

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 4 April, 2013 Page No. 991 -996

M.Ravi Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 991-996 Page 991

Multi Benfit’s Through Compression For Large Data Stored In Cloud
(An integrated advantages of data compression in cloud)

*1M.Ravi Kumar, *2S.Manoj Kumar

Dept. of IT (MCA)

G M R Institute of Technology Rajam, Andhra Pradesh, India
Email: ravi.mrk91@gmail.com

Dept.of IT (MCA)

G M R Institute of Technology, Rajam, Andhra Pradesh, India
 Email: manojkumar.gmrit@gmail.com

Abstract—As the sizes of IT infrastructure continue to grow, cloud computing is a natural extension of virtualization
technologies that enable scalable management of virtual machines over a plethora of physically connected systems. Cloud
computing provides on-demand access to computational resources which together with pay-per use business models, enable
application providers seamlessly scaling their services. Cloud computing infrastructures allow creating a variable number of
virtual machine instances depending on the application demands. However, even when large-scale applications are deployed over
pay-per-use cloud high-performance infrastructures, cost-effective scalability is not achieved because idle processes and
resources (CPU, memory) are unused but charged to application providers. Over and under provisioning of cloud resources are
still unsolved issues. Here we try to present the data compression techniques to squeezing data that illustrates to reduce the size
which is about deploy in cloud servers. These compression techniques are much reliable when we need to manage the large
amount of data, especially useful for industries like which maintain huge data warehouses and big educational universities for
reducing the cost. This work attempts to establish formal measurements for under and over provisioning of virtualized resources
in cloud infrastructures, specifically for SaaS(software as a service) platform deployments and proposes a resource allocation
model to deploy SaaS applications over cloud computing platforms by taking into account their multitenancy, thus creating a cost-
effective scalable environments. As a result the aim of this paper is two-folded; firstly to evaluate cloud security by compressing
data which contains encrypted format to ensure sufficient security, Requirements and secondly to present a viable solution that
creates a cost-effective cloud environment for large-scale systems.
Index terms—Cloud computing, Data compression,
arithmetic encoding, the Lempel-Ziv family, Dynamic

Markov Compression (DMC), Prediction by Partial
Matching (PPM), Huffman, Run Length Encoding (RLE)

I. INTRODUCTION

Cloud computing is for internet computing. The internet is
commonly visualized as clouds; hence the term “cloud
computing” is for computation done through the Internet.
Cloud computing provides the facility to access shared
resources and common infrastructure, offering services on
demand over the network to perform operations that meet
changing business needs.

Several trends are opening up the era of Cloud Computing,
which is an Internet-based development and use of computer
technology. The ever cheaper and more powerful
processors, together with the “software as a service” (SaaS)
computing architecture, are transforming data centers into
pools of computing service on a huge scale. Meanwhile, the
increasing network bandwidth and reliable yet flexible

network connections make it even possible that clients can
now subscribe high-quality services from data and software
that reside solely on remote data centers.

 Data storage paradigm in “Cloud” brings about many
challenging design issues which have profound influence on
the security and performance of the overall system. One of
the biggest concerns with cloud data storage is that of data
integrity verification at un-trusted servers. As the cloud
services have been built over the internet, any issue that is
related to internet security will also affect the cloud services.
But one question about cloud computing is still in its place-
“HOW SECURE IS THE CLOUD??”End user who wants
to access the services of cloud must have browser on their
system to access the network. We always talk about attacks
on clouds which make our data insecure on clouds system
but there are so many attacks which can also affect our data.
Resources in the cloud are accessed through the internet;
consequently even if the cloud provider focuses on security

http://www.ijecs.in/�
mailto:ravi.mrk91@gmail.com�
mailto:manojkumar.gmrit@gmail.com�

M.Ravi Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 991-996 Page 992

in the cloud infrastructures, the data is still transmitted to the
users through the internet network which may be insecure.
As a result, the impact of internet security problems will
affect the cloud. Moreover, cloud risks are more dangerous
due to valuable resources stored within them and cloud
vulnerability. The technology used in the cloud is similar to
technology used in the Internet. Encryption techniques and
secure protocols are not sufficient to assist data transmission
in the cloud. Data intrusion of the cloud through the Internet
by hackers and cybercriminals needs to be addressed and the
cloud environment needs to be secure and private for clients.

