

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume1 Issue 3 Dec 2012 Page No. 137-142

 Maintainability of Software using Aspect Oriented Programming for Process

quality Analysis

Dr.V.Khanaa. Krishna Mohanta

Dean Bharath University

Sri Sai Ram Engg.College

Corresponding Author: Dr.V.Khanaa Dean Bharath University

Abstract

Among all the phases in software development cycle, maintainability forms the key phase. Once the

software is engineered, Software maintenance is the most effort and cost consuming part. A quality

software must be adaptable to any real time working conditions. In a component-based system, different

components are integrated, enrichment/improvement of a component to make it adaptable to prevailing

conditions require more cost. This research presents the modeling work and prototyping techniques, which

highlights the importance of project quality analysis for perspective maintainability. Here we are

proposing a mathematical approach for time computation which is the sum of response time and time for

solution generation. For efficient analysis we require high execution speed for handling complex

algorithms and huge data volumes. For this we are providing aspect oriented programming techniques

which increase the development speed, modularity that outputs quality products

Keywords— Perfective Maintainability, software

maintenance, Aspect-Oriented Programming

Technique, component-based System

I. INTRODUCTION

This document is a template. An electronic copy

can be downloaded from the conference website.

For questions on paper guidelines, please contact

the conference publications committee as indicated

on the conference website. Information about final

paper submission is available from the conference

website.

Software maintenance is the modification of a

software product after delivery to correct faults, to

improve performance or other attributes. Software

Development has many phases. These phases

include Requirements Engineering, Architecting,

Design, Implementation, Testing, Software

Deployment, and Maintenance. Maintenance is the

last stage of the software life cycle. After the

product has been released, the maintenance phase

keeps the software up to date with environment

changes and changing user requirements.

Among four different types of maintainability

namely corrective maintainability, adoptive

maintainability, perfective and preventive

maintainability, major costs go to the

enhancement/modifications of components in

component-based software systems [1].

1. Perfective maintainability establishes the

change control procedure to initiate

enhancement/modification request, to evaluate

modification/enhancement request, to approve and

implement changes to a baseline [3].

2. Process quality analysis of perfective

maintainability is based on three parameters they

are Time, Quality, and Efficiency

http://www.ijecs.in/

 Dr.V.Khanaa International Journal Of Engineering And Computer Science 1:3 Dec 2012(137-142)

P
ag

e1
3

8

The earlier phases should be done so that the

product is easily maintainable. The design phase

should plan the structure in a way that can be easily

altered. Similarly, the implementation phase should

create code that can be easily read, understood, and

changed. Maintenance can only happen efficiently

if the earlier phases are done properly. There are

four major problems that can slow down the

maintenance process: unstructured code,

maintenance programmers having insufficient

knowledge of the system, documentation being

absent, out of date, or at best insufficient, and

software maintenance having a bad image. The

success of the maintenance phase relies on these

problems being fixed earlier in the life cycle.

Maintenance consists of four parts. Corrective

maintenance deals with fixing bugs in the code.

Adaptive maintenance deals with adapting the

software to new environments. Perfective

maintenance deals with updating the software

according to changes in user requirements. Finally,

preventive maintenance deals with updating

documentation and making the software more

maintainable. All changes to the system can be

characterized by these four types of maintenance.

Corrective maintenance is ‘traditional maintenance’

while the other types are considered as ‘software

evolution.’

As products age it becomes more difficult to keep

them updated with new user requirements.

Maintenance costs developers time, effort, and

money. This requires that the maintenance phase

be as efficient as possible. There are several steps

in the software maintenance phase. The first is to

try to understand the design that already exists. The

next step of maintenance is reverse engineering in

which the design of the product is re-examined and

restructured. The final step is to test and debug the

product to make the new changes work properly.

This paper will discuss what maintenance is, its

role in the software development process, how it is

carried out, and its role in iterative development,

agile development, component-based development,

and open source development.

II. DESCRIPTION OF THE NATURE OF THE PHASE

This section will cover what the software

maintenance phase is about. As briefly seen in the

introduction, software maintenance is not limited to

the correction of latent faults. The term software

maintenance usually refers to changes that must be

made to software after they have been delivered to

the customer or user. The definition of software

maintenance by IEEE [1993] is as follows:

The modification of a software product after

delivery to correct faults, to improve performance

or other attributes, or to adapt the product to a

modified environment. The following subsections

will discuss different types of software

maintenance, the significance and the

characteristics of software maintenance.

