
www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume – 5 Issue -03 March, 2016 Page No. 15877-15882

Manish, IJECS Volume 05 Issue 3 March 2016 Page No.15877-15882 Page 15877

An Approach to Utilize Memory Streams for efficient Memory Management
Manish(Student), Sunil Dhankar (Reader)

Department of Computer Science,

SKIT, JaipurRajasthan, India

er.manishccc@gmail.com

Department of Computer Science

SKIT, Jaipur, Rajasthan, India

s2mdhankhar@gmail.com4

Abstract—when there is need to use Memory allocation on relatively huge datasets, there becomes possibilities to encounter

the exception that is OutOfMemoryException. That shows that memory is not available for the allocation. This exception

does not occur due to the limitation of memory of system, it occurs when virtual address space is not available for that byte

of data. This takes place not because of the insufficient memory or the fact that memory has been reached limitations of the

system memory, but it is because of the current implementation of memory allocation which uses a single byte array as a

backing store.

When data set is relatively larger the backing store of memory allocation space requires more contiguous memory than is

available in the virtual address space. If there is no continuous memory available for the process then it encounters the

exception of OutOfMemoryException even there is enough space available but not continuous.

In this research we proposed an approach for dynamically deciding the best memory allocator for every application. The

proposed solution does not require contiguous memory to store the data contained in the stream. This approach uses a

dynamic list of small blocks as the backing store, which are allocated on demand as the stream is used. If there is no

contiguous memory available in the Stream then memory allocation can be done from these small blocks of memory with no

OutOfMemoryException.

IndexTerms—Exception, virtual address space, backing store

I. INTRODUCTION

1.1 Memory Management

Memory management is the operation of an operating system

which manages primary memory of the system. Memory

management keeps record of each and every location of

memory either it is allocated to the number of processes or it is

not allocated to any process.[1] It checks that how much

memory is required to be allocated to processes that decides

which process will be allocated some memory at what time. It

keeps track whenever some memory becomes freed or not

allocated and correspondingly it changes the status.

Memory management provides the feature to protect by using

two registers, where a base register and limit register. The base

register keeps the smallest physical memory address and the

restrict register specifies the size of range. For an example, if

the base register holds 10000 and the limit of register is 10090,

then this program can easily access all addresses from 10000 to

10090. [2]

Figure 1.1: Memory Management Processing [1]

Instructions and data for the memory addresses can be access in

following ways

http://www.ijecs.in/

DOI: 10.18535/ijecs/v5i3.01

Manish, IJECS Volume 05 Issue 3 March 2016 Page No.15877-15882 Page 15878

Compile time – compile time is known is pre-determined and

where process will reside, the binding at compile time is used

to creates the absolute code.

Load time – this time is not known at compile time where the

process will reside in memory, then the compiler creates re-

locatable code.

Execution time – When the process can be easily moved while

its execution from memory segment to another memory

segment, then binding must be delayed to be execute at run

time.

1.1.1 Dynamic Loading

In this dynamic loading, a block of a program is not loaded till

it is not called through the program. All routines of programs

are kept on the disk in re-locatable load format. The main

program is loaded into memory and then executed [3]. Other

routines modules or methods are loaded on request is done.

Dynamic loading creates better utilization of memory space

and not used routines are never loaded in the memory.

1.1.2. Dynamic Linking

Linking is the method of collecting and combining several

modules of code and data into executable file which can be

easily loaded into memory and then executed. Operating

system links system level libraries to the program [3]. When

the libraries are combined at load time, the linking is called as

static linking and libraries linked at compile time, due to this

program code size becomes larger whereas in dynamic linking

libraries are linked at run time so program code size remains

smaller.

1.1.3 Logical versus Physical Address Space

An address generated through the CPU is the logical address

and an address is available in memory unit which is called as

physical address. Logical address is also called as Virtual

address.

Virtual addresses and physical addresses are the similar in

compile-time and run-time address-binding schemes. Virtual

addresses and physical addresses are different in execution-

time address-binding scheme [4].

The group of logical addresses are generated through the

program is referred to as logical address space.

The group of physical addresses corresponding to these logical

addresses is referred to as a physical address space.

The runtime mapping to physical address from virtual address

is done by memory management unit.

MMU is a hardware device. It uses the following method to

convert virtual to physical address.

The value which exists in the base register is added to each and

every address generated through a user process that is treated as

offset at the time on which it is sent to memory. For an

example, if the value of the base register is 10000, and an

attempt by the user to use address location at 100 will be

dynamically reallocated to the location 10100. Then the user

program handles virtual addresses. It never sees the real

physical addresses.

