

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 4 April, 2013 Page No. 1047 -1049

Dr.V.Khanaa, IJECS Volume 2 Issue 4 April, 2013 Page No. 1046-1049 Page 1047

An R-Tree Node Splitting Algorithm Using MBR Partition for Spatial Query
Dr.V.Khanaa, Dr.Krishna Mohanta

Dean Info. Bharath University Chennai 600 073
Sri Lakshmi Ammal Engineering College Chennai 73

Department of Computer Sci.&Engg.
Mail:drvkannan62@yahoo.com

Abstract
The optimization of spatial indexing is an important issue considering the fact that spatial database, in such diverse
areas like geographical, CAM and image applns are growing rapidly in size and often contain in the order of millions
of items.To handle these multi-dimensional data, R-tree is widely used as data structure. The node splitting algorithm
used in R-tree process affects the query performance and results in an inefficient R-tree structure as it generates
uneven nodes. To overcome these drawbacks, we have proposed an algorithm to balance the uneven node
splitting to meet the demand of the R-tree process. The projected algorithm inserts the node into the sibling
instead of splitting or re-insertion of the overflow node which paves way to reduce the overhead of
splitting process, adjusting tree construction operation and number of disc accessing.

KEYWORDS
Geographical Information System, Node Splitting
algorithm, Spatial database, Indexing Multi
dimensional data, R-Tree.

Introduction
There has been a great deal of interest over
the years in extending traditional,
alphanumeric databases to handle multi-
dimensional spatial data. Applications of such
spatial databases have traditionally been
found in Geographical Information Systems
(GIS) and Computer Aided Design (CAD)
packages. In a GIS, for example, that contains
maps of all the roads, lakes and rivers of a
country X, there is a need to facilitate queries
such as requesting all the roads within Y miles
of city Z. More recently, spatial data structures
have been used to aid in the retrieval of images
from large image databases by shape similarity.
In order to process these types of queries
quickly, an efficient indexing mechanism for
spatial data objects is required, according to
their location in space. A number of structures
have been proposed for handling multi-
dimensional point data. Antoine Guttmann was
one of the first persons to propose them. In 1984,
Guttmann published a book[Gutt84] in which

he presented a data structure called R-Tree
(Rectangle Tree) that represents data objects
by intervals in several dimensions.An
example of such a data structure is the R-tree and
its variants, where the data space is
successively decomposed into (hyper)
rectangles. Where the primitive index region is
an polygon. All these data structures are suited
for handling spatial data dynamically. In addition
to retrieval, they allow runtime insertion and
deletion of objects in the database. If some of
the current databases are considered to be
large, future databases are expected to be huge. For
example, the U.S. Bureau of the Census has been
building the TIGER database to store a
detailed map of the country; its size is currently
approximately 19 Gb. In the near future,
NASA's Earth Observation System
database is expected to include more than 1010
Mb of image data. The volume of such
databases containing millions of data objects
necessitates the storage of the index structure
on disk. R-tree is a data structure used for
indexing multi-dimensional information and
used for spatial access methods such as storing,
retrieving and applying query process on spatial
data It is a height balanced tree similar to B-tree
with index records in its leaf nodes containing

http://www.ijecs.in/�

Dr.V.Khanaa, IJECS Volume 2 Issue 4 April, 2013 Page No. 1046-1049 Page 1048

pointer to data objects Leaf node in an R-tree
contain index entry of the form (I, tuple-
identifier) where tuple-identifier refers to a tuple
in the database and I is an N- dimensional
rectangle Non-leaf nodes contain entries of the
form (I, child-pointer) where child-pointer is the
address of a lower node in the R-tree and I covers
all rectangles in the lower node‘s entries Every
node contains between m and M index records
unless it is the root, where m is the minimum
number of records and M is the maximum
number of records where m <= ┌M/2┐All leaves
appear at the same level

Terminology
The R-tree is an object hierarchy which is
applicable to arbitrary spatial objects which is
formed by aggregating their minimum bounding
boxes and storing the aggregates in a tree
structure. The aggregation is based, in part, on
proximity of the objects or bounding boxes.
The number of objects or bounding boxes that are
aggregated in each node is permitted to range
between m <= (M /2) and M, thereby leading
us to use the prefix (m, M) to characterize a
particular R-tree and mirroring the effect of a
B-tree. The root node in an R-tree has at least
two entries unless it is a leaf node in which case it
has just one entry corresponding to the
bounding box of an object. MBR Node Splitting
A node splitting algorithm is a key issue in R-tree
construction. This splits the available number of
objects into the requirement of MIN and
MAX limit provided for the given R-tree. The
two metrics that affects the query performance of
an R-tree are the total area which is the area of the
node‘s MBR, and the overlap area which is the
area of the overlapped part of two nodes. The
larger the total area is, the more dead spaces there
are, and the higher the probability of
unnecessary accesses is. Overlap causes
accesses to multiple nodes when a query object
falls into the overlapped region, which
increases number of page accesses.

