

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 4 April, 2013 Page No. 1134-1141

Ms. Warhekar Snehal P, IJECS Volume 2 Issue 4 April, 2013 Page No. 1134-1141 Page 1134

Mobile Application Development Strategies

Ms. Warhekar Snehal P* Prof. Gaikwad V. T.
 Sipna C.O.E.T, Amravati , Dept. of IT,

Snehalwarhekar7@gmail.com
Abstract
Mobile application development has entered new stage largely driven by advent of highly influential iOS,
android etc. bases smartphones and tablet devices. In sales, smart mobile devices are outpacing
conventional computer clients. While mobile app development is still primarily province of customer
applications, time has come that enterprise development teams need to prepare their applications to run on
intelligent mobile devices. There are few major categories of mobile app delivery available today. These
are: Native type, running directly on device, web based types, employing device’s web browser; a hybrid of
native and web based types. Each approach is suitable to work in different environments and also each has
some pros and cons in comparison with others. There are many factors that play a part in deciding mobile
development strategy, such as development skills, required device functionality, the importance of security,
offline capability, interoperability, multiplatform support, deployment method etc. that must be taken into
account.

I. Introduction

The universe of mobile devices comprises the
entire range of phones, from low-end feature
phones to high-end smartphones and tablets. With
the growing rate of adoption of smartphones and
tablets across the world, there is a large demand
for mobile applications designed for popular
mobile devices running operating systems like
iOS, Android, Windows Phone/8, and Blackberry
operating systems. Moreover these apps need to
run on devices with large touch screens,
broadband (Wifi, 3G) connectivity, camera and
other sensors. OS (operating system) providers are
increasing their capabilities to enable developers
to be more efficient and functional. Mobile
applications are everywhere in categories of
games, social networking, productivity tools,
infotainment, data management, utilities, and etc.
Mobile content, operator and media services are
being delivered in the form of mobile applications
due to user experience superiority over classical
mobile channels like mobile browsers and SMS.
Mobile applications are the next step of internet
paradigm.

 Here we focus on the architecture of
mobile applications designed for these

smartphones and tablets. Currently there are three
types of mobile development approaches available
[1]:

• Native apps are specific to a given mobile
platform (iOS or Android) using the
development tools and language that the
respective platform supports (e.g., Xcode
and Objective-C with iOS, Eclipse and
Java with Android). Native apps look and
perform the best.

• HTML5 apps use standard web
technologies—typically HTML5,
JavaScript and CSS. This write-once-run-
anywhere approach to mobile development
creates cross-platform mobile applications
that work on multiple devices.

• Hybrid apps make it possible to embed
HTML5 apps inside a thin native
container, combining the best (and worst)
elements of native and HTML5 apps.

In the early days of mobile applications
development for smartphones, there were only
two dominant client architectures, the web app
architecture relying on the phone web browser and
the native app which involved custom
development for the device OS. It was only in

http://www.ijecs.in/�
mailto:Snehalwarhekar7@gmail.com�

Ms. Warhekar Snehal P, IJECS Volume 2 Issue 4 April, 2013 Page No. 1134-1141 Page 1135

2009 that a third option started to emerge. This
was the Hybrid App approach, which attempted to
plug the main limitation of the Web App
approach: the lack of access to device features
such as GPS and Bluetooth. All mobile
applications today use one of these three mobile
architectures.

II. Native Mobile Applications

Native applications have binary executable
files that are downloaded directly to the device
and stored locally. To create a native app,
developers must write the source code and create
additional resources such images, audio segments
and various OS-specific declaration files. Using
tools provided by the OS vendor, the source code
is compiled in order to create an executable in
binary form that can be packaged along with the
rest of the resources and made ready for
distribution.