Memory management is very complex field of computer

science and there are several techniques being developed to

make this more efficient.

1.2 Types of Memory Management

Memory management is divided into three parts, although the

distinctions are a little fuzzy:

 Hardware memory management

 Operating system memory management

 Application memory management

In most computer systems, all these three parts are present to

some extent, forming layers between the user’s program and

actual memory hardware. The Memory Management is mostly

deals with the application memory management [5].

1.2.1 Hardware memory management

Memory management at the hardware level deals with the

electronic devices which actually store data. [5] It includes

some things like RAM and memory caches.

1.2.2 Operating system memory management

In the operating system, memory must be allocated to user

programs, and reused by other programs when there is no

longer required. The operating system can pretend that the

computer has more memory than it actually does, and also that

each program has the machine’s memory to itself; Both of

these are features of virtual memory systems.

1.2.3 Application memory management

Application memory management includes supplying the

memory required for a program’s objects and data structures

from few resources available, and recycling the memory for

reuse when memory is no longer needed. Because programs

cannot predict in general, in advance how much memory they

are going to use, they required additional code to manage their

changing memory requirements.

1.3 Allocation Tasks

Application memory management combines two tasks:

1.3.1 Allocation

When the program requests for a block of memory, the

memory manager allocates that block of memory out of the

bigger blocks which it receives from the operating system [1].

The area of the memory manager which does the allocation

known as allocator. There are several ways to perform

allocation.

1.3.2 Recycling

When the blocks in memory have been allocated, but the data

that they contain in memory blocks is no longer needed by the

program, then these blocks can be recycled for the reuse. There

are two methods to recycling memory: either the programmer

must take the decision when memory can be reused which

known as manual memory management or the memory

manager must be able to allocate the memory without

interaction known as automatic memory management.

1.4 Constraints

An application memory manager must usually work to many

constraints, such as:

1.4.1 CPU overhead

The additional time taken through the memory manager while

the program is running.

1.4.2 Pause times

The time it takes for the memory manager to complete an

operation and return control to the program.

DOI: 10.18535/ijecs/v5i3.01

Manish, IJECS Volume 05 Issue 3 March 2016 Page No.15877-15882 Page 15879

This affects the program’s ability to respond promptly to

interactive events, and also to any asynchronous event such as a

network connection.

1.4.3 Memory overhead

How much space is wasted for the administration, rounding

which known as internal fragmentation, and poor layout which

known as external fragmentation.

Few of the common problems occur in application memory

management are considered.

1.5 Memory management problems

The basic problem to managing memory is knowing when to

hold the data that it contains, and when to throw this data away

so that memory can be reused again. This sounds easy and

simple, but it is a hard problem in which it is entire field of

study in its own right. In the ideal world scenario, most

programmers do not have to worry about memory management

problems. Unfortunately, there are several ways in which poor

memory management practice can affect the performance and

speed of programs, both in manual and in automatic memory

management.

Typical problems involves:

1.5.1 Premature frees and dangling pointers

Many programs throw the memory, but attempt to access the

memory later and crash or behave randomly.

This situation is known as a premature free, and when the

surviving reference for the memory is called as a dangling

pointer. This is usually confined to manual memory

management.

1.5.2 Memory leak

Some programs continuously allocate memory without giving

it up and eventually run out of the memory. This situation is

known as a memory leak.

1.5.3 External fragmentation

A poor allocator does its job of giving out and receiving blocks

of the memory so badly that it can no longer give out large

enough blocks despite having enough spare memory. This is

because the free memory can become split into many small

blocks, separated by blocks still in use. This condition is known

as external fragmentation.

1.5.4 Poor locality of reference

There is another problem with layout of allocated memory

blocks comes through that modern hardware and operating

system memory managers manage memory: successive

memory accesses are more faster if they are of nearby memory

locations. When the memory manager places too far apart from

the blocks then the program uses together, then it will cause the

performance issues. This situation is known as poor locality of

reference.

1.5.5 Inflexible design

Memory managers can also be the reason to severe

performance problems if they are designed with one use in the

mind, but when these are used in a different way. These

problems encounters because the memory management

solution tries to make assumptions for the way in which the

program is about to use memory, such as typical block sizes,

reference patterns, or lifetimes of objects. If these assumptions

are not correct, then the memory manager can spend more time

doing work to keep up with what is happening.

1.5.6 Interface complexity

When objects are passed through modules, then the design of

interface must consider the management of the memory.

A good designed memory manager can build it easier to write

debugging tools, because much of the code may be shared.

These such tools can display objects, navigate links, validate

objects and detect abnormal accumulations of certain object

types or block sizes.

