

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 4 April, 2013 Page No. 1111-1116

Veeralakshmi S, IJECS Volume 2 Issue 4 April, 2013 Page No. 1111-1116 Page 1111

A Secure Environment for Unsafe Component Loading

Veeralakshmi S, Sindhuja M

Department of Information Technology, Rajalakshmi Engineering College, Chennai.

Department of Information Technology, Rajalakshmi Engineering College, Chennai.

Veera34@gmail.com

ABSTRACT

Dynamic loading is widely used in designing and implementing software. Its benefits include modularity and generic interfaces
for third-party software such as plug-ins. Dynamic loading components are utilization requires local file system access on the end
host. The following problems are occurred in the local and remote dynamic components loading. In local system, the file does not
exist in the specified Path or the specified search directories, hijacking the components. Although in the remote system, the
browser automatically download arbitrary files to the user’s Desktop directory without any prompting, vulnerable program starts
up via the shortcut, an archive file containing a document and a malicious component. In existing system the admin have to
analyze the profile to check unsafe components. The proposed system has a facility to construct a profile for unsafe component by
user.

Key terms: Unsafe component loading, dynamic analysis, Component resolution, Shared object, User Account Control
1. INTRODUCTION

 Dynamic loading is an important mechanism for
software development. It allows an application the flexibility
to dynamically link a component and use its exported
functionalities. Its benefits include modularity and generic
interfaces for third-party software such as plug-ins. It also
helps to isolate software bugs as bug fixes of a shared
library can be incorporated easily. Because of these
advantages, dynamic loading is widely used in designing
and implementing software. A key step in dynamic loading
is component resolution, i.e., locating the correct component
for use at runtime. Operating systems generally provide two
resolution methods, either specifying the full path or the
filename of the target component.

 With full path, operating systems simply locate the
target from the given full path. With filename, operating
systems resolve the target by searching a sequence of
directories, determined by the runtime directory search
order, to find the first occurrence of the component.
Although flexible, this common component resolution
strategy has an inherent security problem. Since only a file
name is given, unintended or even malicious files with the
same file name can be resolved instead. Thus far this issue
has not been adequately addressed. In particular, it shows

that unsafe component loading represents a common in class
of security vulnerabilities on the Windows and Linux
platforms. Software components often utilize functionalities
exported by other components such as shared libraries at
runtime. This operation is generally composed of three
phases: resolution, loading, and usage. Specifically, an
application resolves the needed target components, loads
them, and utilizes the desired functions provided by them.
Component interoperation can be achieved through dynamic
loading provided by operating systems or runtime
environments. For example, the Load Library and dlopen
system calls are used for dynamic loading on Microsoft
Windows and Unix-like operating systems, respectively.
Dynamic loading is generally done in based on component
resolution and chained component loading. It have
discovered new remote attack vectors based on the findings
from analysis, which Microsoft confirmed and actively
worked with us and other software vendors to develop
engineering solutions to patch. The project also discusses
and proposes techniques to mitigate unsafe component
loadings.
 Although dynamic loading is a critical step in
software execution, it also has an inherent security
implication. Specifically, a loaded target component is only
determined by the specified file name. This can lead to the
loading of unintended or even malicious components and

http://www.ijecs.in/�

Veeralakshmi S, IJECS Volume 2 Issue 4 April, 2013 Page No. 1111-1116 Page 1112

thus may allow arbitrary code execution. For example, an
attacker can trick a vulnerable web browser to resolve a
spyware file with the specified file name instead of the
intended component. Some of the world's most popular
Windows programs are vulnerable to attacks that exploit a
major bug in the way they load critical code libraries,
according to sites tracking attack code. Automatic detection
describes security vulnerabilities and threats in dynamic
component loading, including remote code execution attacks
based on unsafe dynamic loadings. It represents general
technique for detecting unsafe dynamic loadings.

2. RELATED WORKS

 C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney[3] proposed a tool for automated detection for
unsafe component Pin is dynamic
binary instrumentation framework for the IA-32 and x86-
64 instruction set architectures that enables the creation
of dynamic program analysis tools, As a dynamic binary
instrumentation tool, instrumentation is performed at run
time on the compiled binary files. Thus, it requires no
recompiling of source code and can support instrumenting
programs that dynamically generate code. Pin was originally
created as a tool for computer architecture analysis, but its
flexible API and an active community have created a diverse
set of tools for security, emulation and parallel program
analysis.

 Pin tool is platform independence. C. Grier, S.
Tang, and S.T. King[2] suggested op web browser for secure
environment. Current web browsers provide attackers with
easy access to modern computer systems. A new web
browser that is designed to support web-based applications
securely, called the OP web browser. One difficulty in
analyzing browser-based attacks is that the activities of the
attacker are intermingled with legitimate actions. OP web
browser used to overcome these attacks to enable users and
system administrators to better understand browser-based
attacks.

