
www.ijecs.in
International Journal Of Engineering And Computer Science
Volume1 Issue 1 Oct 2012 Page No. 28-36

Design Of High Speed Uart For Programming Fpga
Hazim Kamal Ansari, Asad Suhail Farooqi

M.Tech Scholar, AFSET, Dhauj, Fbd.

hazimkamal@gmail.com

asadsuhail2003@gmail.com

Abstract.

FPGA (Field Programmable gate Array) devices are one of the modern technologies that are changing the
electronic industry. They are riding the same integrated circuit process curves as processors and memories and
keep getting larger, faster, and cheaper and are now common in low and mid volume embedded products With
the advances of FPGA technology, many engineers now have the opportunity to do medium scale digital design.
They can be found in primary and secondary surveillance radar, satellite communication, automotive,
manufacturing, and many other types of products. Time triggered communication within FPGA is enhanced with
the help of UART (Universal Asynchronous Receiver Transmitter).It translates between serial and parallel bits
of data. The device changes incoming parallel information to serial data which can be sent on a communication
line. A second UART can be used to receive the information. The UART performs all the tasks, timing, parity
checking, etc. needed for the communication. UART is designed in VHDL. The design process involves
converting the requirements into a format that represents the desired digital function(s).

Key words: FPGA, EMBEDDED, UART, VHDL.

Introduction
Over the past several years, high capacity Field
Programmable Devices (FPDs) have enjoyed a
rapidly expanding market, and have become widely
accepted for implementation of small to moderately
large digital circuits. FPGA is one of the upcoming
FPDs available in the market. FPGAs are used in
low-volume products, where design costs comprise a
significant part of the budget With FPGAs now
exceeding the 10 million gate limit you can really
dream big. FPGAs are now common in low and mid
volume embedded products where they offer the
following advantages:

• Fast time to market
• Better integration
• In system programmability
• FPGAs tend to have long life cycles and are

usually replaced with pin compatible parts.
To maintain time triggered communication within
FPGA a separate controller is designed within it.
This controller is called UART. It is a kind of serial
communication circuit which is used widely. A

universal asynchronous receive/transmit (UART) is
an integrated circuit which plays the most important
role in serial communication. It handles the
conversion between serial and parallel data. Serial
communication reduces the distortion of a signal,
therefore makes data transfer between two systems
separated in great distance possible. It contains a
parallel-to serial converter for data transmitted from
the computer and a serial to parallel converter for
data coming in via the serial line. The UART also
has a buffer for temporarily storing data from high
speed transmissions. In addition to the basic job of
converting data from parallel to serial for
transmission and from serial to parallel on reception,
a UART will usually provide additional circuits for
signals that can be used to indicate the state of the
transmission media and to regulate the flow of data
in the event that the remote device is not prepared to
accept more data. UART must have a larger internal
buffer to store data coming from the modem until
the CPU has time to process it. The design entry of
UART is done in VHDL.

I FPGA

http://www.ijecs.in/�
mailto:hazimkamal@gmail.com�
mailto:asadsuhail2003@gmail.com�

Hazim Kamal Ansari International Journal Of Engineering And Computer Science1:1oct2012(28-36)

29

Pa
ge

29

In 1985, Xilinx introduced a completely new idea:
combine the user control and time to market of
PLDs with the densities and cost benefits of gate
arrays. Customers liked it, and the FPGA was born.
Today Xilinx is the number one FPGA vendor in the
world. An FPGA is a regular structure of logic cells
(or modules) and interconnect, which is under your
complete control. This means that you can design,
program, and make changes to your circuit whenever
you wish. FPGAs are used in low-volume products,
where design costs comprise a significant part of the
budget With FPGAs now exceeding the 10 million
gate limit you can really dream big. The most
common FPGA architecture consists of an array of
logic blocks (called Configurable Logic Block, CLB,
or Logic Array Block, LAB, depending on vendor),
I/O pads, and routing channels. As their size,
capabilities, and speed increased, they began to take
over larger and larger functions to the state where
some are now marketed as full systems on chips
(SoC). Particularly with the introduction of
dedicated multipliers into FPGA architectures in the
late 1990s, applications, which had traditionally
been the sole reserve of DSPs, began to incorporate
FPGAs instead. FPGAs especially find applications
in any area or algorithm that can make use of the
massive parallelism offered by their architecture.