Native apps are usually developed using
an integrated development environment (IDE).
IDEs provide tools for building debugging, project
management, version control, and other tools
professional developers need. While iOS and
Android apps are developed using different IDEs
and languages, these tools, as well as other
utilities and files, are normally called the SDK of
the mobile OS.. The following table [2] presents
the different tools, languages, formats and
distribution channels associated with the leading
mobile operating systems.

 iOS Andr
oid

BlackBe
rry

Window
s Mobile

Langua
ge

Object
ive
C,C,C
++

Java
(Some
C,C+
+)

Java C#,VB.
NET etc.

Tools Xcode
Andro
id
SDK

BB Java
Eclipse
Plug-In

Visual
Studio

Packagi
ng
Format

.app .apk .cod .xap

Applicat
ion
Stores

Apple
App
Store

Googl
e Play
Store

BlackBe
rry
AppWor

Window
s Phone
Market

ld
Table1. OS and development tools

Once the app has been installed on the
device, the user launches it like any other service
the device offers. Upon initialization, the native
app interfaces directly with the mobile operating
system, without any intermediary or container.
The native app is free to access all of the APIs that
are made available by the OS vendor. It is through
API calls that the app can interact directly with the
touch screen or keyboard, render graphics,
connect to networks, process audio received from
the microphone, play sounds through the speaker
or headphones, or receive images and videos from
the camera. In addition to providing the low-level
hardware-access services we just mentioned,
mobile operating systems also provide higher-
level services that are important to the personal
mobile experience. Such services include
processes like browsing the web, managing the
calendar, contacts, photo album, and of course the
ability to make phone calls or send and receive
text messages.

Another important set of APIs that the OS
provides is the GUI toolkit [3]. Each mobile OS
comes with its own set of user interface
components such as buttons, input fields, sliders,
menus, tab bars, dialog boxes, and more. Apps
that make use of these components inherit the
look and feel of that specific mobile OS which
normally results in a very smooth user experience.

Some of the examples of native apps are
Angry Bird – a popular game , Instagram [4] – a
photo editing and sharing tool , Shazam,
Amazon’s Kindle reader etc.

2.1 Advantages of Native Applications:
• Device Integration - Native development

takes full advantage of mobile device
capabilities such as the camera, barometer,
gyroscope, accelerometer, and network
communications.

• Offline and Synchronization Capability
[5] - Native development allows access to
local device storage for offline storage
capability, and provides developer’s
greater flexibility in developing
customized database/storage
synchronization.

Ms. Warhekar Snehal P, IJECS Volume 2 Issue 4 April, 2013 Page No. 1134-1141 Page 1136

• Push Notification Capability [6]- Push
notification reduces network usage, saves
bandwidth and consumes less battery
power than the traditional method of
background process and continuous
polling. Each mobile platform vendor
offers a unique push notification service
that can only be integrated and employed
when developing a solution natively.

• Application Market Integration - Mobile
application market integration is a
necessary element in any mobile strategy.
It provides for the distribution and
monetization of the mobile application. By
developing natively, a developer can just
submit the binary distribution file to the
application market, and participate in the
market ecosystem.

• Improved User Experience - With native
development, developers are able to take
advantage of the hardware acceleration
feature on the mobile device. There is also
less of a layer between the code and its
kernel. As a result, native mobile
applications are the fastest in terms of load
times and execution speed. These factors
improve the users' experience of the
mobile application tremendously.

• Multi touch support [7] - double taps,
pinch-spread, and other compound UI
gestures are supported in native
applications.

• Ease of use - The native platform is what
people are accustomed to, and so when
you add that familiarity with all of the
native features they expect, you have an
app that’s just plain easier to use.

2.2 Challenges for Native Mobile Applications
 Along with various advantages native apps
also comes with various challenges. Some of these
are as follows:

• Distribution: There may be stringent
requirements for admission into public app
stores. Apple Inc., for instance, requires
that developers submit iPhone mobile
digital device applications for testing
within Apple to facilitate such
compatibility

• Deep Platform Knowledge - Native
development involves understanding the

platform operating system, and learning
new programming languages developers
may not be familiar with, such as
Objective-C for Apple mobile
applications, C# for Windows Phone, and
Java for Android.