1.6 Manual memory management

Manual memory management is a place where the programmer

is having direct control over the memory may be recycled.

Usually it is either by explicit calls to heap management

functions by language constructs which may affect the control

stack such as local variables. The main feature of a manual

memory manager is that this provides a method for the program

to say, ―Have this memory back; I’ve finished with it‖; The

memory manager is not able to recycle the memory without

any instruction.

The advantages of manual memory management are as follows:

 This can be easier for the programmer to understand

about the condition as what is going on.

 Some manual memory managers perform in better

way when there is a shortage of memory.

The disadvantages of manual memory management are as

follows:

 The programmer required to write a lots of code to do

repetitive bookkeeping of memory.

 Memory management need form a significant part of a

module interface.

 Manual memory management must need more

memory overhead per object.

 Memory management bugs are very common.

It is a common for programmers that they faced with inefficient

or inadequate manual memory manager, to write code for the

duplicate the behaviour of the memory manager, either by

allocating bigger blocks and splitting them for use, by recycling

the blocks internally. Such code is called as a suballocator.

These sub allocators can take advantage of special knowledge

behaviour of the program, but are less efficient in general than

fixing the underlying allocator. Unless written by a memory

management expert, sub allocators can be inefficient or

unreliable.

The following languages use mainly manual memory

management in most implementations, although many have

conservative garbage collection extensions: Algol; C; C++;

COBOL; Fortran; Pascal.

1.7 Automatic memory management

Automatic memory management is a type of service, either as a

part of the language or as an extension of the language, which

automatically recycles the memory that a program will not use

again. Automatic memory managers usually known as garbage

collectors, or simply collectors. They usually do their job by

recycling the blocks that are unreachable from the program

variables which blocks that cannot be reached through

following pointers.

DOI: 10.18535/ijecs/v5i3.01

Manish, IJECS Volume 05 Issue 3 March 2016 Page No.15877-15882 Page 15880

The advantages of automatic memory management are as

follows:

 Programmer is free to work on these actual problem;

 Module interfaces are used as cleaner.

 There are less memory management bugs.

 Memory management is usually more efficient.

The disadvantages of automatic memory management are as

follows:

 Memory may be retained because it is reachable, but

will not be used again;

 Automatic memory managers have limited

availability.

There are several ways of performing automatic recycling of

memory, some of which are discussed in recycling techniques.

Most modern languages use mainly automatic memory

management: BASIC, Dylan, Erlang, Haskell, Java, JavaScript,

Lisp, ML, Modula3, Perl, PostScript, Prolog, Python, Scheme,

Smalltalk, etc.

1.8 Swapping

Swapping is a method in which a process can be swapped out

of main memory to a backing store temporarily, and then come

back into memory for continuous execution.

Backing store is a hard disk drive or other secondary storage

device which is fast in access and bigger enough to

accommodate multiple copies of all memory images for the

users. It must be able of providing direct access to these

memory images.

Transfer time is major time consuming part of swapping.

Complete transfer time is directly proportional to the amount of

memory is swapped. Let us assume that the user process is of

size 100KB and the backing store is a standard hard disk with

transfer rate of 1 MB per second. The actual transfer of the

100K process to or from memory will take

100KB / 1000KB per second

= 1/10 second

= 100 milliseconds

1.8.1 Memory Allocation

Main memory has two partitions

Low Memory -- Operating system resides in this memory.

High Memory -- User processes then held in high memory.

Operating system uses the following memory allocation

mechanism.

Figure 1.2: Process Swapping

1.8.1.1 Single-partition allocation

In this type of allocation, relocation-register scheme is used to

protect user processes from each other, and from changing

operating-system code and data. Relocation register contains

value of smallest physical address whereas limit register

contains range of logical addresses. Each logical address must

be less than the limit register.

1.8.1.2 Multiple-partition allocation

In this type of allocation, main memory is divided into a

number of fixed-sized partitions where each partition should

contain only one process. When a partition is free, a process is

selected from the input queue and is loaded into the free

partition. When the process terminates, the partition becomes

available for another process.

1.9 Fragmentation

As processes are loaded and removed from memory, the free

memory space is broken into little pieces. It happens after

sometimes that processes can not be allocated to memory

blocks considering their small size and memory blocks remains

unused. This problem is known as Fragmentation.

Fragmentation is of two types

1.9.1 External fragmentation

Total memory space is enough to satisfy a request or to reside a

process in it, but it is not contiguous so it cannot be used.

1.9.2 Internal fragmentation

Memory block assigned to process is bigger. Some portion of

memory is left unused as it cannot be used by another process.