Fig. 1 Generalized Architecture of FPGA

II SYSTEM DESIGN ISSUES

A FPGA designer should understand several key
points about the system the FPGA is going to be
used in. Determine what the FPGA is going to do for
the system and how it will interact with the rest of
the system. The classic approach is to break a digital
design down into data path and control logic.
Generally the purpose of digital logic in a system is
to move data. If the FPGA is involved in a data path,
design this first. Figure out what data has to moved
and how fast. Understand and document the data
path requirements fully before designing the control
architecture. Two important issues that are usually
dictated by the system is the reset and clock strategy.
Bandwidth of the data path and available system
clocks will probably dictate the clock speed. Signals
that connect two different asynchronous clock
domains must be synchronized. Synchronization
costs clock cycles and sometimes requires FIFOs to
maintain data throughput. The reset strategy is a
simple, but very critical aspect of any digital design.
In any reset scenario, reset should be deasserted
synchronously with the clock so that all flops exit
reset on the same clock cycle. There are two basic
scenarios. Reset scenario number one is where the
system comes out of reset and then the clock starts
running. This scenario can occur when using a clock
output from a microcontroller to clock a FPGA. The
system is taken out of reset and then the oscillator
circuitry in the microcontroller starts running. An
asynchronous reset is required in this case.
Designers should be aware that some clock ICs
output a series of runt pulses while the oscillator
starts up. If the clock does not start up cleanly, the
FPGA should be held in reset until the clock is
stable. Reset scenario number two is where reset is
odeasserted after the clock is running. In this case, it
is necessary for reset to be synchronous to the clock
so that all fops exit reset on the same clock. If the
reset is asynchronous it is safest to synchronize reset
inside the FPGA is circuit, the internal reset to the
FPGA can be asynchronously set, but reset does not
deactivate until a clock edge occurs. This allows the
chip to be put in reset without the clock running, but
forces the chip to come out of reset synchronously.

III FPGA DESIGN

Hazim Kamal Ansari International Journal Of Engineering And Computer Science1:1oct2012(28-36)

30

Pa
ge

30

Now that the system data path, control architecture,
reset, and clock strategies are understood and
documented, the actual FPGA design can start. The
three primary considerations for selecting a FPGA
are speed, pin count, and amount of logic. If there is
time for 5-7 levels of combinational logic between
flops, the design should be fairly straightforward.
More levels of combinational logic between flops
will require more careful design and more pipelining
effort. There are numerous other considerations that
are more device specific such as I/O buffer features,
on chip PLLs, available tools and cores, on chip
RAM, etc. It is a good idea to write a functional
specification for the design. This forces the designer
to understand what the chip is supposed to do before
implementing large amounts logic and will lead to
cleaner implementations. A functional specification
is also very useful for the system designer who will
eventually use the FPGA. The partitioning of the
FPGA design falls out after the functional
specification. Partitioning a design by functional
blocks is a logical partitioning strategy, but it may
also be necessary to partition parts of the design by
routing strategy if there are performance critical
parts of the design. A rough guideline that seems to
work well is that the lowest level blocks in the
design should be 2000 to 5000 gates in size. The top
level module should be used only to connect lower
level blocks. Avoid logic in the top level module if
possible. The design entry and implementation is
where the tools start to become important. VHDL
and Verilog are industry standard HDLs (hardware
description languages) for digital design entry and
simulation. Text based code still seems to be the
preferred way to express large, complex designs as
evidenced by the fact the most people still write
software in text based languages. The terms RTL
(Register Transfer Level) and Structural HDL are
often used to describe two different levels of HDL.
The core of the design entry code is usually written
at the RTL level but also contains structural HDL
code to connect modules together. Structural HDL is
essentially a netlist that describes how different
components are tied together. A HDL file of a routed
design created by place and route tools is a structural
HDL level file. Behavioural HDL is a third level of
HDL that is used to model the behaviour of a device
and is used only during simulation. Behavioural
HDL is generally not used for design entry as it is
difficult to synthesize. Schematic entry is still used
for FPGA design entry but is cumbersome for large
designs and is more difficult to simulate and verify.