In addition, data storage or data retrieval cost is high
especially for small companies. Economic computing
resources and advanced network technology is referred to as
cloud computing .The use of cloud computing has increased
rapidly in many organizations. For this we present a new
approach that facilitates that to reduce the cost than normal
usage and providing much security also. To achieve this we
follow the most well-known area in the IT for effective data
management i.e..The process of reducing the size of a data
file is popularly referred to as” data compression”. Data
compression squeezes data so it requires less disk space for
storage and less bandwidth on a data transmission channel.
By using this technique we can reduce the size of data stored
in the cloud and along with this we can provide sufficient
security also. This paper mainly focuses the cost-effective
secured data in cloud platforms.

II. EXISTING SYSTEM

Cloud security is one of the major issues. In general Security
means, focus will be giving attention on confidentiality,
Integrity, Availability. But will that be sufficient? Cloud
Computing is providing services Such as Infrastructure as a
Service, Platform as a Service, Software as a Service, or
Anything as a Service through internet based as pay per
usage model like utility computing.

Cloud Security Alliance (CSA): CSA gave a list of top
threats to cloud computing such as Abuse and Nefarious Use
of Cloud Computing, Insecure Interfaces and APIs,
Malicious Insiders, Shared Technology Issues, Data Loss or
Leakage, Account or Service Hijacking, Unknown Risk
Profile and they suggested tackling methods such as tools to
monitor the IP , APIs, encryption, firewalls along with
strong authentication .

Since outsourcing is the main theme of cloud computing,
there are two main concerns in this area:
 1. External attacker (any unauthorized person)
can get to the Critical data, as the control is not in the hands
of the owner.
 2. Cloud service provider himself can breach
the owner, as Data is to be kept in his premises.
i.e.. We don’t have required security in cloud servers. Even
when large-scale applications are deployed over pay-per-use
cloud high-performance infrastructures, cost-effective
scalability is not achieved because idle processes and
resources (CPU, memory) are unused but charged to
application providers. Over and under provisioning of cloud
resources are still unsolved issues.

III. PROPOSED METHOD

Here our approach is looking simple but it sounds somewhat
new. i.e., at first compress the data by using some of the
popular compression techniques based on that particular
scenarios and then deploy this compressed data into the
cloud. As a result we can provide security because the
intruder cannot understand the compressed text (which is in
encrypted format) mostly. At the same time we can get the
low-cost cloud services because it reduces data in a broader
way. Retrieval and re-use the compressed data is also easy
by following reverse process means that as a decompression
(decryption) mechanism.

Two important compression concepts are loss and lossless
compression: Lossless algorithms are typically used for text
or executable codes, while losses are used for images and
audio where a little bit of loss in resolutions often
undetectable, or at least acceptable.
Lossless compression researchers have developed highly
sophisticated approaches, such as Huffman encoding,
arithmetic encoding, the Lempel-Ziv family, Dynamic
Markov Compression (DMC), Prediction by Partial
Matching (PPM), and Burrows-Wheeler Transform (BWT)
based algorithms.

Figure 1: Compression process

Among the available lossless compression algorithms the
following are considered for this study.
A. Run Length Encoding Algorithm
Run Length Encoding or simply RLE is the simplest of the
data compression algorithms. The consecutive
Sequences of symbols are identified as runs and the others
are identified as non runs in this algorithm. This algorithm
deals with some sort of redundancy. It checks whether there
are any repeating symbols or not, and is based on those
redundancies and their lengths. For an example, the text
“ABABBBBC” is considered as a source to compress, then
the first 3 letters are considered as a non-run with length 3,
and the next 4 letters are considered as a run with length 4
since there is a repetition of symbol B. The major task of
this algorithm is to identify the runs of the source file, and to
record the symbol and the length of each run. The Run
Length Encoding algorithm uses those runs to compress the

M.Ravi Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 991-996 Page 993

original source file while keeping all the non-runs without
using for the compression process.