• Limited Portability - Also with native
development, existing code developed for
one mobile platform may not necessarily
be easily ported to another platform,
limiting common features between device
versions.

• Update :As native app is installed directly
on users device, when any change or
update is to be made in application ,then
user have to install the app again on
his/her device to have the updated app.

III. Mobile Web Applications

Unlike native apps, which are independent
executables that interface directly with the OS,
web apps run within the browser.. Web apps
entirely within the browser of the mobile device
and make use of the newest JavaScript, CSS and
HTML5 features that are available in modern
mobile browsers. Most mobile vendors utilize the
same rendering engine in their browsers,
WebKit[8] – an open source project led mostly by
Google and Apple that provides the most
comprehensive HTML5 implementation available
today. Since the application code is written in
standard web languages that are compatible with
WebKit, a single app delivers a uniform
experience across different devices and operating
systems,.

HTML 5 is the first HTML version to
support multimedia without plugins. The HTML5
standard was created so web apps can be
accessible and used on any device via a browser.
HTML5 apps also have the ability for offline
access and usage via the application cache, which
means working without a network connection is
now possible. A few examples of the potential of
HTML5 include advanced UI components, access
to rich media types, geo-location services .Using
these features and many more that are under
development, developers are able to create
advanced applications using nothing but web
technologies [10].

Ms. Warhekar Snehal P, IJECS Volume 2 Issue 4 April, 2013 Page No. 1134-1141 Page 1137

There are two extreme web-app
approaches used in mobile web app. They are
mobile browsing and mobile-optimized web sites.
These sites recognize when they are accessed by a
smartphone and serve up HTML pages that have
been designed to provide a comfortable “touch
experience” on a small screen size. But some
companies go even further and enhance the user
experience by creating a mobile website that looks
like a native app and can be launched from a
shortcut that is indistinguishable from that used to
launch native apps. Some of the examples of
mobile web apps are: Mercedes-Benz
International site, http://m.usa.gov/, the Guardian
and Financial Times newspapers both make
compelling use of HTML5 in their mobile
applications

3.1 Tools for developing mobile web
applications

A growing number of JavaScript toolkits
have been created, such as Sencha Touch and
jQuery Mobile, which generate user interfaces that
are comparable in look and feel to native apps.

 Sencha Touch
Sencha Touch is a user interface (UI)

JavaScript library, or framework, specifically built
for the Mobile Web[11]. It is fully based on web
standards such as HTML5, CSS3 and JavaScript.
Sencha Touch aims to enable developers to
quickly and easily create HTML5 based mobile
apps that work on Android, iOS and Blackberry
devices, and produce a native-app-like experience
inside a browser.

 Sencha Touch includes a set of graphical
user interface GUI-based controls (or
components) for use within mobile web
applications. All the components can be themed
according to the target device. This is done using
Sass, a style sheet language built over CSS.Sencha
Touch has four in-built transition effects: slide
over or under the current element, pop, flip, and
cube. It supports common touch gestures built
from touch events, which are Web standards but
supported only by Android, iOS, and some touch
enabled devices. These are tap, double tap, swipe,
scroll, and pinch.

Example apps using sencha touch: The
Watch List, Touch Tweets, Getographer, RSS
Reader

 jQuery Mobile
jQuery Mobile is a touch-optimized web

framework currently being developed by the
jQuery project team. The development focuses on
creating a framework compatible with a wide
variety of smartphones and tablet computers, [12]
jQuery Mobile provides a powerful theming
framework that allows developers to customize
color schemes and certain CSS aspects of UI
features

Examples of apps using jQuery mobile
framework: Slideshare , Stanford, Disney World.

3.2 Advantages of Mobile Web Applications
• Multiplatform Support: Since the

application code is written in standard web
languages that are compatible with
WebKit, a single app delivers a uniform
experience across different devices and
operating systems, making it multiplatform
by default.

