

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 6 June, 2014 Page No. 6405-6408

Sher jung, IJECS Volume 3 Issue 6 June, 2014 Page No.6405-6408 Page 6405

Advance Encryption Standard implementation
Sher jung , Shikha Kumari, Gagan Thakral

Department of Computer Science

Al-Falah School of Eng. & Tech.

Faridabad, India

Sherjung2005@gmail.com

Department of Computer Science

JB Knowledge park

Faridabad, India

shikhadivakar@gmail.com

Department of Computer Science

JB Knowledge Park

Faridabad, India

gagan15.thakral@gmail.com

ABSTRACT

In today’s world most of the communication is done electronic media. Data security plays vital role in such

communication. Hence there is need to protect data from malicious attack. This can be achieved by cryptography. The

earlier encryption algorithm was DES which has several loopholes such as small key size, sensible to brute force attack

etc. These loopholes were overcome by AES algorithm. AES was announced by NIST (National institute of standard and

technology) in November 2001. AES became the successor of DES algorithm because of its security, its ease of

implementation, and low memory requirements.

There are three different versions of AES. Each of them has block length 128 bits and key length is 128, 192 and 256 bits

Keywords:

Encryption, decryption, ciphers, S-box, State, keys.

1. AES algorithm basic concept

AES is a symmetric key cryptography. It contains no. of

rounds, which are fixed. It is a block cipher technique in

which each cipher has variable block length and key

length. AES supports block size of 128 bits and key size

of 128,192 and 256 bits. To encrypt messages longer

than the block size, a mode of operation is chosen. 128

bit key contains 10 rounds, 192 bit contains 12 rounds

and 256 bit contains 14 rounds. In each round

transformation is done using corresponding cipher key

to ensure security of encryption. Different

transformation operates on immediate results, called

state. Let us consider key length of 128 bits. State is

rectangular array of bytes and since key size is 128 bits

(16 bytes) so rectangular array is of 4X4matrx. First

128 bit is expanded into 11 round key, each of 128 bits.

Each round key is of length 128 bits. Initial round is

XORed to plain text. Each round key consists following

operation:-

Substitute bytes: In this byte to byte transformation is

performed using a table.

Shift rows: rows are shifted cyclically to left.

Mix column: Matrix multiplication on column is

performed.

Add Round Key: state and expanded key is XORed.

In tenth round mix column round is omitted. Rest is

same as that of round one to nine.

mailto:shikhadivakar@gmail.com
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

Sher jung, IJECS Volume 3 Issue 6 June, 2014 Page No.6405-6408 Page 6406

2. Sub Bytes

AES uses S-Box substitution, which is also called sub

byte transformation. It is non linear substitution

technique. It provides reversible transformation on each

segment of plain text during encryption which reverses

during decryption. In this simple single function is

applied over again and again to each byte during stages

of encryption returning a single byte. Each byte is

transformed to other byte and called as full

transformation.

void subBytes(unsigned char *state)

{

int j;

for (j= 0; j < 16; j++)

state[j] = getSBoxValue(state[j]);

}

3. Shift Rows

In this left circular shift rows is performed. Each row is

cyclically shifted to left.

The 1st row is shifted 0 positions to the left, 2nd row is

shifted 1 position to the left, 3rd row is shifted 2

positions to the left, 4th row is shifted 3 positions to the

left.

void shiftRows(unsigned char *state)

{

int i;

/* iterate over the 4 rows and call shiftRow() with that

row */

for (i = 0; i < 4; i++)

shiftRow(state+i*4, i);

}

void shiftRow(unsigned char *state, unsigned char nbr)

{

int i, j;

unsigned char tmp;

/* each iteration shifts the row to the left by 1 */

for (i = 0; i < nbr; i++)

{

tmp = state[0];

for (j = 0; j < 3; j++)

state[j] = state[j+1];

state[3] = tmp;

}

}

4. Mix Column

In this columns are processed. A inear transformation

on columns of the state is performed. In this principle

only a matrix multiplication needs to be executed.

5. Add Round Key

In this, each byte of input data and expanded key is

XORed. One AddRoundKey is applied before first

round. Also the third transformation i.e MixColumn is

missing in last round.

