

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 1 January, 2014 Page No.3763-3767

Priyank Patel, IJECS Volume 3 Issue 1 January, 2014 Page No.3763-3767 Page 3763

Defect Forecasting In Software System - Mining

Approach

Priyank Dineshkumar Patel

Gujarat Technological University, S.P.B. Patel Institute of Technology

Mehsana, Gujarat-384002, India

patel.priyank.d@email.com

Abstract: A project's source code change history contains the modification that generates a defect and the change that fixes it. This

defect-generation and fix experience can be used to forecast future defects. This research paper presents defect forecasting algorithms

that analyze a software project's change history. Defects are related. Our algorithm finds this relation by storing locations that are likely

to have defects. That is useful to find most defect prone files. An evaluation of open source projects with more than 5,000 revisions

shows that the selected defect training data account for 72%-90% of future defects .By leveraging project history and learning the

unique defect patterns of each project, both approaches is used to find locations of defects. This information can be used to increase

software quality and reduce software development cost.

Keywords: Defect, Forecast, VCS, SCM, Mining and Revisions

1. Introduction

Software defects constitute a huge burden for software de-

velopment firms. The process of finding and removing

defects is called debugging, a frequent, tedious, and time-

consuming task for software developers. Many defects are

not discovered even after an intensive debugging process,

with unpredictable and sometimes serious consequences.

Current software development practice involves a process of

triage on existing uncovered defects, fixing those of highest

priority, with large test suites designed to discover latent

defects.

1.1 Vision

The purpose of this research is to help developers in the de-

bugging process. To meet this, this work proposes algo-

rithms to locate or predict defects in functions, files, and

changes by mining project history data.

The traditional debugging process includes code review,

using debugging tools such as GDB [15], regression testing,

unit testing, and code review again. Locating and predicting a

defect is helpful to developers since it can narrow down the

debugging scope. For example, instead of running all test

cases and verifying correctness for the entire software

project, using the techniques in this dissertation, developers

receive lists of likely defective files, methods, or changes.

This reduces the scope of software that needs to be examined

for defects down to a single file, method, or change. This

allows the developer to run just a small set of test cases that

are related to the defective locations.

1.2 Challenges

Analysis and Mining of history of open source projects with

more than 5,000 revisions. With Mining, separate features

and defect related revisions. Store Defect related revisions in

db tables and apply algorithm mention in this paper for

purpose of forecasting of defect prone files.

On addition of new defect fix in software revisions history,

update of training data table using measures describe in this

dissertation. And finally find the accuracy of our approach

using number of success and fails in forecasting defects.

2. Literature Survey

2.1 Related Work

2.1.1 Statistical Approach [1]

The objective of this paper is to predict software testing

defects using statistical models and evaluate the accuracy of

the statistical defect prediction model. To determine potential

of the statistical models to capture the number of defects on

the basis of past data and their metrics, they proceed as

follows.

To identify the best predictors in the available set of 18

parameters, they calculate product moment correlation

between the number of defects and the predictors. Then they

proceed with more advanced statistical models to deal with

normal distribution of the target variable and the specifics of

the historical data and check multicollinerity within predictor

Priyank Patel, IJECS Volume 3 Issue 1 January, 2014 Page No.3763-3767 Page 3764

parameters.

2.1.2 Regression and Arima Hybrid Model Approach [2]

They proposed a multiple linear regression and ARIMA

hybrid model for new bug prediction depending upon

resolved bugs and other available parameters of the open

source software bug report. They analyzed last five year bug

report data of an open source software "worldcontrol" to

identify the trends followed by various parameters. Bug

report data has been categorized on monthly basis and

forecast is also on monthly basis. Model accounts for the

parameters such as resolved, assigned, reopened, closed and

verified bugs respectively.

2.1.3 Sample Based Approach [3]

Throughout development, they proposed sample-based

methods for software defect prediction. For a large software

system, they selected and tested a small percentage of

modules, and then built a defect prediction model to predict

defect proneness of the rest of the modules. They described

three methods for selecting a sample: random sampling with

conventional machine learners, random sampling with a

semi-supervised learner and active sampling with active

semi-supervised learner.