The general flow for a HDL based design is shown
in Illustration. There are additional steps such as
timing simulation of the routed design and timing
analysis at the synthesis level, but the majority of the
time will be spent iterating the steps show in
Illustration. Investing some time in setting up a good
simulation environment is necessary for a large
design and will save you time on any design. Some
of the low end FPGA design tools do not include a
source level HDL simulator which must be
purchased separately. It is a good idea to synthesize
each block as it is coded so that inefficient and slow
designs can be fixed before the entire chip is
synthesized. Registering the outputs of blocks will
make meeting timing requirements easier but might
require more FPGA resources. Timing and related
tools can be somewhat of a mystery in FPGAs. For
synchronous logic, you must verify that the inputs of
flops arrive before the clock does. This can be
controlled in a large part by carefully coding the
design to minimize the levels of combinational logic
between flops. After synthesizing some code and
looking at the timing results, you quickly learn how
to code for synthesis. Pipelining is a standard
technique for speeding up a design and is done by
breaking up large amounts of combinational logic
into several stages with flops between the stages.
Medium speed designs (30MHz +) will probably
require some degree of pipelining. Timing can also
be improved by entering timing constraints that the
place and route tools try to meet. Timing constraints
should be standard part of any FPGA design entry.
Higher end synthesis tools can also use timing
constraints. Static timing analysis is the primary
timing verification tool that checks the worst case
delays against the timing constraints entered by the
designer. Timing simulations of routed designs are
useful for debugging and sanity checks, but can be
misleading because a timing simulation will most
likely not exercise every possible combinational
path. After the design is implemented in real
hardware, the debug phase starts. FPGA designs are
difficult to debug on the bench because internal
signals are not visible unless routed to unused pins
or analyzed by special FPGA debug equipment. This
is where a good verification environment pays off.
The design should be mostly correct if you did the
functional simulations and static timing analysis.
Chances are some corners where cut and some
problems will come up in unverified parts of the
design. Once the symptoms are identified, the
designer can go back to the functional simulation,

Hazim Kamal Ansari International Journal Of Engineering And Computer Science1:1oct2012(28-36)

31

Pa
ge

31

recreate the scenario and observe what is going on
inside the chip. If timing problems are suspected, a
timing simulation can be run on a structural model
of the chip.

IV Need For Uart

In FPGAs to increase speed of operation parallel
processing of data is required. At the FPGA a UART
needs to be designed which converts serial bits into
parallel bits of data. Serial communication is often
used either to control or to receive data from an
embedded microprocessor/programmable logic. A
UART or Universal Asynchronous Receiver-
Transmitter is a piece of computer hardware that
translates between parallel bits of data and serial
bits. A UART is usually an integrated circuit used
for serial communications over a computer or
peripheral device serial port. Serial communication
is a form of I/O in which the bits of a byte begin
transferred appear one after the other in a timed
sequence on a single wire. An UART, universal
asynchronous receiver / transmitter is responsible for
performing the main task in serial communications
with computers. The device changes incoming
parallel information to serial data which can be sent
on a communication line. A second UART can be
used to receive the information. The UART
performs all the tasks, timing, parity checking, etc.
needed for the communication. The only extra
devices attached are line driver chips capable of
transforming the TTL level signals to line voltages
and vice versa. To use the UART in different
environments, registers are accessible to set or
review the communication parameters. Settable
parameters are for example the communication
speed, the type of parity check, and the way
incoming information is signalled to the running
software .The UART controller is the key
component of the serial communications subsystem
of a computer. The UART takes bytes of data and
transmits the individual bits in a sequential fashion.
At the destination, a second UART re-assembles the
bits into complete bytes. Serial transmission of
digital information (bits) through a single wire or
other medium is much more cost effective than
parallel transmission through multiple wires. A
UART is used to convert the transmitted information
between its sequential and parallel form at each end
of the link. Each UART contains a shift register

which is the fundamental method of conversion
between serial and parallel forms. The UART
usually does not directly generate or receive the
external signals used between different items of
equipment. Typically, separate interface devices are
used to convert the logic level signals of the UART
to and from the external signalling level.