B. Huffman Encoding
Huffman Encoding Algorithms use the probability
distribution of the alphabet of the source to develop the code
words for symbols. The frequency distribution of all the
characters of the source is calculated in order to calculate
the probability distribution. According to the probabilities,
the code words are assigned. Shorter code words for higher
probabilities and longer code words for smaller probabilities
are assigned. For this task a binary tree is created using the
symbols as leaves according to their probabilities and paths
of those are taken as the code words. Two families of
Huffman Encoding have been proposed: Static Huffman
Algorithms and Adaptive Huffman Algorithms. Static
Huffman Algorithms calculate the frequencies first and then
generate a common tree for both the compression and
decompression processes. Details of this tree should be
saved or transferred with the compressed file. The Adaptive
Huffman algorithms develop the tree while calculating the
frequencies and there will be two trees in both the processes.
In this approach, a tree is generated with the flag symbol in
the beginning and is updated as the next symbol is read.

C. The Shannon Fano Algorithm
This is another variant of Static Huffman Coding algorithm.
The only difference is in the creation of the code word. All
the other processes are equivalent to the above mentioned
Huffman Encoding Algorithm.

D. Arithmetic Encoding
In this method, a code word is not used to represent a
symbol of the text. Instead it uses a fraction to represent the
entire source message. The occurrence probabilities and the
cumulative probabilities of a set of symbols in the source
message are taken into account. The cumulative probability
range is used in both compression and decompression
processes. In the encoding process, the cumulative
probabilities are calculated and the range is created in the
beginning. While reading the source character by character,
the corresponding range of the character within the
cumulative probability range is selected. Then the selected
range is divided into sub parts according to the probabilities
of the alphabet. Then the next character is read and the
corresponding sub range is selected. In this way, characters
are read repeatedly until the end of the message is
encountered. Finally a number should be taken from the
final sub range as the output of the encoding process. This
will be a fraction in that sub range. Therefore, the entire
source message can be represented using a fraction. To
decode the encoded message, the number of characters of
the source message and the probability/frequency
distribution are needed.

E. Measuring Compression Performances
Depending on the nature of the application there are various
criteria to measure the performance of a
Compression algorithm When measuring the performance
the main concern would be the space efficiency. The time
efficiency is another factor. Since the compression behavior
depends on the redundancy of symbols in the source file, it

is difficult to measure performance of a compression
algorithm in general. The performance depends on the type
and the structure of the input source. Additionally the
compression behavior depends on the category of the
compression algorithm: lossy or lossless. If a lossy
compression algorithm is used to compress a particular
source file, the space efficiency and time efficiency would
be higher than that of the lossless compression algorithm.
Thus measuring a general performance is difficult and there
should be different measurements to evaluate the
performances of those compression families. Following are
some measurements used to evaluate the performances of
lossless algorithms.

 Compression Ratio is the ratio between the size of the
compressed file and the size of the source file.

Compression Ratio =
size after compression

size before compression

Compression Factor is the inverse of the compression ratio.
That is the ratio between the size of the source file and the
size of the compressed file.

Compression Factor =
size before compression
size after compression

Saving Percentage calculates the shrinkage of the source file
as a percentage.
Saving percentage

=
size before compression − size after compression

size before compression
 %

All the above methods evaluate the effectiveness of
compression algorithms using file sizes. There are some
other methods to evaluate the performance of compression
algorithms. Compression time, computational complexity
and probability distribution are also used to measure the
effectiveness.

Compression Time
Time taken for the compression and decompression should
be considered separately. Some applications like transferring
compressed video data, the decompression time is more
important, while some other applications both compression
and decompression time are equally important. If the
compression and decompression times of an algorithm are
less or in an acceptable level it implies that the algorithm is
acceptable with respective to the time factor. With the
development of high speed computer accessories this factor
may give very small values and those may depend on the
performance of computers.

Entropy
This method can be used, if the compression algorithm is
based on statistical information of the source file. Self
Information is the amount of one’s surprise evoked by an
event. In another words, there can be two events: first one is
an event which frequently happens and the other one is an
event which rarely happens. If a message says that the
second event happens, then it will generate more surprise in
receivers mind than the first message. Let set of event be S =
{s1,s2,s3,...,) for an alphabet and each Sj is a symbol used in
this alphabet. Let the occurrence probability of each event

M.Ravi Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 991-996 Page 994

be PJ for event Sj. Then the self information I(s) is defined
as follows.
I�Sj� = log 1

pj
 (or) I�Sj� = − log 1

pj

The first order Entropy value H (P) of a compression
algorithm can be computed as follows.