 Fuzz testing is an effective technique for finding
security vulnerabilities in software. Godefroid, M.Y. Levin,
and D.A. Molnar[5] proposed fuzz testing tools apply
random mutations to well-formed inputs of a program and
test the resulting values. Fuzz testing is a form of black box
random testing which randomly mutates well-formed inputs
and tests the program on the resulting data.

 P. Saxena, P. Poosankam, S. McCamant, and D.
Song[10] proposed Loop- Extended Symbolic Execution on
Binary Programs to reduce bugs. Mixed concrete and
symbolic execution is an important technique for finding
and understanding software bugs, including security relevant
ones. The symbolic execution technique is loop-extended

symbolic execution, which generalizes from a concrete
execution to a set of program executions which may contain
a different number of iterations for each loop as in the
original execution. This tool finds vulnerabilities in both
standard benchmark suite and real world application. I.
Goldberg, D. Wagner, R. Thomas, and E.A. Brewer[6]
implemented a secure Environment for Untrusted Helper
Applications Confining the Wily Hacker.

 Netscape use untrusted helper applications to
process data from the network. The aim is to confine the
untrusted software and data by monitoring and restricting
the system calls it performs. Web browsers are increasing
popular tool for retrieving data form network. Helper
applications also apply to web browser. Helper applications
should not be able to communicate with outside network.
KLEE is a program analysis tool that works by symbolic
execution and constraint solving, finding possible inputs that
will cause a program to crash, and outputting these as test
cases. C. Cadar, D. Dunbar, and D. Engler[1] support klee is
a capable of automatically generating tests that achieve high
coverage on a diverse set of complex and environmentally
intensive programs. KLEE, automatically generated tests
that, on average, covered over 90% of the lines (in aggregate
over 80%) in roughly 160 complex, system-intensive
applications ”out of the box.” Klee generated tests that
achieve high line coverage. Dynamic testing is a term used
in software engineering to describe the testing of the
dynamic behavior of code. Jacob Burnim and Koushik
Sen[7] proposed Heuristics for Scalable Dynamic Test
Generation. That is, dynamic analysis refers to the
examination of the physical response from the system to
variables that are not constant and change with time. In
dynamic testing the software must actually be compiled and
run.

 In random testing, the program under test is simply
executed on randomly-generated inputs. It can effectively
test large programs. D. Molnar, X.C. Li, and D.A.
Wagner[5] implemented dynamic Test Generation to Find
Integer Bugs in x86 Binary Linux Programs Integer bugs
have been increasing sharply and become the notorious
source of bugs for various serious attacks. In this tool,
IntFinder, this can automatically detect Integer bugs in an
x86 binary program. We implement IntFinder based on a
combination of static and dynamic analysis. Dynamic test
generation is better suited to finding such bugs, and we
develop new methods for finding a broad class of integer
bugs with this approach. We have implemented these
methods in a new tool, Smart Fuzz that analyzes traces from
commodity Linux x 86 programs. D.Brumley, D.X. Song,
T. Chiueh, R. Johnson, and H. Lin[4] proposed
Automatically Protecting against Integer-Based
Vulnerabilities in Network and Distributed System.

http://en.wikipedia.org/wiki/Instrumentation_(computer_programming)�
http://en.wikipedia.org/wiki/IA-32�
http://en.wikipedia.org/wiki/X86-64�
http://en.wikipedia.org/wiki/X86-64�
http://en.wikipedia.org/wiki/Instruction_set�
http://en.wikipedia.org/wiki/Dynamic_program_analysis�
http://en.wikipedia.org/wiki/Run_time�
http://en.wikipedia.org/wiki/Run_time�
http://en.wikipedia.org/wiki/Run_time�
http://en.wikipedia.org/wiki/Software_engineering�

Veeralakshmi S, IJECS Volume 2 Issue 4 April, 2013 Page No. 1111-1116 Page 1113

 RICH(Run-time Integer C Hecking), a tool for
efficiently detecting integer-based attacks against C
programs at run time. The RICH compiler extension
compiles C programs to object code that monitors its own
execution to detect integer-based attacks. This paper surveys
integer based attacks and provides a theoretical framework
to formally define and reason about integer errors soundly.
O. Ruwase and M.S. Lam[8] proposed A Practical Dynamic
Buffer Overflow Detector is most common form of security
threat in software systems and vulnerabilities attributed to
buffer overflows have consistently dominated C Range
Error Detector advisories. CRED proved effective in
detecting buffer overrun attacks on programs with known
vulnerabilities, and is the only tool found to guard against a
test bed of 20 different buffer overflow attacks.

3. PROPOSED SYSTEM

 In existing system the admin have to analyze the profile
to check unsafe components. The proposed system has a
facility to construct a profile for unsafe component by user.