2.2 Software Configuration Management

Software consists of a collection of items (such as programs,

data and documents) that can easily be changed. During

software development, the design, code, and even

requirements are often changed, and the changes occur at any

time during the development. This easily changeable nature

of software and the fact that changes often take place require

that changes be done in a controlled manner.

Figure 1: Software Configuration Management life cycle

Software configuration management (SCM) is the discip-line

for systematically controlling the changes that take place

during development. Software configuration management is a

process independent of the development process largely

because most development models cannot accommodate

change at any time during development.

2.3 Version Control System

Information management systems generally operate on

"artifacts." An artifact is an object containing information

[6]. A common example of an artifact is a file in a

computerized storage system. One class of information

management system is a version control system [6]. As each

artifact is modified, a new version of the artifact may be

saved by the version control system.

For example, a version control system may store files

representing source code for a relatively large product, which

may be released in multiple revision levels. When one

revision of the product is released, the most recent version of

some files may have new features that have not been tested or

debugged. Accordingly, when that revision of the product is

built, prior versions of some files, representing the last

version that was fully tested and debugged, may be

incorporated into the product. Also, support and maintenance

of a revision of the product that was previously released may

require access to old versions of a file. Accordingly, many

versions of a file may be saved and retrieved for any number

of reasons.

A software contributor (developers, testers, designers) works

together on common project. Workflow among them defines

how contributors of a project work together. There are two

workflows available in industry. 1) Centralized and 2)

distributed.

Figure 2: Centralized Version Control System

Artifacts are changed in a working copy and shared with

colleagues by committing them to a centralized repository. If

the modified artifacts conflict with changes, which occurred

in the meantime, they are first merged locally with the latest

snapshot from the centralized repository, then committed.

Merging changes can be postponed by working on a branch

which is merged once the tasks are fulfilled.

When a distributed version control system is used, the

members of a project have to agree on a collaboration

workflow, to exchange their developments in a structured

Priyank Patel, IJECS Volume 3 Issue 1 January, 2014 Page No.3763-3767 Page 3765

order. This collaboration workflow and the applied software

development process have to fit to each other, and not every

collaboration workflow fits every development process.

There is no mechanism in a distributed version control

system to notify its users about new versions. To announce a

contribution, like a bug fix or a realized feature, mailing lists

are used, whereby a contributor posts his contribution along

with details how to pull the contributions from him.

Figure 3: Distributed Version Control System

During the lifetime of a software system, series of changes

are made to the software. So many versions will be produced.

Version control systems contain significant amounts of data

that could be exploited in the study of software evolution

[10].

2.4 Defect Tracking System

Paired with SCM, defect-tracking is another key in

engineering quality software. Defect-tracking systems

guarantee that nothing gets swept under the carpet; they

provide a method of Creating, storing, arranging and

processing defect reports and enhancement requests. Those

who do not use a bug-tracking system tend to rely on shared

lists, email, spreadsheets and/or Post-It notes to monitor the

status of defects. This procedure is usually error-prone and

tends to cause those defects judged least significant by

developers to be dropped or ignored [18].

2.5 Terms

2.5.1 Version

A version is a state of an object at one point in the history of

its evolution.

2.5.2 Revision

Revision is interchangeable with version, i.e. revision n

indicates the nth version. The term revision additionally puts

more emphasis on the difference between a version and its

previous version. That is, a revision indicates all the changes

made to the previous version to generate the current version.

The version before the changes is called an old version, and

the version after a revision is called the new version.

2.5.3 Hunk

The textual difference of a file between an old version and its

new version as computed by a diff tool is represented by a

list of text regions, called hunks. A hunk is a series of

contiguous changed lines and can be empty. A hunk in the

old version is called a deleted hunk, and a hunk in the new

version is called an added hunk.

2.5.4 Delta

A deleted hunk always has its corresponding added hunk, and

we call a deleted hunk and its corresponding added hunk a

delta. There are three kinds of delta: modification, addition,

or deletion. If neither the deleted hunk nor the added hunk of

a hunk pair is empty, we call this a modification delta. A

deletion delta has an empty added hunk, and an addition delta

has an empty deleted hunk.