A. Four types of software maintenance

There are four types of maintenance according to

Lientz and Swanson: corrective, adaptive,

perfective, and preventive [1980].

 Corrective maintenance deals with the repair of

faults or defects found. A defect can result from

design errors, logic errors and coding errors

(Takang and Grubb [1996]).

Design errors occur when, for example, changes

made to the software are incorrect, incomplete,

wrongly communicated or the change request is

misunderstood. Logic errors result from invalid

tests and conclusions, incorrect implementation of

design specifications, faulty logic flow or

incomplete test of data. Coding errors are caused by

incorrect implementation of detailed logic design

and incorrect use of the source code logic. Defects

are also caused by data processing errors and

system performance errors. All these errors,

sometimes called ‘residual errors’ or ‘bugs’,

prevent the software from conforming to its agreed

specification. The need for corrective maintenance

is usually initiated by bug reports drawn up by the

end users (Coenen and Bench-Capon [1993]).

Examples of corrective maintenance include

correcting a failure to test for all possible conditions

or a failure to process the last record in a file

(Martin and McClure [1983]).

 Adaptive maintenance consists of adapting

software to changes in the environment, such as the

hardware or the operating system. The term

environment in this context refers to the totality of

 Dr.V.Khanaa International Journal Of Engineering And Computer Science 1:3 Dec 2012(137-142)

P
ag

e1
3

9

all conditions and influences which act from outside

upon the system, for example, business rule,

government policies, work patterns, software and

hardware operating platforms (Takang and Grubb

[1996]). The need for adaptive maintenance can

only be recognized by monitoring the environment

(Coenen and Bench-Capon [1993]).

An example of a government policy that can have

an effect on a software system is the proposal to

have a ‘single European currency’, the ECU. An

acceptance of this change will require that banks in

the various member states, for example, make

significant changes to their software systems to

accommodate this currency (Takang and Grubb

[1996]). Other examples are an implementation of a

database management system for an existing

application system and an adjustment of two

programs to make them use the same record

structures (Martin and McClure [1983]). A case

study on the adaptive maintenance of an Internet

application ‘B4Ucall’ is another example (Bergin

and Keating [2003]). B4Ucall is an Internet

application that helps compare mobile phone

packages offered by different service providers. In

their study on B4Ucall, Bergin and Keating discuss

that adding or removing a complete new service

provider to the Internet application requires

adaptive maintenance on the system.

III. PROCESS MAINTAINABILITY ASPECT ORIENTED

PROGRAMMING

Maintainability plays a very important role in the

software development life cycle. Since majority of

the software development costs goes to

maintenance phase. Among four different types of

maintainability namely corrective maintainability,

adoptive maintainability, perfective and preventive

maintainability, major costs go to the

enhancement/modifications of components in

component-based software systems [1]. Perfective

maintainability establishes the change control

procedure to initiate enhancement/modification

request, to evaluate modification/enhancement

request, to approve and implement changes to a

baseline [3]. Process quality analysis of perfective

maintainability is based on three parameters they

are Time, Quality, and Efficiency. Aspect-oriented-

programming technologies aim to improve system

efficiency and modularity by modularizing

crosscutting concerns. These are the concerns that

span across multiple modules in a program. In

several programs, global properties of design issues

lead to crosscutting concerns. This problem can be

overcome by using a separation of concerns through

concepts of Aspect-oriented-programming (AOP)

[2]. This technique can be used to find all the

objects affected by changes. However, this

technique suffers from common problems of

Object-Oriented programming such as crosscutting

concerns [2]. In AOP we have found some

improvements over object-oriented programming

like modularization of data enhances the quality of

software product. AOP introduces language

mechanism for identifying and capturing

crosscutting concerns and it is considered as a good

candidature for modularizing the different aspects

of concern in a system. It provides a mechanism for

encapsulating crosscutting concerns into modular

units; this mechanism provides an easy approach

during the evaluation of the quality of perfective

maintainability.

Fig. 1 image title

IV. ACTIVITIES FOR PERFECTIVE

MAINTAINABILITY

Process activities included in perfective

maintainability are

i) Understanding of the requested

modification/enhancement.

ii) Determination of which software

components should be retrieved to meet

 Dr.V.Khanaa International Journal Of Engineering And Computer Science 1:3 Dec 2012(137-142)

P
ag

e1
4

0

the modification/enhancement

requirements.

iii) Evaluation of the requested requirements.

iv) Reinsertion of updated component.

v) Observing the workflow.