3.1 Architecture

Figure 3.1 Proposed architecture diagram.

Figure 4.1 represents the architecture diagram of the system.
It is two three tier architecture consists of binary
instrumentation and unsafe component detector generate the
database and it has been connected with user. In client
Dynamic binary instrumentation checks the behavior of the
input program. Unsafe component detector checks the
resolution failure and unsafe resolution. Database is an
repository which stores all the details of the malicious
program.

Figure 3.2 Proposed DFD diagram

 Figure 4.1 represents the overall DFD for the proposed
system. User gives the malicious program as s input and its
run by admin. Admin generate the profile based on system
call, image loading and thread identifier. This profile will
forward to the user.

3.2 Malicious program

 Malicious program is software used or created by
attackers to disrupt computer operation, gather sensitive
information, or gain access to private computer systems. It
can appear in the form of code, scripts, active content, and
other software. Malware is a general term used to refer to a
variety of forms of hostile or intrusive software Malware is
not the same as defective software, which is software that
has a legitimate purpose but contains harmful bugs that were
not corrected before release. A java program creates with
error and bugs and malicious program files. This program is
executed by the admin.

3.3 Profile construction

 Constructs the profile from the running program. This
profile contain following three information such as system
calls, image loading, Thread process and identifiers. System
calls invoked for dynamic loading for information on target
component specifications, directory search orders, and the
sequence of component loading behavior. Capture actual
loadings of target components via dynamic binary
instrumentation. The loading information is needed for
reconstructing the loading procedure in a combination with
the information captured by the system call instrumentation.
It also indicates the resolved full path determined by the
loading procedure. The target program uses multithreads and
each thread loads a component dynamically, the
instrumented system calls for each loading can be

http://en.wikipedia.org/wiki/Source_code�
http://en.wikipedia.org/wiki/Script_(computing)�
http://en.wikipedia.org/wiki/Software_bug�

Veeralakshmi S, IJECS Volume 2 Issue 4 April, 2013 Page No. 1111-1116 Page 1114

interleaved, which makes it difficult to correctly reconstruct
the loading procedure of each thread.

3.4 Unsafe checker

 To detect unsafe component resolutions first capture a
sequence of system-level actions for dynamic loading during
a program’s execution. Use dynamic binary instrumentation
to generate the profile on its runtime execution. Then
reconstruct the dynamic loading information from the
profile offline and check safety conditions for each
resolution. Because our technique only requires binary
executables, it is robust and can be applied to analyze not
only open source applications but also commercial off-the-
shelf products.

3.5 Identify the result

 Detected unsafe components results are identify by the
user. This component contains information about malicious
code.

4. IMPLEMENTATION

4.1 Directory search order
 Dynamic component resolution based on filename
requires a directory search order, which is determined by
system and program settings at runtime. According to
MSDN the SafeDllSearchMode registry key, the
LOAD_WITH_ ALTERED_SEARCH_PATH flag, and the
SetDllDirectory system call determine five possible types of
directory search orders at runtime, which are standard search
order (Safe- DllSearchMode), alternate search order
(SafeDllSearchMode), and SetDllDire-ctory-based
SearchOrder.

Figure 5.1 Conditions for Detecting Unsafe Component
Loadings

4.2 Chained DLL loading
 According to Microsoft, there exist two types of load-
time dependencies among DLLs: implicit dependency and
forwarded dependency.

4.2.1 Implicit dependency: If a DLL A and a DLL B are
linked at compile/link time, and the source code of DLL A
calls one or more functions exported from DLL B, DLL A
has implicit dependency on DLL B. Note that implicit-
dependent DLLs are determined by function calls invoked
by the source code of the loading DLL. Even though the
function is not invoked at runtime, the DLL exporting the
function is also loaded.

4.2.2 Forwarded dependency: While this dependency is
similar to the implicit dependency, it differs in what the
DLL that implements the invoked functions is. For the load-
time dependency, the functions that a loading DLL invokes
are directly implemented in its dependent DLLs. However,
for forwarded dependency, the implementation of the
invoked function call simply forwards control to the actual
code implemented in another DLL. In this case, the loading
DLL has forwarded dependency on the DLL containing the
forwarded implementation.

Fig 5.2
A resolution failure in Microsoft Word 2010.

Based on this information stored in the profiles, we perform
offline analysis to detect unsafe DLL loadings.

5. EVALUATION
 Evaluate unsafe component loadings on Microsoft
Windows and Linux. For each platform, detect unsafe
component loadings in a diverse selection of popular
applications.

