a long way to ensuring successful
reuse-based projects. As such, a good reference point is to
familiarize ourselves with the basic risk analysis and
management process, shown in Figure 1 (adapted from
(Charette 1989)).

 Figure 3: Risk Management Phases.

Risk analysis involves three tasks:

- Risk identification: Identifying potential problems before
they occur.
- Risk estimation: Quantifying these problems, often in
terms of some measure of severity.
- Action planning: Generating alternative choices of actions
that would help prevent a problem occurring in the first
place or reduce the adverse effects of the problem if it did
occur.

Challenges

The basic premise of software reuse is support for design
methodologies for which the main activity is not the
building of new systems from scratch, but the integration,
modification, and explanation of existing ones [Winograd,
1996]. Software reuse is a promising design methodology
because complex systems develop faster if they can be built
on stable subsystem [8].

Benefits of Software Reuse
-Increased dependability
-Reduced process risk
- cost of development
- Effective use of specialists
-Standards compliance

 CONCLUSION

Major issues in component and software testability are
modeling component testability, providing support for user
oriented testing. Modeling component testability rests on
providing operational definition of intuitive factors. This
helps in devising better methods and comparison of two or
more techniques proposed for same goal. However,
collaboration with other companies is another major factor
affecting the selection process of tool. This is an immense
factor as it brings the experience of other partner company
with tool and accountable for providing competitive
advantage. The central thesis of this paper is that
contemporary models of software development must
account for software the interrelationships between software
products and production processes, as well as for the roles
played by tools, people and their workplaces. New models
for software development enabled by the Internet, group
facilitation and distant coordination within open source
software communities, and shifting business imperatives in
response to these conditions are giving rise to a new
generation of software processes and process models The
development of complex software systems is challenging
design activity. The process is made difficult not because of
the complexity of technical problems, but because of the
social interaction when users and system developers learn to
create, develop and express their ideas and visions.

 REFERENCES

P. Ranjeet Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 1147-1155 Page 1155

[1] Stefan Kuhlmann and Uwe Kuntze (1990) ”R&D-
cooperation by small and medium sized companies”
Fraunhofer-Institut für Systemtechnik und
Innovationsforschung (FhG-ISI) Technology Management :
the New International Language. Page(s): 709-712.

[2] Knut Steinar Engene (2005) “Towards improving an
organization's ability to procure software intensive
systems”. Master thesis at the Department of Computer and
Information Science at The Norwegian University of
Science and Technology. 28. june 2005. Norway.

[3] IEEE Recommended Practice for Software Acquisition.
IEEE Std 1062, 1998 Edition. The Institute of Electrical and
Electronics Engineers, Inc. ISBN 0-7381-1514-2. [1] R. S.
Freedman, “Testability of Software Components,”IEEE
Trans. Softw. Eng., vol. 17, June 1991, pp. 553- 564,
doi=10.1109/32.87281.
[4] E. J. Weyuker, “Testing Component-Based Software: A
Cautionary Tale,” IEEE Softw., vol. 15, September1998, pp.
54-59, doi=10.1109/52.714817
 [5] Cagatay Catal., “Software fault prediction: A literature
review and current trends”, Expert systems with applications
Volume 38, Issue 4, April 2011, Pages 4626-4636 Elsevier.

[6] Evett.M., Khoshgoftar.T, Chien.P and Edward Allen,
“GP-based software quality prediction”, in 3rd annual
conference on genetic programming PP. 60–65, 1998.

 [7] Khoshgoftaar. T, Gao.K and Szabo.R.M, “An
application of zero-inflated poisson regression for
software fault prediction”, In 12th international symposium
on software reliability engineering, Washington, DC: IEEE
Computer Society, PP 66–73, 2001.
[8] Martin L. Griss, John Favaro, and Paul Walton.
Managerial and Organizational Issues -
Starting and Running a Software Reuse Program, chapter 3,
pages 51-78. Ellis Horwood, Chichester, GB, 1993.
[9] Martin L. Griss. Software reuse: from library to factory.
IBM Systems Journal, 32(4):1-23, November 1993.
[10] Martin L. Griss and Kevin D. Wentzel. Hybrid
Domain-Specific Kits for a Flexible Software Factory. In
proceedings: SAC'94, Phoenix, Arizona, March 1994.
[11] J. E. Gaffney and R.D. Cruickshank. A General
Economics Model of Software Reuse. In proceedings: 14th
ICSE, Melbourne Australia, May 1992.

#1 P. Ranjeet Kumar is Pursing B.Tech
Second year in Computer Science Engineering from KKR &
KSR Institute of Technology and Sciences [KITS],
Vinjanampadu, Guntur., A.P, INDIA, and Affiliated to
Jawaharlal Nehru Technological University (JNTU) ,
Kakinada, A.P, India.

 #2.Professor R.Ramesh received B.E in
Computer Technology and Engineering from RVR&JC,
Nagarjuna university, India, holds a M.Tech in Computer
Science from Jawaharlal Nehru University New Delhi. He
has 12 years of vast experience in Computer Science and
Engineering areas.

#3.Professor T.Venkat Narayana Rao,
received B.E in Computer Technology and Engineering
from Nagpur University, Nagpur, India, M.B.A (Systems),
holds a M.Tech in Computer Science from Jawaharlal Nehru
Technological University, Hyderabad, A.P., India and a
Research Scholar in JNTU. He has 21 years of vast
experience in Computer Science and Engineering areas
pertaining to academics and industry related I.T issues. He is
presently working as Professor, Department of Computer
Science and Engineering, Guru Nanak Institutions Technical
Campus, Ibrahimpatnam, R.R.Dist., A.P, INDIA. He is
nominated as an Editor and Reviewer to 28 International
journals relating to Computer Science and Information
Technology and has published 39 papers in international
journals. He is currently working on research areas, which
include Digital Image Processing, Digital Watermarking,
Data Mining, Network Security and other emerging areas of
Information Technology. He can be reached at
tvnrbobby@yahoo.com

 #4 Shireesha Dara , B.Tech and M.Tech. in
comuter science and Enginering , ssistant Professor, Department
of C.S.E, Guru Nanak institutions Technical
Campus.Ibrahimpatnam. RR Dst. AP. She has 11 Years of
Experience in academia and industry. She has been actively
involved in coordinating and organizing plenty of national events
such as seminars and workshops and published two papers. She has
contributed in lab manuals and software programming at high-end
computer centers. Worked as Organizing Committee Member for
NBA tasks. She has also presented papers during the conferences
to her credit and a meticulous guide to UG and P.G engineering
projects. She can be reached at: sirisha.dara@gmail.com

	VII. RISK ANALYSIS AND MANAGEMENT AND CHALLENGES
	#2.Professor R.Ramesh received B.E in Computer Technology and Engineering from RVR&JC, Nagarjuna university, India, holds a M.Tech in Computer Science from Jawaharlal Nehru University New Delhi. He has 12 years of vast experience in Computer Scienc...