H(P) = ∑ Pj I(Sj)n

j=1 (or) H(P) = −∑ Pj
n
j=1 I(Sj)

Code Efficiency
Average code length is the average number of bits required
to represent a single code word. If the source and the
lengths of the code words are known, the average code
length can be calculated using the following equation.

l = �Pj Lj

n

j=1

Where pi is the occurrence probability of Jth symbol of the
source message ,Li is the particular length of the code word
for that symbol and L = {l1, l2, …. Ln}. Code Efficiency is
the ratio in percentage between the entropy of the source
and the average code length and it is defined as follows.
E(P, L) = H(P)

l(P,L)
 X 100 %

Where E(P,L) is the code efficiency, H(p) is the entropy and
l(P,L) is the average code length.

The above equation is used to calculate the code efficiency
as a percentage. It can also be computed as a ratio. The
code is said to be optimum, if the code efficiency values is
equal to 100% (or 1.0). If the value of the code efficiency is
less than 100%, that implies the code words can be
optimized than the current situation.

IV. RESULTS AND RECOMMENDATIONS

The overall performance in terms of average BPC(bits per

character) of the above referred Statistical coding methods
are shown in Fig. Table shows the comparative analysis
between various Statistical compressions techniques
discussed above.

As per the results shown in Table for Run Length
Encoding, for most of the files tested, this algorithm
generates compressed files larger than the original files. This
is due to the fewer amount of runs in the source file. For the
other files, the compression rate is less. The average BPC
obtained by this algorithm is 7.93. So, it is inferred that this
algorithm can reduce on an average of about 4% of the
original file. This cannot be considered as a significant
improvement.

BPC and amount of compression achieved for Shannon-

Fano algorithm is presented in Table, The compression ratio
for Shannon-Fano algorithm is in the range of 0.60 to 0.82
and the average BPC is 5.50.

Compression ratio for Huffman coding algorithm falls in
the range of 0.57 to 0.81. The compression ratio obtained by
this algorithm is better compared to Shannon-Fano
algorithm and the average Bits per character is 5.27.

The amount of compression achieved by applying

Adaptive Huffman coding is shown in Table . The adaptive
version of Huffman coding builds a statistical model of the
text being compressed as the file is read. From Table it can
be seen that, it differs a little from the Shannon-Fano coding
algorithm and Static Huffman coding algorithm in the
compression ratio achieved and the range is between 0.57
and 0.79. On an average the number of bits needed to code a
character is 5.21. Previous attempts in this line of research
make it clear that compression and decompression times are
relatively high for this algorithm because the dynamic tree
used in this algorithm has to be modified for each and every
character in the source file.

Arithmetic coding has been shown to compress files

down to the theoretical limits as described by Information
theory. Indeed, this algorithm proved to be one of the best
performers among these methods based on compression
ratio. It is clear that the amount of compression achieved by
Arithmetic coding lies within the range of 0.57 to 0.76 and
the average bits per character is 5.15. The overall
performance in terms of average BPC of the above referred
Statistical coding methods are shown in below Table

M.Ravi Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 991-996 Page 995

S.No File File RLE Shannon Huffman Adaptive
Arithmeti

c
Size Fano coding Huffman coding

coding coding

BPC BPC BPC BPC BPC
1 bib 111261 8.16 5.56 5.26 5.24 5.23
2 book1 768771 8.17 4.83 4.57 4.56 4.55
3 book2 610856 8.16 5.08 4.83 4.83 4.78
4 news 377109 7.98 5.41 5.24 5.23 5.19
5 obj1 21504 7.21 6.57 6.45 6.11 5.97
6 obj2 246814 8.05 6.5 6.33 6.31 6.07
7 53161 8.12 5.34 5.09 5.04 4.98
8 82199 8.14 4.94 4.68 4.65 4.63
9 progc 39611 8.1 5.47 5.33 5.26 5.23
10 progl 71646 7.73 5.11 4.85 4.81 4.76
11 progp 49379 7.47 5.28 4.97 4.92 4.89
12 trans 93695 7.9 5.88 5.61 5.58 5.49

7.93 5.5 5.27 5.21 5.15

names

 paper1
 paper2

Average BPC
Figure 2: Comparison of BPC for different Statistical Compression techniques

Below graph presents the overall results of the given statistics in the above table:

s

Figure 3: Chart showing Compression rates for various Statistical Compression techniques

After performing the entire compression process based

upon the requirements whether it may be the text, image,
audio, or videos anything But here in this paper we mostly
concentrate on the textual data only. We can compress then
deploy that into the cloud as under its specific services.