External fragmentation can be reduced by compaction or

shuffle memory contents to place all free memory together in

one large block.[4] To make compaction feasible, relocation

should be dynamic.

II. LITERATURE SURVEY

In this section we will discuss related work we found in

literature to propose the problems of Memory Management. A

number of papers have been published regarding the

improvement of memory management problems.

OnurUlgen and MutluAvci in 2015 under their research titled

"The intelligent memory allocator selector" proposed a novel

approach for dynamically deciding the best memory allocator

for every application. Their proposed solution tests each

process with various memory allocators. After the testing, it

selects an efficient memory allocator according to condition of

operating system (OS). If OS runs out of memory, then it

selects the most memory efficient allocator for new processes.

If most of the CPU power was occupied, then it selects the

fastest allocator [6].

Otherwise, the balanced allocator is selected. According to test

results, the proposed solution offers up to 58% less fragmented

memory, and 90% faster memory operations. In average less

fragmented memory and faster memory operations. The test

results also prove the proposed approach is unbeatable by any

memory allocator. They proposed a method that is dynamic and

efficient solution to the memory fragmentation problem but

their approach did not solve the problem for contiguous

allocation.

In 2013 German Molto, Miguel Caballer and others in their

research titled "Elastic Memory Management of virtualized

Infrastructures for Applications with Dynamic Memory

DOI: 10.18535/ijecs/v5i3.01

Manish, IJECS Volume 05 Issue 3 March 2016 Page No.15877-15882 Page 15881

Requirements" focused on dynamic memory management to

automatically fit at runtime the underlying computing

infrastructure to the application, thus adapting the memory size

of the VM to the memory consumption pattern of the

application.

They described an architecture, together with a proof-of-

concept implementation, that dynamically adapts the memory

size of the VM to prevent thrashing while reducing the excess

of unused VM memory. For the test case, a synthetic

benchmark is employed that reproduces different memory

consumption patterns that arise on real scientific applications.

The results show that vertical elasticity, in the shape of

dynamic memory management, enables to mitigate memory

over provisioning with controlled application performance

penalty [7].

III. PROPOSED APPROACH

This approach does not require contiguous memory to allocate

the data that the memory stream has. This approach uses a

dynamic list of small blocks as the backing store which is

decided by the user, which are allocated to process on demand

when process is requested for the memory.

My approach is also derives from the Stream class but

allocation process is different to the normal process of

allocation it allocates small chunks as continuous memory to

the process. This is capable to initializing from array of a byte

When a process request for the memory then allocation of

blocks done on demand either the operation read or write. The

Position is checked with respect to the Length before a read

operation takes place, to make sure the read operation is

performed within the limit of the stream. Length is just to

check the position is below the length size not for the

allocation amount of memory, setting the Length size does not

allocate memory to the process, rather it allows reads to

proceed on the data.

a) //A new class object: length is 0, position is 0, and no

memory has been allocated

b) Memory_msps d = new Memory_msps();

c) //returns -1 because Length is 0, no memory allocated

d) int a = d.ReadByte();

e) //Length now reports 10000 bytes, but no memory is

allocted

f) d.SetLength(10000);

g) //three blocks of memory are now allocated,

h) //but b is undefined because they have not been

initialised

i) int b = d.ReadByte();

j) Memory is allocated in sequential blocks that makes

the continuous memory which is required for the process. That

is, if the first block is requested to access the block 3rd, blocks

first and second are automatically allocated.

IV. EXPERIMENTAL SETUP

In this research, all the tests are performed under following

specifications:

1) Host System: Intel i5 processor with 4 GB RAM and

500 GB Hard disk.

2) Operating Environment: Windows 8.1

3) C#

4) Microsoft Task Parallel Library

5) Visual Studio

a) Execution Time: Execution time can be defined in

terms of time consumed by an algorithm in order to solve a

problem using processor p.

V. RESULTS AND ANALYSIS

There are two parameters for analysis that which algorithm

behaves in different scenarios. On the basis of these two

parameters as performance and capacity we can determine the

real implementation of both algorithms.

5.1 Performance Metrics

Performance both in terms of capacity and speed, of default

class and my approach, is difficult to predict as it is dependent

on a number of factors, one of the most significant being the

fragmentation and memory usage of the current process, a

process which allocates a lot of memory will use up large

contiguous sections faster than one that does not - it is possible

though to get an idea of the relative performance

characteristics of the two by taking measurements in

controlled conditions.

The tables below compare the capacity and access times of

default and my approach. In all cases the process instance

tested only the target stream.

5.2 Capacity

To perform this operation, a loop write the contents of a 1MB

array to the target stream over and over until the stream throw

an OutOfMemoryException, that was caught and the total

number of writes execution before the exception was returned.