V The Uart Modules

The UART module probably can be divided into two
parts the transmit and receive parts as shown by
figure 1:

Fig. 2 Complete UART module

There is complete synchronization between the two
and although they work independently. Working of
UART is based on asynchronous transmitting and
receiving. In asynchronous transmitting, teletype-
style UARTs send a "start" bit, five to eight data
bits, least-significant-bit first, an optional "parity"
bit, and then one, one and a half, or two "stop" bits.
The start bit is the opposite polarity of the data-line's
idle state. The stop bit is the data-line's idle state,
and provides a delay before the next character can
start. (This is called asynchronous start-stop
transmission). In mechanical teletypes, the "stop" bit
was often stretched to two bit times to give the
mechanism more time to finish printing a character.
A stretched "stop" bit also helps resynchronization.
The parity bit can either makes the number of "one"

Hazim Kamal Ansari International Journal Of Engineering And Computer Science1:1oct2012(28-36)

32

Pa
ge

32

bits between any start/stop pair odd, or even, or it
can be omitted. Odd parity is more reliable because
it assures that there will always be at least one data
transition, and this permits many UARTs to
resynchronize. In synchronous transmission, the
clock data is recovered separately from the data
stream and no start/stop bits are used. This improves
the efficiency of transmission on suitable channels
since more of the bits sent are usable data and not
character framing. An asynchronous transmission
sends no characters over the interconnection when
the transmitting device has nothing to send—only
idle stop bits; but a synchronous interface must send
"pad" characters to maintain synchronism between
the receiver and transmitter. The usual filler is the
ASCII "SYN" character. Asynchronous
transmission allows data to be transmitted without
the sender having to send a clock signal to the
receiver. Instead, the sender and receiver must agree
on timing parameters in advance and special bits are
added to each word which is used to synchronize the
sending and receiving units. When a word is given to
the UART for Asynchronous transmissions, a bit
called the "Start Bit" is added to the beginning of
each word that is to be transmitted. The Start Bit is
used to alert the receiver that a word of data is about
to be sent, and to force the clock in the receiver into
synchronization with the clock in the transmitter.
These two clocks must be accurate enough to not
have the frequency drift by more than 10% during
the transmission of the remaining bits in the word.
(This requirement was set in the days of mechanical
teleprinters and is easily met by modern electronic
equipment.) After the Start Bit, the individual bits of
the word of data are sent, with the Least Significant
Bit (LSB) being sent first. Each bit in the
transmission is transmitted for exactly the same
amount of time as all of the other bits, and the
receiver ―looks‖ at the wire at approximately
halfway through the period assigned to each bit to
determine if the bit is a 1 or a 0. For example, if it
takes two seconds to send each bit, the receiver will
examine the signal to determine if it is a 1 or a 0
after one second has passed, then it will wait two
seconds and then examine the value of the next bit,
and so on. The sender does not know when the
receiver has ―looked‖ at the valu e of the b it. Th e
sender only knows when the clock says to begin
transmitting the next bit of the word. When the
entire data word has been sent, the transmitter may
add a Parity Bit that the transmitter generates. The
Parity Bit may be used by the receiver to perform

simple error checking. Then at least one Stop Bit is
sent by the transmitter. When the receiver has
received all of the bits in the data word, it may check
for the Parity Bits (both sender and receiver must
agree on whether a Parity Bit is to be used), and then
the receiver looks for a Stop Bit. If the Stop Bit does
not appear when it is supposed to, the UART
considers the entire word to be garbled and will
report a Framing Error to the host processor when
the data word is read. The usual cause of a Framing
Error is that the sender and receiver clocks were not
running at the same speed, or that the signal was
interrupted. Regardless of whether the data was
received correctly or not, the UART automatically
discards the Start, Parity and Stop bits. If the sender
and receiver are configured identically, these bits are
not passed to the host. If another word is ready for
transmission, the Start Bit for the new word can be
sent as soon as the Stop Bit for the previous word
has been sent. Because asynchronous data is ―self
synchronizing, if there is no data to transmit, the
transmission line can be idle.

