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Abstract—when there is need to use Memory allocation on relatively huge datasets, there becomes possibilities to encounter 

the exception that is OutOfMemoryException. That shows that memory is not available for the allocation. This exception 

does not occur due to the limitation of memory of system, it occurs when virtual address space is not available for that byte 

of data. This takes place not because of the insufficient memory or the fact that memory has been reached limitations of the 

system memory, but it is because of the current implementation of memory allocation which uses a single byte array as a 

backing store.  

When data set is relatively larger the backing store of memory allocation space requires more contiguous memory than is 

available in the virtual address space. If there is no continuous memory available for the process then it encounters the 

exception of OutOfMemoryException even there is enough space available but not continuous.  

In this research we proposed an approach for dynamically deciding the best memory allocator for every application. The 

proposed solution does not require contiguous memory to store the data contained in the stream. This approach uses a 

dynamic list of small blocks as the backing store, which are allocated on demand as the stream is used. If there is no 

contiguous memory available in the Stream then memory allocation can be done from these small blocks of memory with no 

OutOfMemoryException. 

IndexTerms—Exception, virtual address space, backing store 

I. INTRODUCTION 

1.1 Memory Management 

Memory management is the operation of an operating system 

which manages primary memory of the system. Memory 

management keeps record of each and every location of 

memory either it is allocated to the number of processes or it is 

not allocated to any process.[1] It checks that how much 

memory is required to be allocated to processes that decides 

which process will be allocated some memory at what time. It 

keeps track whenever some memory becomes freed or not 

allocated and correspondingly it changes the status. 

Memory management provides the feature to protect by using 

two registers, where a base register and limit register. The base 

register keeps the smallest physical memory address and the 

restrict register specifies the size of range. For an example, if 

the base register holds 10000 and the limit of register is 10090, 

then this program can easily access all addresses from 10000 to 

10090. [2] 

 

 

Figure 1.1: Memory Management Processing [1] 

Instructions and data for the memory addresses can be access in 

following ways 
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Compile time – compile time is known is pre-determined and 

where process will reside, the binding at compile time is used 

to creates the absolute code. 

Load time – this time is not known at compile time where the 

process will reside in memory, then the compiler creates re-

locatable code. 

Execution time – When the process can be easily moved while 

its execution from memory segment to another memory 

segment, then binding must be delayed to be execute at run 

time. 

1.1.1 Dynamic Loading 

In this dynamic loading, a block of a program is not loaded till 

it is not called through the program. All routines of programs 

are kept on the disk in re-locatable load format. The main 

program is loaded into memory and then executed [3]. Other 

routines modules or methods are loaded on request is done. 

Dynamic loading creates better utilization of memory space 

and not used routines are never loaded in the memory. 

 

1.1.2. Dynamic Linking 

Linking is the method of collecting and combining several 

modules of code and data into executable file which can be 

easily loaded into memory and then executed. Operating 

system links system level libraries to the program [3]. When 

the libraries are combined at load time, the linking is called as 

static linking and libraries linked at compile time, due to this 

program code size becomes larger whereas in dynamic linking 

libraries are linked at run time so program code size remains 

smaller. 

 

1.1.3 Logical versus Physical Address Space 

An address generated through the CPU is the logical address 

and an address is available in memory unit which is called as 

physical address. Logical address is also called as Virtual 

address. 

Virtual addresses and physical addresses are the similar in 

compile-time and run-time address-binding schemes. Virtual 

addresses and physical addresses are different in execution-

time address-binding scheme [4]. 

The group of logical addresses are generated through the 

program is referred to as logical address space. 

The group of physical addresses corresponding to these logical 

addresses is referred to as a physical address space. 

The runtime mapping to physical address from virtual address 

is done by memory management unit. 

MMU is a hardware device. It uses the following method to 

convert virtual to physical address. 

The value which exists in the base register is added to each and 

every address generated through a user process that is treated as 

offset at the time on which it is sent to memory. For an 

example, if the value of the base register is 10000, and an 

attempt by the user to use address location at 100 will be 

dynamically reallocated to the location 10100. Then the user 

program handles virtual addresses. It never sees the real 

physical addresses.  

Memory management is very complex field of computer 

science and there are several techniques being developed to 

make this more efficient.  

