

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 3 Issue 6 June, 2014 Page No. 6260-6266

Namrata Dafre, IJECS Volume 3. Issue 6 June, 2014 Page No.6260-6266 Page 6260

Novel Cache Replacement Algorithm

Namrata Dafre1, Deepak Kapgate2

1Student of M.Tech. (CSE), GHRAET, Nagpur,

Nagpur University(MS), India.

2Department of C.S.E., GHRAET, Nagpur,

Nagpur University (MS), India,

Abstract: In a computer architecture Cache memory have been introduced to balance performance and

cost of the system. To improve the performance of a cache memory in terms of hit ratio and good

response time system needs to employ efficient cache replacement policy. In this paper we proposed and

implemented a novel cache replacement policy which predicts future request of a block depending upon

its access pattern. Algorithm uses the concept of inter-reference recency of a block to detect access

pattern and uses history of response time for efficient replacement. Result shows novel cache replacement

policy has low response time and high hit ratio comparatively to other policy. Proposed policy concludes

that it reduces response time and improves hit ratio.

Keywords: buffer cache, access patterns, cache replacement policies, buffer cache management techniques.

Introduction

To achieve better performance Cache memory

uses concept of locality of reference. Use of cache

memory is necessary because, it helps to reduce

the time to move information to and from the

processor. The concept is that at any given time

the processor will be accessing memory in a small

or localized region of memory, cache memory

loads this region allowing the processor to access

the memory region faster. When a new block is

brought into the cache, one of the existing blocks

must be replaced. For this purpose we need

replacement policies. To achieve high speed,

cache implements an efficient replacement policy.

A good caching algorithm must have

characteristics such as Low memory overhead,

faster access to data, low response time to achieve

a good hit rate.

In computer architecture Buffer cache is

introduced to reduce the frequency of access made

to the secondary storage devices and enhance the

system throughput [2]. cache reduces read latency,

while the buffer cache is to reduce writing

operations. cache works between CPU and RAM

while cache buffer works between RAM and

external storage [1]. Different workloads and

programs may have different accessing patterns

like Sequential, looping-like, temporally-

clustered, probabilistic references. To make cache

more and more efficient replacement algorithms

are used. They are classified into three types,

replacement algorithms that incorporate longer

reference histories than LRU[5] such as LRU-

K[6], 2Q[13], LRFU[14], EELRU[12], MQ,

LIRS[16], and ARC[15]. ACFS [28] and TIP [29]

are replacement algorithms that rely on

Namrata Dafre, IJECS Volume 3. Issue 6 June, 2014 Page No.6260-6266 Page 6261

application hints. Replacement algorithms that

actively detects the I/O access patterns various

levels such as block level, application level, file

level and program context level.

SEQ detects long sequence of page cache misses

at block-level and applies MRU policy to avoid

scan pollution. DEAR observes the I/O pattern of

each application at application-level and applies

MRU, LRU and LFU according to the pattern

detected. UBM at file-level detects access pattern

of each individual file and uses MRU and LRU.

AMP [21] and PCC [22] at program-context level,

separates I/O stream into sub-stream and detects

the pattern of each sub-stream.

Cache memory management has two aspects; they

are use of a buffer cache management techniques

and selection of an efficient replacement policy.

The paper mainly focuses on implementation of

Novel Cache Replacement algorithm which

predicts future request of a block by knowing its

access pattern. This research shows that how the

proposed Novel Cache Replacement algorithm

leads to minimization of reduction in response

time.

The rest of the paper is organized as follows:

Section II discusses about the existing cache

replacement algorithms and cache management

techniques. Section III, explains proposed

algorithm and flow chart of proposed algorithm.

Section IV shows the implementation details of

algorithm and says about working environment.

Section V shows the results calculated. Finally

Section VI concludes the paper with future scope.

2. Literature survey

Least Recently Used algorithm is used widely

because of its simplicity. It keeps track of the

cache lines according to time they have been used

and replaces page which have not been used for

longer time.

But it has some limitations such as inability to

cope with access patterns with weak locality and

scan pollution. It causes thrashing for the

workloads larger than cache size. To overcome

limitations of LRU various policies have been

introduced such as LRU-K[6], EELRU[12],

FIFO[10], SC, Optimal replacement[9], LFU[5],

2Q[13], MRU[7], LRFU[14], Dueling

CLOCK[19], LIRS [16], ARC [15].