Fig. 3 UART data format

VI Implementation Of Uart Using Vhdl

As integrated circuit technology has become more
complex, detailed design of systems at the gate and
flip flop level has become very tedious and time
consuming. For this reason, use of hardware
description languages in the digital design process
has significantly improved in the last few years,
especially for FPGA design. A hardware description
language allows a digital system to be designed and
debugged at a higher level before conversion to the
gate and flip-flop level. One of the most popular
hardware description languages is VHISC hardware
description language (VHDL). It is used to describe
and simulate the operation of a variety of digital

Hazim Kamal Ansari International Journal Of Engineering And Computer Science1:1oct2012(28-36)

33

Pa
ge

33

systems, ranging in complexity from a few gates to
an interconnection of in any complex integrated
circuits. There are in any excellent hardware
description languages (HDL) were prior to VHDL
but VHDL offers a number of benefits over other
HDL's .Therefore the use of VHDL (Very High
Speed Integrated Circuit Hardware Description
Language) is preferred to design such circuits
especially for FPGA design. VHDL can be used to
describe and simulate the operation. of digital
circuits ranging from few gates to more and more
complex gates. VHDL can be used for the
behavioural level design implementation of a digital
UART and it offers several advantages. Below are
the advantages of using VHDL to implement UART.

1) VHDL allows us to describe the function of
the transmitter in a more behavioural
manner, rather than focus on its actual
implementation at the gate level.

2) 2) VHDL makes the design implementation
easier to read and understand, they also
provide the ability to easily describe
dependencies between various processes that
usually occur in such complex event-driven
systems.

3) It is easier to test the UART by the VHDL
simulation and find out if any discrepancy
occurs.

4) VHDL as a Standard Language.
5) Better design.
6) Reusability for new technology.
7) Tools independence.
8) Minimum cost 2nd time.
9) Increase productivity.

VII Design Steps For Implementing Uart In

Fpga

In embedded systems, the processor that we choose
for our design may not come with built-in
peripherals. Therefore, designers will have to
implement these devices in hardware keeping in
mind that they will need to interface to the
processor. , it’s possible to perform a logic
simulation on every design level. Correct simulation
can save a lot of time. Good practice is to simulate at
least the top level design files. The top-level
simulation is called functional. For larger design is
suitable to simulate post-place & route netlist. This
simulation is called timing. When you design some

FPGA application you will usually do following
several steps:

1. You enter your logic description using an
HDL (hardware description language) such
as VHDL. You can also use schematic
description but it’s complicated for complex
designs.

2. Now you can use logic synthesis tool for
translating your description to a netlist. The
netlist is description of generic logic
primitives like multiplexers, registers, gates,
etc. The netlist also contains information
about connection of the primitives.

3. After the synthesis is completed you can use
implementation tools. These tools consist of
a map tool and a place & route tool. The map
tool converts an RTL netlist from synthesis
to another netlist. This netlist contains FPGA
primitives only. The place & route tool
interconnects these primitives using FPGA
routing resources.

4. To allow configuration of an FPGA it is
necessary to create a bitstream. The bitstream
is a file that describes especially states of
electronic switches of an FPGA.

5. The bitstream can be downloaded into an
FPGA chip. After the downloading the
FPGA will perform the operation specified
by description from first point.

Therefore the steps of implementation must be
carried out in this order:

1. Synthesize

2. Design implementation (Map, Place and
Route)

3. Timing Simulate

4. Program.

Synthesize: The synthesis tool will only attempt to
synthesize the file highlighted in the Source window.
The synthesis tool recognizes all the lower level
blocks used in the top-level code and synthesizes
them together to create a single netlist. The synthesis
tool will never alter the function of the design, but it
has a huge influence on how the design will perform
in the targeted device.