Table 5.1 Capacity of Classes

Stream Average Stream Length

Before Exception (MB)

Default Class 785

My Class 2272

5.3 Speed (Access Time)

For these results, a set of data was written to perform the

operation, then read the stream. The data was written in

randomly lengths between 1KB to 1MB, to and from a 1MB

byte array. A Stopwatch is used to calculate the amount of

time it took to write, then read, the specified amount of data.

Each process executed its test 5 times, on the same data, so the

variations between the results for a stream, shows the time

taken allocating memory vs. that taken accessing it.

Table 5.2 Access Time with 10MB Data

 Stream Test Execution Times (ms)

Amount

written and

read (10

MB)

Default

My Class My Class
My

Class

(4KB

Block)

(64KB

Block)

(1MB

Block)

Execution 1 11 14 12 8

Execution 2 4 6 4 4

DOI: 10.18535/ijecs/v5i3.01

Manish, IJECS Volume 05 Issue 3 March 2016 Page No.15877-15882 Page 15882

Execution 3 4 7 4 4

Execution 4 4 6 4 4

Execution 5 5 6 4 4

Average 5.6 7.8 5.6 4.8

In the above table we can see the results performed on 10MB

data with different approaches. We calculate the average of

these operations.

Table 5.3 Access Time with 100MB Data

 Stream Test Execution Times (ms)

Amount

written and

read (100

MB)

Default

My Class
My

Class

My

Class

(4KB

Block)

(64KB

Block)

(1MB

Block)

Execution 1 105 153 128 57

Execution 2 39 59 47 40

Execution 3 39 53 40 39

Execution 4 40 52 41 40

Execution 5 39 53 41 40

Average 52.4 74 59.4 43.2

From the above scenario we can say that when we have the

block size of 1MB then it takes less time as compare to other

cases.

Table 5.4 Access Time with 500MB Data

 Stream Test Execution Times (ms)

Amount

written and

read (500

MB)

Default

My Class
My

Class

My

Class

(4KB

Block)

(64KB

Block)

(1MB

Block)

Execution 1 520 396 297 242

Execution 2 172 228 190 175

Execution 3 173 192 160 172

Execution 4 173 193 157 173

Execution 5 172 193 158 173

Average 242 240.4 192.4 187

Here this tables prove the results variation between the various

blocks used for the memory storage and 1 MB size block takes

very less time.

VI. CONCLUSION

The results indicate that my class can store more than double

the data of Default in ideal conditions. The access times depend

on the block size of the memory setting of my class; the initial

allocations are margin faster than Default class but access times

are similar. The smaller the block the more allocations must be

done and we got the best results with block of 1MB.

We can see the performance and access time are better in case

of approach I implemented here and it is able to allocate more

process to memory when there is an exception encounters in

the normal case.

VII. FUTURE SCOPE

This paper covers the limit of data to the 1000MB data after

this it slow down the system.

In the future there may be some chance to improvements can

be done by increasing the virtual address size so that when a

process is requested for the memory then it is allocated easily

to the process.

VIII. REFERENCES

[1]Silberschatz A, GalvinPB, GagneG

Operatingsystemconcepts Boston, MA Wiley.

[2] TanenbaumAS, WoodhullAS Operating systems design

and implementation.

[3]Evans J, Scalable memory allocation using jemalloc,

2011.URL 〈http://j.mp/1H6zIm4〉.
[4] E. Kalyvianaki, T. Charalambous, S. Hand, Self-adaptive

and self-configured CPU resource provisioning for virtualized

servers usingKalman filters, in: Proceedings of the 6th

international conference on Autonomic computing -

ICAC ’09, ACM Press, New York, New York, USA, 2009, p.

117

[5] ―Why use CPUs without MMU?‖ Available at:

http://www.uclinux.org/pub/uClinux/archive/5762.html

[6] Germ´an Molt´, Miguel Caballer, Eloy Romero, Carlos de

Alfonso, Elastic Memory Management of Virtualized

Infrastructures for Applications with Dynamic Memory

Requirements, International Conference on Computational

Science, ICCS 2013

[7] OnurÜlgen, MutluAvci, The intelligentmemoryallocator

selector, Computer Languages,Systems&StructuresVol44,

Pages 342–354, Year 2015

[8] Gustavo Duarte, ―Page Cache, the Affair between Memory

and Files‖. Available at:

http://duartes.org/gustavo/blog/category/internals/

[9] ―Process address space‖. Available at:

http://kernel.org/doc/gorman/html/understand/understand007.h

tml