 

1.2 Types of Memory Management 

Memory management is divided into three parts, although the 

distinctions are a little fuzzy: 

 Hardware memory management 

 Operating system memory management 

 Application memory management 

In most computer systems, all these three parts are present to 

some extent, forming layers between the user’s program and 

actual memory hardware. The Memory Management is mostly 

deals with the application memory management [5]. 

 

1.2.1 Hardware memory management 

Memory management at the hardware level deals with the 

electronic devices which actually store data. [5] It includes 

some things like RAM and memory caches. 

 

1.2.2 Operating system memory management 

In the operating system, memory must be allocated to user 

programs, and reused by other programs when there is no 

longer required. The operating system can pretend that the 

computer has more memory than it actually does, and also that 

each program has the machine’s memory to itself; Both of 

these are features of virtual memory systems. 

 

1.2.3 Application memory management 

Application memory management includes supplying the 

memory required for a program’s objects and data structures 

from few resources available, and recycling the memory for 

reuse when memory is no longer needed. Because programs 

cannot predict in general, in advance how much memory they 

are going to use, they required additional code to manage their 

changing memory requirements. 

 

1.3 Allocation Tasks 

Application memory management combines two tasks: 

 

1.3.1 Allocation 

When the program requests for a block of memory, the 

memory manager allocates that block of memory out of the 

bigger blocks which it receives from the operating system [1]. 

The area of the memory manager which does the allocation 

known as allocator. There are several ways to perform 

allocation.  

 

1.3.2 Recycling 

When the blocks in memory have been allocated, but the data 

that they contain in memory blocks is no longer needed by the 

program, then these blocks can be recycled for the reuse. There 

are two methods to recycling memory: either the programmer 

must take the decision when memory can be reused which 

known as manual memory management or the memory 

manager must be able to allocate the memory without 

interaction known as automatic memory management. 

 

1.4 Constraints 

An application memory manager must usually work to many 

constraints, such as: 

 

1.4.1 CPU overhead 

The additional time taken through the memory manager while 

the program is running. 

 

1.4.2 Pause times 

The time it takes for the memory manager to complete an 

operation and return control to the program. 
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This affects the program’s ability to respond promptly to 

interactive events, and also to any asynchronous event such as a 

network connection. 

 

1.4.3 Memory overhead 

How much space is wasted for the administration, rounding 

which known as internal fragmentation, and poor layout which 

known as external fragmentation. 

Few of the common problems occur in application memory 

management are considered. 

 

1.5 Memory management problems 

The basic problem to managing memory is knowing when to 

hold the data that it contains, and when to throw this data away 

so that memory can be reused again. This sounds easy and 

simple, but it is a hard problem in which it is entire field of 

study in its own right. In the ideal world scenario, most 

programmers do not have to worry about memory management 

problems. Unfortunately, there are several ways in which poor 

memory management practice can affect the performance and 

speed of programs, both in manual and in automatic memory 

management. 

Typical problems involves: 

 

1.5.1 Premature frees and dangling pointers 

Many programs throw the memory, but attempt to access the 

memory later and crash or behave randomly. 

This situation is known as a premature free, and when the 

surviving reference for the memory is called as a dangling 

pointer. This is usually confined to manual memory 

management. 

 

1.5.2 Memory leak 

Some programs continuously allocate memory without giving 

it up and eventually run out of the memory. This situation is 

known as a memory leak. 

 

1.5.3 External fragmentation 

A poor allocator does its job of giving out and receiving blocks 

of the memory so badly that it can no longer give out large 

enough blocks despite having enough spare memory. This is 

because the free memory can become split into many small 

blocks, separated by blocks still in use. This condition is known 

as external fragmentation. 

 

1.5.4 Poor locality of reference 

There is another problem with layout of allocated memory 

blocks comes through that modern hardware and operating 

system memory managers manage memory: successive 

memory accesses are more faster if they are of nearby memory 

locations. When the memory manager places too far apart from 

the blocks then the program uses together, then it will cause the 

performance issues. This situation is known as poor locality of 

reference. 

 

1.5.5 Inflexible design 

Memory managers can also be the reason to severe 

performance problems if they are designed with one use in the 

mind, but when these are used in a different way. These 

problems encounters because the memory management 

solution tries to make assumptions for the way in which the 

program is about to use memory, such as typical block sizes, 

reference patterns, or lifetimes of objects. If these assumptions 

are not correct, then the memory manager can spend more time 

doing work to keep up with what is happening. 

 

1.5.6 Interface complexity 

When objects are passed through modules, then the design of 

interface must consider the management of the memory. 