• Ease of development: If developer has
experience developing Web apps, HTML5
app development is easy. If developer is
new to Web development, the
technological bar is lower; it's easier to get
started here than in native or hybrid
development.

• Immediate updates and distribution
control: One of the biggest benefits to IT
organizations developing mobile
applications in HTML5 is the ability to
deploy those apps and updates directly to
the user community via the browser. No
third party or extra step is needed for
distribution.

3.3 Challenges for Mobile Web App
Development

• User Experience: the HTML5 standard
has delivered more native-like capabilities
such as access to the GPS location or
accelerometer for mobile web applications
and more as of late. However, these still
fail to deliver the same user experience on
different devices and perform slower when
compared to a native implementation on
the iPhone or Android..

• Security: HTML5 presents unique
security risks when compared with native
apps.HTML5 now offers the ability to

http://m.mercedes-benz.com/�
http://m.mercedes-benz.com/�
http://m.usa.gov/�
http://en.wikipedia.org/wiki/User_interface�
http://en.wikipedia.org/wiki/JavaScript_library�
http://en.wikipedia.org/wiki/Mobile_Web�
http://en.wikipedia.org/wiki/Web_standard�
http://en.wikipedia.org/wiki/Web_standard�
http://en.wikipedia.org/wiki/Web_standard�
http://en.wikipedia.org/wiki/HTML5�
http://en.wikipedia.org/wiki/CSS3�
http://en.wikipedia.org/wiki/JavaScript�
http://en.wikipedia.org/wiki/Graphical_user_interface�
http://en.wikipedia.org/wiki/Graphical_user_interface�
http://en.wikipedia.org/wiki/Graphical_user_interface�
http://en.wikipedia.org/wiki/GUI_widget�
http://en.wikipedia.org/wiki/Sass_%28stylesheet_language%29�
http://en.wikipedia.org/wiki/DOM_events�
http://en.wikipedia.org/wiki/Web_standards�
http://en.wikipedia.org/wiki/Android_%28operating_system%29�
http://en.wikipedia.org/wiki/IOS�
http://www.sencha.com/apps/the-watch-list/�
http://www.sencha.com/apps/the-watch-list/�
http://www.sencha.com/apps/the-watch-list/�
http://www.sencha.com/apps/touch-tweets/�
http://www.sencha.com/apps/getographer/�
http://en.wikipedia.org/wiki/Web_application_framework�
http://en.wikipedia.org/wiki/Web_application_framework�
http://en.wikipedia.org/wiki/Web_application_framework�
http://en.wikipedia.org/wiki/JQuery�
http://en.wikipedia.org/wiki/Cross-browser�
http://en.wikipedia.org/wiki/Smartphone�
http://en.wikipedia.org/wiki/Tablet_computer�
http://www.jqmgallery.com/2011/04/01/slideshare/�
http://www.jqmgallery.com/2012/04/07/disney-world/�

Ms. Warhekar Snehal P, IJECS Volume 2 Issue 4 April, 2013 Page No. 1134-1141 Page 1138

cache data within the browser. None of the
vendors can affect data on the browser’s
cache so therefore; they cannot secure or
manage that data.

• Performance: Mobile web apps are
slower since their code is interpreted by
the JavaScript engine running within the
browser. Thus, if the user interfaces are
graphic heavy or require excessive data
processing, the Web App approach
struggles to deliver the goods.

• Native Look and Feel: There are several
web frameworks that provide libraries that
can be used by mobile web apps and
hybrid apps to re-create and imitate native
mobile interfaces and behavior. However,
the effort required to build these interfaces
using native code is a fraction of the effort
required to mimic the native look and feel.

• Offline Capability: Web apps stop
functioning when the user experiences
unexpected loss of connectivity due to
network (Radio Frequency) issues or the
device deliberately goes off the grid (like
when on an airplane). HTML5 has some
support for offline functionality, but not all
mobile browsers support this in a standard
way.