To perform the above activities perfective

maintainability has the following responsibilities

i.e., once the understanding of requested

modification/enhancement is over, determination of

particular components for the identified request

should be retrieved. This retrieval of components

consists of using a search method; search method is

based on the classification of components and

keywords. Once the retrieval of identified

components over, next step is to evaluate the

component. Evaluation of components is based on

the some sub-activities i.e., well understanding of

retrieved component version, investigation of

different alternatives to fit into the required

enhancement/modifications, approval for the

requested enhancement/modifications are based on

the requirements of the process quality. Once the

approval of an identified request is done,

propagation of changes must be made to the

respective components. Again, we need to perform

adaptation of enhanced components with other

components in the component-based software

systems. Process quality analysis must be made

once the adaptation of components has been done.

The following figure shows the set of activities

involved in the administration of perfective

maintainability.

V. PROCEDURE FOR PROCESS QUALITY

ANALYSIS OF PERFECTIVE

MAINTAINABILITY

Evaluation of process quality would be derived

from the following parameters.

I. Time

II. Quality

III. Efficiency

I. Time: Measure of time comprises of two

parameters; response time and average answering

time. The analysis of complete source code

efficiency and scalability provides a clear picture of

the response time. This again depends on the type

of enhancement/ modification request and also the

associated components.

Average answering time is the time interval that

elapses from the arrival of a request into the

maintenance request buffer until the required

enhancement/ modification has done to fulfill the

user requirements. The time taken to fulfill the user

requirements based on the type of

enhancement/modification requirement. This can be

calculated as follows.

Tcr = Σ P (Ai) *T (Ai)

Tcr-> is time taken to complete the enhancement/

modification requirements.

P (Ai) ->is the probability of receiving a good

acceptable modification/enhancement request.

T (Ai) -> is the Mean Time for answering i.e.,

fulfilling the identified request. This is different for

different requests.

This time taken includes the time taken for

reconstruction of components.

II. Quality: Quality of perfective maintainability is

the extent to which software system possesses

desirable characteristics. Quality analysis is

performed through qualitative and quantitative

approaches [3]. The qualitative approach is based

on the identification of critical programming errors

that may encountered whenever any

enhancement/modification request has been

fulfilled. This approach involves proper analysis for

correcting the errors in each of the aspects or

components affected by that request. This also

includes identification of aspects of all affected

components. Identification of aspects is done by the

concepts of separation of concerns. Design consists

of redesigning the system based on the

understanding of the modifications/enhancements

necessary for the components using AOP Aspect J

programming techniques. During redesign,

identified aspects are rewritten based on the

requirements. Once the aspects are redesigned, the

modifications done to this affects all the other

concerns related to the aspect. Outcome of this

redesign results into new aspects with required

modifications/enhancements and an updated version

of the same aspects. Documents are generated for

new aspects and also for updated version once the

 Dr.V.Khanaa International Journal Of Engineering And Computer Science 1:3 Dec 2012(137-142)

P
ag

e1
4

1

requirements are fulfilled. If the requirements are

not fulfilled completely then it is required to repeat

the procedure. In this redesigning process we

changed only one aspect without spending much

time in analyzing and identifying each and every

class related to that concern, and this will

drastically reduces the time compared to Object-

oriented programming techniques.

III. Efficiency: Efficiency of component-based

software systems requires analysis of some of the

software engineering best practices and technical

attributes, they are

1. Component-based software system

architectural practices

2. Interactions among different components in

the system

3. Coding practices for the software

development

4. Compliance with Aspect-oriented

programming and Object-oriented

programming techniques.

Main aim of efficiency is to ensure centralization

of clients’ enhancement/modification requests and

reduction of data flow among different modules in

intra and inter workings of systems. Aspect-

oriented programming (AOP) techniques impacts

on code quality improvements. This technique

enhances a system feature such as modularity,

readability and simplicity. AOP techniques would

provides a better modularization of crosscutting

concerns, which leads to an implementation of a

component-based software systems as a less

complex and easily readable software [11]. This in

turn increases the software development efficiency,

so that the system would be maintained efficiently

than object-oriented programming techniques. AOP

affects software development efficiency in terms of

the time needed to develop the system.