A good designed memory manager can build it easier to write 

debugging tools, because much of the code may be shared. 

These such tools can display objects, navigate links, validate 

objects and detect abnormal accumulations of certain object 

types or block sizes. 

 

1.6 Manual memory management 

Manual memory management is a place where the programmer 

is having direct control over the memory may be recycled. 

Usually it is either by explicit calls to heap management 

functions by language constructs which may affect the control 

stack such as local variables. The main feature of a manual 

memory manager is that this provides a method for the program 

to say, ―Have this memory back; I’ve finished with it‖; The 

memory manager is not able to recycle the memory without 

any instruction. 

The advantages of manual memory management are as follows: 

 This can be easier for the programmer to understand 

about the condition as what is going on. 

 Some manual memory managers perform in better 

way when there is a shortage of memory. 

The disadvantages of manual memory management are as 

follows:  

 The programmer required to write a lots of code to do 

repetitive bookkeeping of memory. 

 Memory management need form a significant part of a 

module interface. 

 Manual memory management must need more 

memory overhead per object.  

 Memory management bugs are very common. 

It is a common for programmers that they faced with inefficient 

or inadequate manual memory manager, to write code for the 

duplicate the behaviour of the memory manager, either by 

allocating bigger blocks and splitting them for use, by recycling 

the blocks internally. Such code is called as a suballocator. 

These sub allocators can take advantage of special knowledge 

behaviour of the program, but are less efficient in general than 

fixing the underlying allocator. Unless written by a memory 

management expert, sub allocators can be inefficient or 

unreliable. 

The following languages use mainly manual memory 

management in most implementations, although many have 

conservative garbage collection extensions: Algol; C; C++; 

COBOL; Fortran; Pascal. 

 

1.7 Automatic memory management 

Automatic memory management is a type of service, either as a 

part of the language or as an extension of the language, which 

automatically recycles the memory that a program will not use 

again. Automatic memory managers usually known as garbage 

collectors, or simply collectors. They usually do their job by 

recycling the blocks that are unreachable from the program 

variables which blocks that cannot be reached through 

following pointers. 
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The advantages of automatic memory management are as 

follows:  

 Programmer is free to work on these actual problem;  

 Module interfaces are used as cleaner. 

 There are less memory management bugs. 

 Memory management is usually more efficient. 

The disadvantages of automatic memory management are as 

follows: 

 Memory may be retained because it is reachable, but 

will not be used again; 

 Automatic memory managers have limited 

availability. 

There are several ways of performing automatic recycling of 

memory, some of which are discussed in recycling techniques. 

Most modern languages use mainly automatic memory 

management: BASIC, Dylan, Erlang, Haskell, Java, JavaScript, 

Lisp, ML, Modula3, Perl, PostScript, Prolog, Python, Scheme, 

Smalltalk, etc. 

 

1.8 Swapping 

Swapping is a method in which a process can be swapped out 

of main memory to a backing store temporarily, and then come 

back into memory for continuous execution. 

Backing store is a hard disk drive or other secondary storage 

device which is fast in access and bigger enough to 

accommodate multiple copies of all memory images for the 

users. It must be able of providing direct access to these 

memory images. 

Transfer time is major time consuming part of swapping. 

Complete transfer time is directly proportional to the amount of 

memory is swapped. Let us assume that the user process is of 

size 100KB and the backing store is a standard hard disk with 

transfer rate of 1 MB per second. The actual transfer of the 

100K process to or from memory will take 

100KB / 1000KB per second 

= 1/10 second 

= 100 milliseconds 

 

1.8.1 Memory Allocation 

Main memory has two partitions 

Low Memory -- Operating system resides in this memory. 

High Memory -- User processes then held in high memory. 

Operating system uses the following memory allocation 

mechanism. 

 

 
Figure 1.2: Process Swapping 

 

1.8.1.1 Single-partition allocation 

In this type of allocation, relocation-register scheme is used to 

protect user processes from each other, and from changing 

operating-system code and data. Relocation register contains 

value of smallest physical address whereas limit register 

contains range of logical addresses. Each logical address must 

be less than the limit register. 

 

1.8.1.2 Multiple-partition allocation 

In this type of allocation, main memory is divided into a 

number of fixed-sized partitions where each partition should 

contain only one process. When a partition is free, a process is 

selected from the input queue and is loaded into the free 

partition. When the process terminates, the partition becomes 

available for another process. 