For retrieve and reuse also we perform the same task in
an opposite way. The below diagram illustrates the clear
understanding of our approach.

Of course it needs some additional resources like
technical staff and consumes some extra time also. But if we
did like this we can get some secured storage and also get
lower cost cloud services.

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

bi
b

bo
ok

1
bo

ok
2

ne
w

s
ob

j1
ob

j2
pa

pe
r1

pa
pe

r2
pr

og
c

pr
og

l
pr

og
p

tr
an

s
Av

er
ag

e
BP

C

1 2 3 4 5 6 7 8 9 10 11 12

File names

File Size

RLE BPC

Shannon Fano coding
BPC

Huffman coding BPC

Adaptive Huffman
coding BPC

M.Ravi Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 991-996 Page 996

Figure 4: Storing and Retrieval process of compressed text in Cloud

V. CONCLUSION

Modern computing presents not only technical problems,
but also major environmental challenges in terms of its high
energy consumption. As the sizes of IT infrastructure
continue to grow, it is clear that effective green IT solutions
must be developed to minimize its impacts on our
environment. Here, cloud computing offers a natural
extension of virtualization technologies which enable
scalable management of virtual machines residing on
distributed hosts. By applying the required compression
techniques to reduce the size of the data as well as we can
produce the encrypted data to resolve the security issues,
then the result will be the solution that produces a cost-

effective cloud environment for both small and large-scale
industries also.

Even though Cloud has some serious issues like security,
privacy, social and political issues. Cloud computing is
going to be one of the venture technology in future. Cloud
user should understand their own network, system,
applications and data are moving to an unknown network
which poses serious threat to security and privacy. As a
cloud user or developer, they have to choose the vendor
based on their Service Level Agreements, security service
standards and compliances.

REFERENCES
[1] NilayOza, KaarinaKarppinen, ReijoSavola, “User

experience and Security in the Cloud– An Empirical
Study in the Finnish Cloud Consortium”,2nd IEEE
International Conference on Cloud Computing
Technology and Science, 2010

[2] Loganayagi B, Sujatha.S., “Enhanced Cloud Security by

Combining Virtualization and Policy Monitoring
Techniques” Procedia Engineering 30 (2012) 654 – 661

[3] http://en.wikipedia.org

[4] S.R. Kodituwakku ,“COMPARISON OF LOSSLESS
DATA ALGORITHMS FOR

TEXTDATA”, Indian Journal of Computer Science and
EngineeringVol 1 No 4 416-425

[5] “DataCompressionTheCompleteReference 3/e”,David

[6] SalomonSalauddin Mahmud.,” An Improved Data

Compression Method for General Data “International
Journal of Scientific & Engineering Research Volume 3,
Issue 3, March -2012

[7] http://www.journalofcloudcomputing.com

M.RaviKumar
(ravi.mrk91@gmail.com), is pursuing MCA (Master of
Computer Applications) from GMR Institute of
Technology, Rajam, A.P, India. Presently in second year

and has completed his graduation (Computer Science) in
Andhra University. His area of interest includes Network
& Information Security, Web designing & developing and
development technologies.

S.Manoj Kumar

M.Ravi Kumar, IJECS Volume 2 Issue 4 April, 2013 Page No. 991-996 Page 997

 (manojkumar.gmrit@gmail.com), is pursuing MCA
(Master of Computer Applications) from GMR Institute of
Technology, Rajam, A.P, India. Presently in second year
and has completed his graduation (Computer Science) in

Andhra University. His area of interest includes Network
& Information Security, Cloud Computing and latest
technologies.

	I. INTRODUCTION
	II. Existing system
	III. Proposed Method
	References