Sher jung, IJECS Volume 3 Issue 6 June, 2014 Page No.6405-6408 Page 6407

where b(i,j)=a(i,j) XOR k(i,j)

void addRoundKey(unsigned char *state, unsigned char

*roundKey)

{

int i;

for (i = 0; i < 16; i++)

state[i] = state[i] ^ roundKey[i] ;

}

6. Implementation of AES algorithm

Each round in AES algorithm contains all the four

operations on the state.

void aes_round(unsigned char *state, unsigned char

*roundKey)

{

subBytes(state);

shiftRows(state);

mixColumns(state);

addRoundKey(state, roundKey);

}

7. AES Encryption

Input plain text,the key size and the output are the

parameters. Number of rounds based on key size is

calculated and then calculate the expanded key size

based on no of rounds.

char aes_encrypt(unsigned char *input, unsigned char

*output, unsigned char *key,

enum keySize size)

{

/* the expanded keySize */

int expandedKeySize;

/* the number of rounds */

int nbrRounds;

/* the expanded key */

unsigned char *expandedKey;

/* the 128 bit block to encode */

unsigned char block[16];

int i,j;

/* set the number of rounds */

switch (size)

{

case SIZE_16:

nbrRounds = 10;

break;

case SIZE_24:

nbrRounds = 12;

break;

case SIZE_32:

nbrRounds = 14;

break;

default:

return UNKNOWN_KEYSIZE;

break;

}

8. AES Decryption

The whole encryption process is reversed. The

subbytes, mix column and shift rows column operation

is reversed. But add roundkey operation remains same.

void invSubBytes(unsigned char *state)

{

int i;

/* substitute all the values from the state with the value

in the SBox

* using the state value as index for the SBox

*/

for (i = 0; i < 16; i++)

state[i] = getSBoxInvert(state[i]);

}

void invShiftRows(unsigned char *state)

{

int i;

/* iterate over the 4 rows and call invShiftRow() with

that row */

for (i = 0; i < 4; i++)

invShiftRow(state+i*4, i);

}

void invShiftRow(unsigned char *state, unsigned char

nbr)

{

int i, j;

unsigned char tmp;

/* each iteration shifts the row to the right by 1 */

for (i = 0; i < nbr; i++)

{

tmp = state[3];

for (j = 3; j > 0; j--)

state[j] = state[j-1];

state[0] = tmp;

}

}

void invMixColumns(unsigned char *state)

{

int i, j;

unsigned char column[4];

/* iterate over the 4 columns */

for (i = 0; i < 4; i++)

Sher jung, IJECS Volume 3 Issue 6 June, 2014 Page No.6405-6408 Page 6408

{

/* construct one column by iterating over the 4 rows */

for (j = 0; j < 4; j++)

{

column[j] = state[(j*4)+i];

}

/* apply the invMixColumn on one column */

invMixColumn(column);

/* put the values back into the state */

for (j = 0; j < 4; j++)

{

state[(j*4)+i] = column[j];

}

}

}

void invMixColumn(unsigned char *column)

{

unsigned char cpy[4];

int i;

for(i = 0; i < 4; i++)

{

cpy[i] = column[i];

}

column[0] = galois_multiplication(cpy[0],14) ^

galois_multiplication(cpy[3],9) ^

galois_multiplication(cpy[2],13) ^

galois_multiplication(cpy[1],11);

column[1] = galois_multiplication(cpy[1],14) ^

galois_multiplication(cpy[0],9) ^

galois_multiplication(cpy[3],13) ^

galois_multiplication(cpy[2],11);

column[2] = galois_multiplication(cpy[2],14) ^

galois_multiplication(cpy[1],9) ^

galois_multiplication(cpy[0],13) ^

galois_multiplication(cpy[3],11);

column[3] = galois_multiplication(cpy[3],14) ^

galois_multiplication(cpy[2],9) ^

galois_multiplication(cpy[1],13) ^

galois_multiplication(cpy[0],11);

}

9. CONCLUSION
In this paper I discussed AES algorithm and

implementation of each round. I have also

discussed implementation of encryption and

decryption.

REFERENCES

[1] AES page available via

http://www.nist.gov/CryptoToolkit.

[2] Computer Security Objects Register (CSOR):

http://csrc.nist.gov/csor/.

[3] Cryptography and network security, 2
nd

 edition by

Atul Kahate.

[4] J. Daemen and V. Rijmen, AES Proposal: Rijndael,

AES Algorithm Submission, September 3, 1999,

available at [1].

[5] J. Daemen and V. Rijmen, The block cipher

Rijndael, Smart Card research and Applications, LNCS

1820, Springer-Verlag, pp. 288-296.

[6] B. Gladman’s AES related home page

http://fp.gladman.plus.com/cryptography_technology/.

[7] A. Lee, NIST Special Publication 800-21, Guideline

for Implementing Cryptography in the Federal

Government, National Institute of Standards and

Technology, November 1999.

http://csrc.nist.gov/csor/