Figure 4:: Methodology Adopted

Priyank Patel, IJECS Volume 3 Issue 1 January, 2014 Page No.3763-3767 Page 3766

3. OBJECTIVE AND METHODOLOGY

To assist the analysis, one need to get changes and revisions

from the change repository of a project, and perform analysis

on every file and change in a revision, we preprocess every

revision in the software change repository for a project,

extract defect related revisions from it, and transfer the

extracted revisions to a database. In this section, we will see

the architecture to extract revisions, the steps for pre-

processing on the revision data and structure of the database

that stores the information.

To analyze software evolution, we use the CVSAnalY tool to

extract revisions from SCM repositories [19]. The most

commonly used applications to create Source Code

Repositories (SCM) at this moment are CVS [20], SVN

(Subversions)[23] and GIT[22]. These tools usually register

activity and management information in logs. CVSAnalY

take these logs, and use them as an input for some basic

source code metrics and finally stores the results in a

database for posterior analysis. The Architecture for history

extraction from such repository is shown in figure 4.

CVSAnalY is responsible for extracting project source

versions from a repository of a project under analysis.

CVSAnalY automatically checks out the source code of each

revision and extracts change information such as the change

log message, author, change date, source code, etc.

The extracted source code versions and change information

are fed to a pre-processing module, which contains two sub-

modules for Software revisions history extraction and defect

labeling. The Software revisions history extraction module

fetch all revisions , affected files by that revision, Lines of

code changes like metric information , commit messages

associated with that revision and author, committed

timestamp. The defect labeling module differentiates defect

fix revisions from non-fix revisions. Finally, the extracted

data for the project revisions are saved to the project data

database.

4. Analyzed Projects and Observation

We analyzed two open source project and one commercial

project written in python. They are Django, Twisted, and

CASH respectively.

This all projects are first studied and analyzed for defect

pattern. All Three are for different platform. Table 4-1

summarizes all projects we studied, and we briefly describe

them as follows.

For this research paper, We have considered SVN and GIT

based project As they are widely used in Software industry.

Many Large GIT projects and SVN projects are available in

github with history. Interval of project history, type of

platform, VCS type etc details are mention in Table 1.

Project Type Interval Type

of

vcs

Open

Source

(O) /

Commerci

al (C)

Django Web

Framewor

k

07/2005 to

01/2014

GIT O

Twisted Networkin

g engine

07/2001 to

01/2014

SVN O

CASH Financial

Platform

06/2012 to

01/2014

SVN C

Table 1: Analyzed Projects

With 10% as training data size of defect specific revisions

and initiating storing process in training data table taking 5%

as per LOC (lines of code) , 3% as newly added files and

2% as most recently changed files , following results for

above projects obtained .

Project No of

Revis

ions

Defect

specific

revision

s

Defect

Message

pattern

No of

revisions in

training data

table.

Django 24250 15837 Fixed # 1581

Twisted 16784 11868 Fixes # 1183

CASH 657 144 Resolve #

, Fixed #

14

Table 2: After Pre-Process and Initialization

5. Results

Now we have training data so when new defect introduced in

software system, we have to add this defect revision files in

training data set. For that we need replacement policy. We

have replaced those defects with criteria like least used file,

least frequently changed and least involvement in defects.

After replacing, we need to forecast defect. So we checked

all files in newly added defect revision against possible

affected files in training data.

Figure 5: Success Rate for Projects with Different Number

of Revisions

Priyank Patel, IJECS Volume 3 Issue 1 January, 2014 Page No.3763-3767 Page 3767

 If we found the code error or logical error because of that

newly added defect then it’s termed as success otherwise its

termed as fail. After collecting all success and fails for newly

added defects, we have analyzed in percentage that how

efficiently our algorithm able to forecast defect.

Figure 6: Comparison of Results

Conclusion

Based on this research its concluded that its possible to fore-

cast future defects based on past defects introduction and

resolve experience. It’s also not as complex as Artificial

intelligence techniques to which results are compared in

results section and its easy to understand, implement and

integrate in live projects. It’s also concluded by this research

that accuracy of future defects forecasting is increasing if few

history available of software system. The accuracy can also

be increased if more criteria on which algorithm operate is

added.