 

1.9 Fragmentation 

As processes are loaded and removed from memory, the free 

memory space is broken into little pieces. It happens after 

sometimes that processes can not be allocated to memory 

blocks considering their small size and memory blocks remains 

unused. This problem is known as Fragmentation. 

Fragmentation is of two types 

 

1.9.1 External fragmentation 

Total memory space is enough to satisfy a request or to reside a 

process in it, but it is not contiguous so it cannot be used. 

 

1.9.2 Internal fragmentation 

Memory block assigned to process is bigger. Some portion of 

memory is left unused as it cannot be used by another process. 

External fragmentation can be reduced by compaction or 

shuffle memory contents to place all free memory together in 

one large block.[4] To make compaction feasible, relocation 

should be dynamic. 

II. LITERATURE SURVEY 

In this section we will discuss related work we found in 

literature to propose the problems of Memory Management. A 

number of papers have been published regarding the 

improvement of memory management problems. 

OnurUlgen and MutluAvci in 2015 under their research titled 

"The intelligent memory allocator selector" proposed a novel 

approach for dynamically deciding the best memory allocator 

for every application. Their proposed solution tests each 

process with various memory allocators. After the testing, it 

selects an efficient memory allocator according to condition of 

operating system (OS). If OS runs out of memory, then it 

selects the most memory efficient allocator for new processes. 

If most of the CPU power was occupied, then it selects the 

fastest allocator [6].  

Otherwise, the balanced allocator is selected. According to test 

results, the proposed solution offers up to 58% less fragmented 

memory, and 90% faster memory operations. In average less 

fragmented memory and faster memory operations. The test 

results also prove the proposed approach is unbeatable by any 

memory allocator. They proposed a method that is dynamic and 

efficient solution to the memory fragmentation problem but 

their approach did not solve the problem for contiguous 

allocation.  

In 2013 German Molto, Miguel Caballer and others in their 

research titled "Elastic Memory Management of virtualized 

Infrastructures for Applications with Dynamic Memory 



DOI: 10.18535/ijecs/v5i3.01 

 

Manish, IJECS Volume 05 Issue 3 March  2016 Page No.15877-15882 Page 15881 

Requirements" focused on dynamic memory management to 

automatically fit at runtime the underlying computing 

infrastructure to the application, thus adapting the memory size 

of the VM to the memory consumption pattern of the 

application. 

They described an architecture, together with a proof-of-

concept implementation, that dynamically adapts the memory 

size of the VM to prevent thrashing while reducing the excess 

of unused VM memory. For the test case, a synthetic 

benchmark is employed that reproduces different memory 

consumption patterns that arise on real scientific applications. 

The results show that vertical elasticity, in the shape of 

dynamic memory management, enables to mitigate memory 

over provisioning with controlled application performance 

penalty [7]. 

 

III. PROPOSED APPROACH 

This approach does not require contiguous memory to allocate 

the data that the memory stream has. This approach uses a 

dynamic list of small blocks as the backing store which is 

decided by the user, which are allocated to process on demand 

when process is requested for the memory. 

My approach is also derives from the Stream class but 

allocation process is different to the normal process of 

allocation it allocates small chunks as continuous memory to 

the process. This is capable to initializing from array of a byte 

When a process request for the memory then allocation of 

blocks done on demand either the operation read or write. The 

Position is checked with respect to the Length before a read 

operation takes place, to make sure the read operation is 

performed within the limit of the stream. Length is just to 

check the position is below the length size not for the 

allocation amount of memory, setting the Length size does not 

allocate memory to the process, rather it allows reads to 

proceed on the data. 

a) //A new class object: length is 0, position is 0, and no 

memory has been allocated 

b) Memory_msps d = new Memory_msps(); 

c) //returns -1 because Length is 0, no memory allocated 

d) int a = d.ReadByte(); 

e) //Length now reports 10000 bytes, but no memory is 

allocted 

f) d.SetLength(10000); 

g) //three blocks of memory are now allocated, 

h) //but b is undefined because they have not been 

initialised 

i) int b = d.ReadByte(); 

j) Memory is allocated in sequential blocks that makes 

the continuous memory which is required for the process. That 

is, if the first block is requested to access the block 3rd, blocks 

first and second are automatically allocated. 