Hazim Kamal Ansari International Journal Of Engineering And Computer Science1:1oct2012(28-36)

34

Pa
ge

34

Design Implementation (Map,Place And Route):
The place-and-route tools (PAR) automatically
provide the implementation flow described in this
section. The practitioner takes the EDIF netlist for
the design and maps the logic into the architectural
resources of the FPGA (CLBs and IOBs, for
example). The placer then determines the best
locations for these blocks based on their
interconnections and the desired performance.
Finally, the router interconnects the blocks. The
PAR algorithms support fully automatic
implementation of most designs. For demanding
applications, however, the user can exercise various
degrees of control over the process. User
partitioning, placement, and routing information is
optionally specified during the design-entry process.
The implementation of highly structured designs can
benefit greatly from basic floor planning. The
implementation software incorporates timing-driven
placement and routing. Designers specify timing
requirements along entire paths during design entry.
The timing path analysis routines in PAR then
recognize these user-specified requirements and
accommodate them. Timing requirements are
entered in a form directly relating to the system
requirements, such as the targeted clock frequency,
or the maximum allowable delay between two
registers. In this way, the overall performance of the
system along entire signal paths is automatically
tailored to user generated specifications. Specific
timing information for individual nets is
unnecessary.

Place and Route For FPGAs, the Place and Route
programs are run after Compile. “Place” is the
process of selecting specific modules or logic blocks
in the FPGAs where design gates will reside.
“Route” as the name implies, is the physical routing
of the interconnect between the logic blocks. Most
vendors provide automatic place and route tools so
the user does not have to worry about the intricate
details of the device architecture. Some vendors
have tools that allow expert users to manually place
and/or route the most critical parts of their designs
and achieve better performance than with the
automatic tools. Floor planner is a form of such
manual tools. These two programs require the
longest time to complete successfully since it is a
very complex task to determine the location of large
designs, ensure they all get connected correctly, and
meet the desired performance. These programs
however, can only work well if the target

architecture has sufficient routing for the design. No
amount of fancy coding can compensate for an ill-
conceived architecture, especially if there is not
enough routing tracks. If the designer faces this
problem, the most common solution to is to use a
larger device. And he will likely remember the
experience the next time he is selecting a vendor. A
related program is called Timing-Driven Place &
Route (TDPR). This allows users to specify timing
criteria that will be used during device layout. A
Static Timing Analyser is usually part of the
vendor’s implementation software. It provides
timing information about paths in the design. This
information is very accurate and can be viewed in
many different ways (e.g. display all paths in the
design and rank them from longest to shortest
delay). In addition, the user at this point can use the
detailed layout information after reformatting, and
go back to his simulator of choice with detailed
timing information. This process is called Back-
Annotation and has the advantage of providing the
accurate timing as well as the zeros and ones
operation of his design. In both cases, the timing
reflects delays of the logic blocks as well as the
interconnect. The final implementation step is the
Download or Program.

Timing Simulate: Timing and related tools can be
somewhat of a mystery in FPGAs. For synchronous
logic, you must verify that the inputs of flops arrive
before the clock does. This can be controlled in a
large part by carefully coding the design to minimize
the levels of combinational logic between flops.
After synthesizing some code and looking at the
timing results, you quickly learn how to code for
synthesis. Pipelining is a standard technique for
speeding up a design and is done by breaking up
large amounts of combinational logic into several
stages with flops between the stages. Medium speed
designs (30MHz +) will probably require some
degree of pipelining. Timing can also be improved
by entering timing constraints that the place and
route tools try to meet. Timing constraints should be
standard part of any FPGA design entry. The
following groups of constraints are typical:

1. Input pin to flop input
2. Flop to flop (must be less than the clock

period)
3. Flop to output pin
4. Pin to pin (asynchronous stuff)
5. Higher end synthesis tools can also use

timing constraints

Hazim Kamal Ansari International Journal Of Engineering And Computer Science1:1oct2012(28-36)

35

Pa
ge

35

Static timing analysis is the primary timing
verification tool that checks the worst case delays
against the timing constraints entered by the
designer. Timing simulations of routed designs are
useful for debugging and sanity checks, but can be
misleading because a timing simulation will most
likely not exercise every possible combinational
path.