At the same time to manage buffer cache various

techniques such as block pre-fetching, prediction

based on reuse distance and by detecting block

access pattern has been introduced. In Block pre-

fetching mechanism, data blocks are read prior

and kept into main memory, to deal with the delay

associated with the access made to the disk. User

or compiler inserted hints are used in informed

pre-fetching. I/O request are traced to obtain the

information about the system call made by the

applications and used in predictive caching.

Automatic Pre-fetching And Caching System

(APACS) is the example of block pre-fetching

technique. In Distance based prediction

mechanism, reuse distance of a block is used.

Reuse distance of a block is the time difference

between two consecutive references to a block.

The reuse distance of a block can be obtained by

use of a program counter. Re-Reference Interval

Prediction (RRIP) technique has suggested Static

RRIP (SRRIP) and Dynamic RRIP (DRRIP),

Signature Based Hit Predictor comes under this

technique. In block access pattern based detection

mechanism, reference regularities are exploited to

detect access pattern of a block. Unified Buffer

Management (UBM)[23], Program-Counter based

Classification (PCC)[22], DEtection based

Adaptive Replacement (DEAR) [24] works by

this technique.

Yifeng Zhu, et.al.[25] proposed a Robust

Adaptive buffer Cache management scheme

(RACE). In this scheme cache is partitioned by

using marginal gain function to allocate blocks

according to its access pattern. To know block

access pattern it keeps track of references to a

block by using file hash table and PC hash table.

File hash table uses attributes such as inode, start

and end block number, the last access made to the

first block, looping period, last access to the

referenced block, last accessed block and a PC

hash table uses attributes such as fresh counter,

reuse counter. After pattern detection block is

Namrata Dafre, IJECS Volume 3. Issue 6 June, 2014 Page No.6260-6266 Page 6262

allocated into cache if free space is available or

replacement is done with the existing replacement

policy which is best suitable for the detected

access pattern.

Reetu Gupta et.al. [26], Proposed Block Pattern

Based Buffer Cache Management is a

methodology which works above both program

context level and file level. This scheme analyzes

past access behavior and program context from

I/O request and helps to predict block access

patterns. It uses data structure which has values

such as File hash table and PC hash table of a

block. It has improved hit ratio by 10% to 15%

over LRU.

In this paper the author is proposing a Novel

Cache Replacement Algorithm which predicts

future request of a block by accessing history

information of a block.

3. Proposed Novel Cache Replacement Algorithm

The proposed predictive novel cache replacement

algorithm uses information recency as well as

inter-reference recency (IRR) of a block.

Algorithm first detects access pattern of a block

and allocate it to the related cache partition. It

keeps track of block parameters such as current

accessed time, last accessed time, old IRR, new

IRR, ‘hitbit’ has value zero if a block accessed

first time or one if it is accessed repeatedly,

‘numref’ counts total number of references to a

block till current time. From the IRR value

algorithm comes to know access pattern of a

block. Again a block maintains a variable ‘p’

which has value zero, one or two and it shows

pattern of a block. If 0 for sequential, 1 for

looping and 2 for other pattern.

According to block’s ‘p’ value it is allocated to

related cache partition. At the time of allocation

three cases may occur, first is block gets allocated

easily as a sequential type, second is block is

already present in cache and need to move it from

one partition to other as its pattern changes and

third is need of replacement to allocate a block.

Replacement can be done with the existing LRU

policy or with proposed novel cache replacement

policy. Proposed algorithm uses a parameter

‘numref’ which maintains total no. of references

of a block till current time. The block having less

no of accesses is a better candidate for

replacement.

3.1 Flowchart :

The flowchart for Proposed Prediction Algorithm:

Figure 1 – Flowchart of Pattern detection module

Figure 2 - Flowchart of allocation module

Namrata Dafre, IJECS Volume 3. Issue 6 June, 2014 Page No.6260-6266 Page 6263

Figure 3 – Flowchart of Replacement module

3.2 Proposed Algorithm

Proposed algorithm works in three steps,

3.2.1 Detection of a block access pattern.

Cache is partitioned into three parts i.e. fixed no

of blocks are dedicated to each partitions.

If a block is accessed first time (i.e. hitbit=0), then

pattern is sequential and p=0. If a bloc is accessed

repeatedly (i.e. hitbit=1), then pattern is looping

(p=1) or other (p=2).

To detect whether it is looping or other, block

access period is detected. If block’s period is fixed

then it is looping and if not then it is other.