IV. EXPERIMENTAL SETUP 

In this research, all the tests are performed under following 

specifications: 

1) Host System: Intel i5 processor with 4 GB RAM and 

500 GB Hard disk. 

2) Operating Environment: Windows 8.1 

3) C# 

4) Microsoft Task Parallel Library 

5) Visual Studio  

a) Execution Time: Execution time can be defined in 

terms of time consumed by an algorithm in order to solve a 

problem using processor p. 

 

V. RESULTS AND ANALYSIS 

There are two parameters for analysis that which algorithm 

behaves in different scenarios. On the basis of these two 

parameters as performance and capacity we can determine the 

real implementation of both algorithms. 

 

5.1 Performance Metrics 

Performance both in terms of capacity and speed, of default 

class and my approach, is difficult to predict as it is dependent 

on a number of factors, one of the most significant being the 

fragmentation and memory usage of the current process, a 

process which allocates a lot of memory will use up large 

contiguous sections faster than one that does not - it is possible 

though to get an idea of the relative performance 

characteristics of the two by taking measurements in 

controlled conditions.  

The tables below compare the capacity and access times of 

default and my approach.  In all cases the process instance 

tested only the target stream. 

 

5.2 Capacity  

To perform this operation, a loop write the contents of a 1MB 

array to the target stream over and over until the stream throw 

an OutOfMemoryException, that was caught and the total 

number of writes execution before the exception was returned. 

 

Table 5.1 Capacity of Classes 

Stream Average Stream Length 

Before Exception (MB) 

Default Class 785 

My Class 2272 

 

5.3 Speed (Access Time) 

For these results, a set of data was written to perform the 

operation, then read the stream. The data was written in 

randomly lengths between 1KB to 1MB, to and from a 1MB 

byte array. A Stopwatch is used to calculate the amount of 

time it took to write, then read, the specified amount of data.  

Each process executed its test 5 times, on the same data, so the 

variations between the results for a stream, shows the time 

taken allocating memory vs. that taken accessing it. 

Table 5.2 Access Time with 10MB Data 

  Stream Test Execution Times (ms) 

Amount 

written and 

read (10 

MB) 

Default 

My Class My Class 
My 

Class 

(4KB 

Block) 

(64KB 

Block) 

(1MB 

Block) 

Execution 1 11 14 12 8 

Execution 2 4 6 4 4 
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Execution 3 4 7 4 4 

Execution 4 4 6 4 4 

Execution 5 5 6 4 4 

Average 5.6 7.8 5.6 4.8 

 

In the above table we can see the results performed on 10MB 

data with different approaches. We calculate the average of 

these operations. 

Table 5.3 Access Time with 100MB Data 

  Stream Test Execution Times (ms) 

Amount 

written and 

read (100 

MB) 

Default 

My Class 
My 

Class 

My 

Class 

(4KB 

Block) 

(64KB 

Block) 

(1MB 

Block) 

Execution 1 105 153 128 57 

Execution 2 39 59 47 40 

Execution 3 39 53 40 39 

Execution 4 40 52 41 40 

Execution 5 39 53 41 40 

Average 52.4 74 59.4 43.2 

 

From the above scenario we can say that when we have the 

block size of 1MB then it takes less time as compare to other 

cases. 

Table 5.4 Access Time with 500MB Data 

  Stream Test Execution Times (ms) 

Amount 

written and 

read (500 

MB) 

Default 

My Class 
My 

Class 

My 

Class 

(4KB 

Block) 

(64KB 

Block) 

(1MB 

Block) 

Execution 1 520 396 297 242 

Execution 2 172 228 190 175 

Execution 3 173 192 160 172 

Execution 4 173 193 157 173 

Execution 5 172 193 158 173 

Average 242 240.4 192.4 187 

 

Here this tables prove the results variation between the various 

blocks used for the memory storage and 1 MB size block takes 

very less time. 

VI. CONCLUSION 

The results indicate that my class can store more than double 

the data of Default in ideal conditions. The access times depend 

on the block size of the memory setting of my class; the initial 

allocations are margin faster than Default class but access times 

are similar. The smaller the block the more allocations must be 

done and we got the best results with block of 1MB. 

We can see the performance and access time are better in case 

of approach I implemented here and it is able to allocate more 

process to memory when there is an exception encounters in 

the normal case. 

VII. FUTURE SCOPE 

This paper covers the limit of data to the 1000MB data after 

this it slow down the system. 

In the future there may be some chance to improvements can 

be done by increasing the virtual address size so that when a 

process is requested for the memory then it is allocated easily 

to the process. 
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