Program: After the design is implemented in real
hardware, the debug phase starts. FPGA designs are
difficult to debug on the bench because internal
signals are not visible unless routed to unused pins
or analyzed by special FPGA debug equipment. This
is where a good verification environment pays off.
The design should be mostly correct if you did the
functional simulations and static timing analysis.
Chances are some corners where cut and some
problems will come up in unverified parts of the
design. Once the symptoms are identified, the
designer can go back to the functional simulation,
recreate the scenario and observe what is going on
inside the chip. If timing problems are suspected, a
timing simulation can be run on a structural model
of the chip.

.

Fig.4 Design steps

Conclusion

FPGAs are suited to very fast, I/O intensive
operations. Partitioning your design across the two
devices can increase overall system speeds, reduce
costs, and potentially absorb all of the other discrete
logic functions in a design – thus presenting a truly
reconfigurable system. The design process for a
microcontroller is very similar to that of a
programmable logic device. This permits a shorter
learning and designing cycle. UART controller is
designed within FPGA based on SRAM with high
speed and high reliability. It is used for
programming FPGA. The controller can be used to
implement communications in complex system And
it also can be used to reduce time delays between
sub-controllers of a complex control system to
improve the synchronization of each sub-controller.
The controller is reconfigurable and scalable.
FPGAs are replacing conventional programmable
logic devices and within next few years they would
be required at each and every application.

References

[1] Gina R. Smith.”The basics of constructing

FPGA.” eetimes, Jan 2008.
[2] Cliff Brake.”Digital Design Basics”, Nov

2002.

HDL
SYNTHESIS

PLACE AND
ROUTE

FUNCTIONAL
SIMULATION

 CODE

STATIC TIMING
ANALYSIS

TEST IN SYSTEM

Hazim Kamal Ansari International Journal Of Engineering And Computer Science1:1oct2012(28-36)

36

Pa
ge

36

[3] Wilfried Elenmenriech, Martin Delvai.”Time
triggered communication with UARTs.” 4th
IEEE international workshop on factory
communication system, Sweden, August
2002.

[4] Raffaele Gallo, Martin Delvai, Wilfried
Elmenreich, Andreas Steininger.” Revision
and Verification of an Enhanced UART”,
Austria, 2004.

[5] M. Delvai, U. Eisenmann, W. Elmenreich,
“Intelligent UART Module for Real-Time
Applications.” First Workshop on Intelligent
Solutions in Embedded Systems (WISES),
pages 177-185, Vienna, Austria, June 2002.

[6] Brian C. O’Neill, Steve Clark, and Kar L.
Wong. ”Serial Communication circuit with
optimized skew characteristics.” IEEE
communications letters, VOL. 5, NO. 6, June
2001.

[7] R. Hotchkiss, K. L. Wong, B. C. O’Neill, G.
C. Coulson, S. Clark, and P. D. Thomas,
“The building blocks for a parallel network
incorporating The Strong ARM
microprocessor,” in PDPTA’98 Conf., July
1998,pp.1863–1870.

[8] J. Norhuzaimin and H.H Maimun,”The
design of high speed UART,” Asia –Pacific
conference on Applied Electromagnetic,
Malaysia, Dec 2005.

[9] Karalis, Edward, “Digital Design Principles
and Computer
Architecture.” Prentice-Hall, United States of
America, 1997.

[10] Mohd Yamani Idna Idris, Mashkuri
Yaacob, “A VHDL

[11] Implementation of BIST Technique
in UART Design.” Faculty of Computer
Science And Information Technology,
University Of Melaya, 2003.

[12] S. Brown, R. Francis, J. Rose, Z.
Vranesic, “Field-Programmable Gate
Arrays” Kluwer Academic Publishers, May
1992.

[13] S. Trimberger, Ed., “Field-
Programmable Gate Array Technology.”
Kluwer Academic Publishers, 1994.

[14] J. Rose, A. El Gamal, A.
Sangiovanni-Vincentelli, “Architecture of
Field-Programmable Gate Arrays.” in
Proceedings of the IEEE, Vol. 81, No. 7, July
1993,pp. 1013-1029.

	Design Of High Speed Uart For Programming Fpga