Outlier MBR Handling It is the situation where a
data is numerically distance from the rest of the
data. In GIS it is denoted as an object which
is deviate markedly from other objects of the
sample in which it occurs. Several Outlier
handling techniques have been developed
since R-tree was published. Among them

R*-tree outlier handling method uses the
forced reinsertion. That is, if a disk page
overflows, some objects are removed from the
page and new objects are reinserted into the
index. The R*-tree algorithm selects outlier by
calculating the distance between the center of the
MBR and center of the objects in the MBR, the
objects whose distance are very far from the
center of the MBR while comparing with the
other objects, those objects are removed and the
new objects are reinserted into the MBR

METHODS
Guttmann’s quadratic node splitting In here, it picks
two records that may cause the worst split if put
into the same node. Using these two records as
seeds, the algorithm respectively finds a record
that may affect the splitting quality the most and
assigns it to the appropriate node until all records
are assigned. If there are just enough records
are unassigned to make one of the two nodes to
satisfy the lower bound of records number,
the rest of records will be assigned to that
node directly.

R*-tree’s node splitting algorithm

If the leaf node is full, this algorithm starts to
work. The first m records make one group and
the rest of the records make the other group.
There are three metrics guiding the splitting:
area-value, margin- value and overlap-value. It
first chooses a splitting axis, in which axis the
splitting is to be performed. The next step is to
split the records along the chosen axis.

The metrics used for splitting are
Area value
Margin value

Dr.V.Khanaa, IJECS Volume 2 Issue 4 April, 2013 Page No. 1046-1049 Page 1049

Overlap value

Optimal node splitting algorithm In this
algorithm they gave two node splitting
algorithms. The first one is a basic node
splitting algorithm which partitions a full
node into two making a metric the best. The
second algorithm is an improvement of the
basic one, called SHIFT method, to gain a high
occupancy of disk pages. The metrics used for
splitting are Area Perimeter

Linear node splitting algorithm
The main objective of the algorithm is to reduce
the CPU time of an R-tree construction as well as
keep the quality of
the resulting R-tree good enough. The
algorithm partitions the records into two groups
along each axis according to the distance between
a record‘s MBR and the minimum and maximum
coordinates on the axis. It then chooses a split
axis by examining the number of records in each
group. Then the partition along the selected
axis is the final splitting result. More superior in
terms of time required to split a node. Node
splitting using MBR Partition Policy In this
algorithm, they try to partition the records
such that each resulting node has a shape as
square as possible. The splitting axis is chosen by
using j-Long method, if the chosen MBR is j-
Rectangle then took the dimension j as the
splitting axis, else they compute the axis for
splitting by counting the number of records
parallel to x-axis and number of records parallel to
y-axis, the
axis in which the greater records are available is
chosen as the splitting axis,if the axis chosen is
wrong then overlap occurs in a high probability.
According to the chosen axis the splitting is
performed.

Conclusion:
In this paper, we introduced our node splitting
method that is simple and efficient. We
described our method in the order of we
developing it that is first a basic method, then
a policy to fix some uneven situation, and
at last an improvement. We compared our
method with other methods first using a simple
example with some analysis, which showed
that our method would split a overflowed
node well. Then several experiments were
conducted to compare our method and the most
commonly used methods. The results showed
that our method is efficient.

REFERENCES:

1. Yan Liu, Jinyun Fang and Chengde
Han, ―A New R-tree Node Splitting
Algorithm using MBR Partition
Policy‖, Proceedings of the 17th
International Conference on
Geoinformatics, pp.1-6, 2009.

2. A. Guttman, ―R-trees: A Dynamic Index

Structure for Spatial Searching‖,
Proceedings of the 1984 ACM
 SIGMOD International Conference
on Management of Data, pp.47-57,
1984.

3. N. Beckmann, H.-P. Kriegel, R.
Schneider, and B. Seeger, ―The R*-tree:
An Efficient and Robust Access methods
for Points