IV. Hybrid Mobile Applications

Hybrid development combines the best of
both the native and HTML5 worlds. We define
hybrid as a web app, primarily built using HTML5
and JavaScript, which is then wrapped inside a
thin native container that provides access to native
platform features [3]. The native portion of the
application uses the operating system API’s to
create an embedded HTML rendering engine that
serves as a bridge between the browser and the
device API’s. This bridge allows the hybrid app to
leverage all the features that modern devices have
to offer. App developers can choose between
coding their own bridge and taking advantage of
ready-made solutions such as PhoneGap – an open
source library that provides a uniform JavaScript
interface to selected device capabilities that is
consistent across operating systems.

The native portion of the app can be
developed independently, but some solutions in
the market provide this type of a native container
as part of their product, thus empowering the

developer with the means to create an advanced
application that utilizes all the device features
using nothing but web languages

The web portion of the app can be either a
webpage that resides on a server or a set of
HTML, JavaScript, CSS and media files,
packaged into the application code and stored
locally on the device. The best of both worlds can
be achieved by combining the two approaches.
Such a system is architected to host the HTML
resources on a web server for flexibility, yet cache
them locally on the mobile device for
performance.

Examples of apps using hybrid approach:
TripCase, Panasonic, World Heritage Calendar -
using PhoneGap, other examples of apps are
Facebook, TuneIn Radio, and LinkedIn etc.

Some organizations provide framework for
developing Hybrid applications. One of the most
popular frameworks is PhoneGap.

 PhoneGap

PhoneGap is a mobile development
framework produced by Nitobi, purchased by
Adobe Systems [14]. It enables software
programmers to build applications for mobile
devices using JavaScript, HTML5 and CSS3,
instead of device-specific languages such as
Objective-C. The resulting applications are
hybrid, meaning that they are neither truly native
nor purely web-based.

The core of PhoneGap applications uses
HTML5 and CSS3 for their rendering and
JavaScript for their logic. The PhoneGap
framework embeds HTML5 code inside a native
WebView on the device, using a Foreign Function
Interface to access the native resources of the
device.

PhoneGap currently supports development
for the operating systems Apple iOS, Google
Android, LG webOS, Microsoft Windows Phone,
Nokia Symbian OS, RIM BlackBerry and Tizen.

4.1 Advantages of Hybrid Applications
• Native Development Advantages - With

hybrid, all the advantages of native
development, such as device integration,

http://www.facebook.com/�
http://www.tunein.com/�
http://www.linkedin.com/�
http://en.wikipedia.org/wiki/Multiple_phone_web-based_application_framework�
http://en.wikipedia.org/wiki/Multiple_phone_web-based_application_framework�
http://en.wikipedia.org/wiki/Multiple_phone_web-based_application_framework�
http://en.wikipedia.org/w/index.php?title=Nitobi&action=edit&redlink=1�
http://en.wikipedia.org/wiki/Adobe_Systems�
http://en.wikipedia.org/wiki/Computer_software�
http://en.wikipedia.org/wiki/Programmer�
http://en.wikipedia.org/wiki/Application_software�
http://en.wikipedia.org/wiki/JavaScript�
http://en.wikipedia.org/wiki/HTML5�
http://en.wikipedia.org/wiki/CSS3�
http://en.wikipedia.org/wiki/Objective-C�
http://en.wikipedia.org/wiki/HTML5�
http://en.wikipedia.org/wiki/CSS3�
http://en.wikipedia.org/wiki/JavaScript�
http://en.wikipedia.org/wiki/HTML5�
http://en.wikipedia.org/wiki/Foreign_Function_Interface�
http://en.wikipedia.org/wiki/Foreign_Function_Interface�
http://en.wikipedia.org/wiki/Foreign_Function_Interface�
http://en.wikipedia.org/wiki/Operating_system�
http://en.wikipedia.org/wiki/IOS_%28Apple%29�
http://en.wikipedia.org/wiki/Android_%28operating_system%29�
http://en.wikipedia.org/wiki/WebOS�
http://en.wikipedia.org/wiki/Windows_Phone�
http://en.wikipedia.org/wiki/Symbian�
http://en.wikipedia.org/wiki/BlackBerry�
http://en.wikipedia.org/wiki/Tizen�

Ms. Warhekar Snehal P, IJECS Volume 2 Issue 4 April, 2013 Page No. 1134-1141 Page 1139

offline access and synchronization, push
notification, application market
integration, and a better user experience
can be realized.

• Unifies Web and Mobile Development -
HTML, CSS and JavaScript, with their
wide adoption and easy portability, have
allowed mobile application development
to be truly cross-platform

• Hybrid Development Leverages
HTML5 - The majority of HTML
language that is used in mobile web and
hybrid development is HTML5. It brings
with it a richer user interaction and
capabilities with the web browser.

Following features of hybrid apps make them
beneficial over mobile web apps.

• Database storage: In mobile web, data is
stored as plain text. There is a room for
security threat (a) If data is lost (b) if the
storage location is fixed and other apps can
access it. With hybrid applications, data
can be stored securely with encryption.

• Media: With hybrid applications, data can
not only be played back, but recorded
using the native bridge.

• Network connections: HTML5 supports
web sockets. The Hybrid approach can
handle full socket communications. Native
mobile components can open a socket and
can communicate with the server/ other
devices, just like in traditional socket
communication.

• Push notification: Real-time push
notifications are possible with the Hybrid
approach via the use of native components.

4.2 Challenges of Hybrid Mobile
Applications:
• Security vulnerabilities: Security

vulnerabilities are generally the same for
hybrid and web applications. Most modern
web browsers prevent certain

vulnerabilities such as malicious scripts or
cross-domain requests; however, typically
hybrid applications use uiWebview (iOS),
WebView (Android); these are native
controls that use WebKit engines and do
not offer the same level of support as a
browser does

• Performance: Performance is one of the
paramount concerns for the application
developers. The key reasons for
performance degradation are:
o Data transfer across multiple layers of

native, JavaScript libraries and
WebView.

o Rendering of web pages from the
server.

o Loading of larger images.
• Content adaptation/switching: Hybrid

applications have the challenge of
dynamically adjusting the content to the
form factor of the web view window.
The content adaptation can be done on the

server, client or both.

• Application upgrades: Upgrades of
hybrid apps can be tricky since the content
can exist on the web and the native parts of
the application. Upgrades become
mandatory with a change in the native
content or in the native wrapper libraries.
Changes in the web content may also
necessitate an upgrade if the web content
is embedded as part of the application.

• Data sharing aspects: As mentioned
earlier, along with the navigation, data
flow can also happen across components.
Application developers should design a
channel for sharing the transient data
across the native -> web -> native
transitions

V. Comparison of three approaches

Following figure illustrates the architectural
difference among three approaches:

Ms. Warhekar Snehal P, IJECS Volume 2 Issue 4 April, 2013 Page No. 1134-1141 Page 1

Figure 1: Comparison of three mobile
application development Strategies [3]

 As shown in figure, the native application
directly interacts with device OS to access device
APIs and executes directly on device. Web
application executes in device web browser and
consists of web code developed using HTML5,
CSS3 and JavaScript. The Hybrid application is
combination of native as well as web approach.
The web portion of the app can be either a
webpage that resides on a server or a set of
HTML, JavaScript, CSS and media files,
packaged into the application code and stored
locally on the device. The native portion of the
application uses the operating system API’s to
create an embedded HTML rendering engine that
serves as a bridge between the browser and the
device API’s. This bridge allows the hybrid app to
leverage all the features that modern devices have
to offer.