 Table 1: Number of Detected Unsafe DLL Loadings

Veeralakshmi S, IJECS Volume 2 Issue 4 April, 2013 Page No. 1111-1116 Page 1115

 Table 1 shows the number of unsafe DLL loadings
detected from a few different types of major applications on
Microsoft Windows family. In particular, we classify
detected failed and unsafe resolutions in terms of the
specification type (i.e., fullpath or filename) and the phase at
which the unsafe loadings happen. The columns labeled T
and C correspond to target and chained component loadings,
respectively. Note that the C column is missing for fullpath.
This is because components for the chained loading are
specified by their filenames. According to the table, unsafe
DLL loadings are common programming mistakes in
developing these applications. We found more than 3,200
instances of unsafe dynamic loadings: 1,072 under XP,
1,080 under Vista, and 1,117 under Windows 7. Considering
the types of these unsafe DLL loadings, unsafe resolution is
responsible for almost all of them.

5.1. Performance
 To evaluate the performance of our technique, we
measure the execution time of each phase for analyzing MS
Office products on Windows 7 running on a Core2 Duo 2.40
GHz

Table 2: Execution Time for Analyzing MS Office 2010

Table 3 shows the execution time for the profile generation
and analysis phases of the analyzed applications. In the

evaluation, use default documents as inputs to the analyzed
programs. Our results show that our technique is practical
and can be effectively applied for analyzing real-world
programs such as MS Office.

Table 3: Number of Detected Unsafe SO Loadings

6. CONCLUSION AND FUTURE WORK
 The system has been designed for to identify and
eliminate the unsafe dynamic component loading in the
system. More over the system has been designed for
providing security from downloading malicious program.
The analysis on the requirements and a design for the
proposed system has been screened. The requirement
analysis process includes learning and determining about the
working environment, technical requirements and logical
aspects or features of the system.
 To evaluate the technique implemented tools to detect
unsafe component loadings on Microsoft Windows and
Linux.
7. ACKNOWLEDGEMENT

 I would like to thank Mrs.M.Sindhuja, Assistant
Professor (SS), Information Technology, Rajalakshmi
Engineering College, for guiding me in writing this paper.

REFERENCES

[1] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for
Complex Systems Programs,” Proc. Eighth USENIX Conf.
Operating Systems Design and Implementation, pp. 209-
224, 2008.

[2] C. Grier, S. Tang, and S.T. King, “Secure Web Browsing
with the OP Web Browser,” Proc. IEEE Symp. Security and
Privacy, pp. 402416, 2008.

[3] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, “Pin: Building Customized Program Analysis

Veeralakshmi S, IJECS Volume 2 Issue 4 April, 2013 Page No. 1111-1116 Page 1116

Tools with Dynamic Instrumentation,”Proc. ACM
SIGPLAN Conf. Programming Language Design and
Implementation, pp. 190-200, 2005.

[4] D. Brumley, D.X. Song, T. Chiueh, R. Johnson, and H.
Lin, “RICH: Automatically Protecting against Integer-Based
Vulnerabilities,”Proc. Network and Distributed System
Security Symp, Mar. 2007.

[5] D. Molnar, X.C. Li, and D.A. Wagner, “Dynamic Test
Generation to Find Integer Bugs in x86 Binary Linux
Programs,” Proc. 18th Conf. USENIX Security Symp, pp.
67-82, 2009.

[6] I. Goldberg, D. Wagner, R. Thomas, and E.A. Brewer,
“A Secure Environment for Untrusted Helper Applications
Confining the Wily Hacker,” Proc. Sixth Conf. USENIX
Security Symp. Focusing on Applications of Cryptography,
1996.

[7] Jacob Burnim and Koushik Sen,” Heuristics for Scalable
Dynamic Test Generation” Automated Software
Engineering, 2008. ASE 2008.

[8] O. Ruwase and M.S. Lam, “A Practical Dynamic Buffer
Overflow Detector,” Proc. Network and Distributed System
Security Symp., Feb. 2004

[9] P. Godefroid, M.Y. Levin, and D.A. Molnar,
“Automated White box Fuzz Testing,” Proc. Network and
Distributed System Security Symp. Mar2008.

[10] P. Saxena, P. Poosankam, S. McCamant, and D. Song,
“Loop- Extended Symbolic Execution on Binary Programs,”
Proc. 18th Int’l Symp. Software Testing and Analysis.

.

	3.1 Architecture
	4. IMPLEMENTATION
	Directory search order
	Chained DLL loading

	EVALUATION
	6. CONCLUSION AND FUTURE WORK
	[4] D. Brumley, D.X. Song, T. Chiueh, R. Johnson, and H. Lin, “RICH: Automatically Protecting against Integer-Based Vulnerabilities,”Proc. Network and Distributed System Security Symp, Mar. 2007.
	[5] D. Molnar, X.C. Li, and D.A. Wagner, “Dynamic Test Generation to Find Integer Bugs in x86 Binary Linux Programs,” Proc. 18th Conf. USENIX Security Symp, pp. 67-82, 2009.