References

[1] Dr Shaik Nafeez Umar. Software Testing Defect

Prediction Model – A Practical Approach. International

Journal of Research in Engineering and Technology

(IJRET). May 2013

[2] Madhur Srivastava, Dharmendra Badal, Ratnesh Kumar

Jain(2010), Regression and ARIMA hybrid model for

new bug Prediction, International Journal on Computer

Science and Engineering, 2(8) , 2622-2628

[3] Ming Li , Hongyu Zhang , Rongxin Wu , Zhi-Hua Zhou,

Sample-based software defect prediction with active and

semi-supervised learning, Automated Software

Engineering, v.19 n.2, June 2012

[4] W.W. Royce. Managing the Development of Large

Software Systems. In Proceedings of IEEE WESCON,

volume 26. Los Angeles, 1970.

[5] Hanene Cherait and Nora Bounour. Toward a version

control system for aspect oriented software. MEDI'11

Proceedings of the First international conference on

Model and data engineering, P.110-121, 2011

[6] Christopher Antos, Brian Harry, Thomas McGuire,

Justin Pinnix and Michael Sliger. Version control

system. Oct -2006.

[7] C. Rodriguez-Bustos and J. Aponte, “How Distributed

Version Control Systems Impact Open Source Software

Projects”, Proc. Ninth IEEE Working Conf. Mining

Software Repositories, 2012.

[8] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M.

German, P. Devanbu, "The promises and perils of

mining git", In Proceeding MSR '09 Proceedings of the

2009 6th IEEE International Working Conference on

Mining Software Repositories, 2009, 1-7.

[9] Naheed Azeem and Shazia Usmani, "Defect Prediction

Leads to High Quality Product", Journal of Software

Engineering and Applications, 2011.

[10] Dina Spector, "A NASA Probe Is Spinning Out Of

Control After Handlers Lose Contact", Space,

http://www.businessinsider.in/A-NASA-Probe-Is-

Spinning-Out-Of-Control-After-Handlers-Lose-

Contact/articleshow/22471334.cms . 2013.

[11] "Cambridge University Study States Software Bugs Cost

Economy $312 Billion Per Year" ,

http://www.prweb.com/releases/2013/1/prweb10298185.

htm .2013

[12] "For Want of Hyphen Venus Rocket Is Lost", New York

Times, July 27, 1962, as quoted in RISKS Digest, Vol 5,

Issue #66.

[13] Tony Long, “Sept. 26, 1983: The Man Who Saved the

World by Doing ... Nothing”,

http://www.wired.com/science/discoveries/news/2007/09

/dayintech_0926 . 2007

[14] S. Garfinkel, "History's Worst Software Bugs," 2005,

http://wired.com/news/technology/bugs/0,2924,69355,00

.html

[15] "GDB: The GNU Project Debugger" ,

https://www.gnu.org/software/gdb/

[16] J.A. Whittaker. What is software testing? and why is it

so hard? Software, 17(1):70{79, 2000.

[17] JD Cem Kaner, E. Hendrickson, and J. Smith-Brock.

Managing the Propo of Testers to (Other) Developers.

Quality Week, 2001.

[18] The Bugzilla Defect Tracking Tool Guide.

http://www.bugzilla.org/docs/2.18/html/ , 2004.

[19] CVSAnalY.

https://github.com/MetricsGrimoire/CVSAnalY/ , 2013.

[20] S. Dreilinger, "CVS Version Control for Web Site

Projects," 2006, http://cvs.nongnu.org/.

[21] Subversion, "Subversion Project Home Page," 2013,

http://subversion.tigris.org/.

[22] Git, “Git Project Home Page,” 2013, http://git-scm.com/

[23] SVN, “What is Subversion?”, http://svnbook.red-

bean.com/en/1.6/svn.intro.whatis.html

[24] Software Engineering: A Practitioner's Approach, 6/e,

Roger S Pressman, McGraw Hill, 2005

[25] Software Engineering, Ian Sommerville, 8th Edition,

Addison-Wesley, 2006

Author Profile

Priyank Patel is Pursuing M.E. C.S.E. 2nd year, received the

B.E. degree in Information Technology from Gujarat University in

2011. During 2011-2012, he worked as Web developer in Kraff

Software Pvt. Ltd.

http://www.wired.com/science/discoveries/news/2007/09/dayintech_0926%20.%202007
http://www.wired.com/science/discoveries/news/2007/09/dayintech_0926%20.%202007
http://wired.com/news/technology/bugs/0,2924,69355,00.html
http://wired.com/news/technology/bugs/0,2924,69355,00.html
https://www.gnu.org/software/gdb/