Following table illustrates comparison of three
development approaches according to various
criteria:

 Native HTML5 Hybrid
App Features
Graphics Native

APIs
HTML,
Canvas, SVG

HTML,
Canvas, SVG

Performance Fast Slow Slow
Native look Native Emulated Emulated
Distribution Appstore Web Appstore

Device Access
Camera Yes No Yes
Notifications Yes No Yes
Contacts,
calendar Yes No Yes

Offline storage Secure file
storage Shared SQL

Secure file
system, shared
SQL

Geolocation Yes Yes Yes
Gestures
Swipe Yes Yes Yes
Pinch, spread Yes No Yes

Connectivity Online and
offline Mostly online Online and

offline

Development
skills

Objective
C, Java

HTML5,
CSS,
JavaScript

HTML5, CSS,
JavaScript

Upgrade
Flexibility Low Medium High

VI. Conclusion

Today, the development strategies used for
mobile applications can be broadly classified into
the mobile Web App approach, Native App
approach and Hybrid App approach. Each of these
approaches has its strengths and drawbacks. ’One
size fits all’ is not applicable. There is a distinct
difference between the Web App approach and the
Native approach. The two key drawbacks of using
the Web App approach over the Native approach
are:

 Inability of web apps to access the device
sensors/other hardware

Ms. Warhekar Snehal P, IJECS Volume 2 Issue 4 April, 2013 Page No. 1134-1141 Page 2

 Difficulty in building a unique game-like
interface with native look and feel.

The key benefit of the Web App approach is
cross-platform support. The Hybrid App approach
emerged precisely to bridge the gap between the
Web App and the Native App approaches. With
the Hybrid App approach, one gets cross-platform
support without having to forgo access to device
capabilities.

Thus choice of development approach is that the
ideal development approach for any mobile
application depends on the enterprise and the
application needs. Yet, with a solid hybrid
application development framework, for
enterprise applications we lean towards the
Hybrid App approach more often than not since it
provides multi-platform support cost-effectively,
has lower TCO and does not limit access to the
device hardware.

References

[1] Native, HTML5, or Hybrid Understanding
Your Mobile Application Development Options -
developer.force.com.htm

[2] HTML5, Hybrid or Native Mobile App
Development, -Worklight

[3] Jack Vaughan, The path to mobile application
development-TechTarget

[4] http://instagram.com/#

[5] Chris McGuirk, Tony Pekala, Jason Petrin,
and Eka Renardi, Choosing the Right Mobile
Development Method, RDA Corporation
Whitepaper

[6] Mac Developer Library,
http://developer.apple.com/library/mac/#documen
tation/

[7] Eve Hoggan and Other Authors -Touch
Rotation Gestures: Performance and Ergonomics,
ACM, April 27–May 2, 2013

[8] www.webkit.org/

[9] Native Vs. Html5 Mobile App Development:
Which Option Is Best? Appcelerator Whitepaper,
2012 Appcelerator

[10] Eric Freeman, Elisabeth Robson, Head First
HTML5 Programming, O'Reilly Media

[11]http://www.sencha.com/products/touch

[12] http://en.wikipedia.org/wiki/JQuery_Mobile

[13] Sankar Srini, Hybrid Mobile Application
Development Approaches, TCS Whitepaper

[14] Rohit Ghatol, Yogesh Patel, Beginning
PhoneGap -Mobile Web Framework for
JavaScript and HTML5, Appress

	Mobile Application Development Strategies
	I. Introduction
	II. Native Mobile Applications
	2.1 Advantages of Native Applications:
	2.2 Challenges for Native Mobile Applications
	III. Mobile Web Applications
	3.1 Tools for developing mobile web applications
	Sencha Touch
	jQuery Mobile
	3.2 Advantages of Mobile Web Applications
	IV. Hybrid Mobile Applications
	PhoneGap
	4.1 Advantages of Hybrid Applications
	V. Comparison of three approaches
	VI. Conclusion
	References