Programming paradigms of AOP would simplify

the development process, so that the software

product may be created faster. Development Time

is the metric, we identified here to measure the

efficiency. Here we are defining active time as the

time needed for software development by writing

code and passive time as the time spends on the

other activities concerned in the development of the

software project. AOP affects efficiency of

perfective maintainability in terms of Active Time

(TA), and Passive Time (TP).Whenever any

enhancement/ modification requests comes, if

programmer have prior knowledge about following

activities such as, how to handle the requests, what

are the activities necessary to ful fill the requests,

which parts of the source code needs to be changed

and also about different modules and components

where the changes have to be made, then the

fraction of passive time in total time will become

smaller. This will drastically increases the

efficiency of component based software systems.

VI. SIMULATION USING PETRINETS

Petrinets are a Mathematical and graphical

modelling tool, it was first introduced in Carl Adam

Petri’s dissertation in 1962[10]. This tool helps in

modelling of concurrent systems, for that reason we

are using this tool for concurrent evaluation of

process quality activities of perfective

maintainability for component-based software

systems. Major application areas for petrinets are

Performance Evaluation, communication protocols

and other interesting applications which include

Modelling and analysis of distributed software

systems. Figure 2. Shows the simulation of well

planned process quality analysis activities of

perfective maintainability. This shows set of

activities included in our proposed approach for

process quality analysis of perfective

maintainability. It also shows how effectively

evaluation of process quality analysis of perfective

maintainability has been done. As we discussed

above evaluation of process quality analysis is

based on the parameters namely Time, Quality, and

Efficiency. When there is a request of enhancement/

modifications for an existing software product,

initially we need to identify the exact location of the

components in the component-based software

systems. Once, locations of components are

identified we need to retrieve those components to

modify them according to the requirements. This

identification procedure is based on component

identification techniques such as search methods by

several keywords. Next, we need to find the aspects

which are needed to be changed within each of the

 Dr.V.Khanaa International Journal Of Engineering And Computer Science 1:3 Dec 2012(137-142)

P
ag

e1
4

2

retrieved components. Then evaluation has to be

done to perform the process analysis based on

Time, Quality, and efficiency. Corresponding

results obtained must be updated in the history of

components. In the next step it is necessary to

monitor and control each of the components which

may affected by these enhanced/ modified

components. Again, we need to check with process

quality analysis for each of those components.

Then, possible measures have to be taken to

integration and reinsertion of the enhanced/

modified component in to the system. Further, one

can check with the entire process of perfective

maintainability solutions, so that these

maintainability implementations can be done.

Usage of this aspect-oriented programming

technique would likely to improve efficiency of

perfective maintainability for component-based

software systems.

VII. CONCLUSIONS

To provide better process quality of perfective

maintainability for component-based software

systems, we have proposed a set of activities

necessary for a process quality analysis of

perfective maintainability, by using three important

parameter such as time, quality, and efficiency. The

proposed approach helps in achieving better

efficiency of perfective maintainability with the

concepts of aspect-oriented programming, when

any modifications/enhancements have been done In

future performance evaluation of perfective

maintainability for component based software

systems could be a future area of research.

REFERENCES

[1] cimitile@unisannio.it University of Sannio,

Faculty of Engineering at Benevento Italy 29

November, 2000.

[2] NTNU Empirical study of Component Based

Software Engineering with Aspect Oriented

Programming by Axel Anders Kvale

Trondheim, 1. November 2004.

[3] Kiczales, G., Lamping, J., endhekar, A.,

Maeda, C., Lopes, C.V., Loingtier, J.-M., and

Irwin, J.: ‘Aspect- oriented programming’.

[4] Proc. European Conf. Object-Oriented

Programming (ECOOP 1997) vol. 1241 of

Lecture Notes in Computer Science,

Jyva¨skyla¨, Finland, June 1997, pp. 220–242.

[5] Lientz B., Swanson E., 1980: Software

Maintenance Management. Addison Wesley,

Reading, MA

[6] Lehman M. M., 1980: Program, Life-Cycles

and the Laws of Software Evolution. In

Proceedings of IEEE, 68, 9,1060-1076.

[7] Penny Grubb, Armstrong A. Takang, 2003:

Software Maintenance: Concepts and Practice. World

Scientific Publishing Company