3.2.2 Allocate block to its related cache partition

According to value of variable ‘p’ then cache

partition is allocated. At the time of allocation

three cases may occur.

First, block is detected as sequential, and allocated

if space is free and replacement is done if cache is

full.

Second, block is already present in cache then its

looping or other pattern. Then block is moved to

related cache partition according to the new access

pattern. If space is not free then replacement is

done.

3.2.3 Replacement

Replacement is done with the existing LRU policy

and novel cache replacement policy.

4. Implementation Details

The proposed algorithm is implemented using

Java Processor And Cache simulator.

The GUI has a menu bar having a options such as

configuration, simulation. In configuration option

we can set memory size, cache blocks, no of slots

per cache block, sequential or parallel access,

write back or write through option and the

replacement policy selection. In simulation option

we can perform it step-by-step or instantaneous

and can save report too. Simulator’s GUI shows

four windows memory, cache memory, registers

and simulation report. Memory window shows

memory contents, cache memory window shows

changes in cache memory, processor window

shows contents of registers and flags and program

counter, simulation report window shows step-by-

step simulations showing no. of hits and miss.

After complete simulation it shows result in

terms of hit ratio, miss ratio, access time and

performance gain.

5. Results Calculated

The Proposed algorithm is implemented using

JPACS simulator. Some microprocessor

instructions are compiled and then simulations are

performed. Final results are shown below in a

screen shot.

Namrata Dafre, IJECS Volume 3. Issue 6 June, 2014 Page No.6260-6266 Page 6264

Figure 4 – Screenshot of JPACS simulator

showing results

In above screen fig. 4 the all the four windows

shows that instructions are compiled and

simulation is performed and it shows the step-by-

step changes occurred into memory, cache

memory, and processor and simulation report. The

result shows in terms of no of memory accesses,

total access time, no. of cache memory accesses,

total access time, hit ratio, miss ratio and

performance gain.

Results are shown in the above stated terms are

shown as below:

Results by using existing LRU replacement policy

are shown in below fig. 5,

Figure 5 – Result with LRU replacement results

by using novel cache replacement policy are

shown in below fig.6,

Figure 6 – Result with NCRP policy

6. Conclusion

By observing the results, novel cache replacement

policy minimizes the response time and improves

cache memory hit ratio which leads to improve

system performance. The proposed policy is made

by combining inter-reference recency and

frequency based history information of a block.

Result shows that proposed algorithm performs

better than existing least recently used policy in

some cases in which LRU fails.

References

[1]Hou Fang, zhao Yue-long, Hou fang, ―A

Cache Management Algorithm Based on Page

Miss Cost‖, in proc of International conference

on Information Engineering and computer

science, ICIECS, ISBN: 978-1-4244-4994-1 pp.

1-4, 2009.

[2] Prof.P.K. Biswas, "Lecture Series on Digital

Computer Organization," Internet:

http://nptel.iitm.ac.in, Sep 2009 [Aug 12, 2012].

[3] M. J. Bach, ―Operating System The design of

the UNIX‖, Upper Saddle River, NJ, USA:

Prentice-Hall, Inc., 1986.

[4] A. S. Tanenbaum, A. S.Woodhull,

―Operating Systems Design and

Implementation‖, Upper Saddle River, NJ, USA:

Prentice-Hall, Inc., 1987.

[5] Donghee Lee, et.al.,.―On the existence of a

spectrum of policies that subsumes the least

recently used (LRU) and least frequently used

(LFU) policies‖,SIGMETRICS’99 Proceedings

of the 1999 ACM SIGMETRICS international

conference on Measurement and modeling of

computer systems, pages 134-143, NY, USA,

1999.

[6] E. J. O’Neil, P. E. O’Neil, and G. Weikum.,

―The LRU-K Page Replacement Algorithm for

Database Disk Buffering‖ , ACM Conference on

SIGMOD, pg. no. 297–306, 1993.

Namrata Dafre, IJECS Volume 3. Issue 6 June, 2014 Page No.6260-6266 Page 6265

[7] K. So and R. N. Rechtschaffen, ―Cache

operations by MRU change.‖ IEEE Trans.

Computers, vol. 37, no. 6, pp. 700–709,1988.

[8] L. A. Belady, ―A study of replacement

algorithms for a virtual-storage computer,‖ IBM

Syst. J., vol. 5, no. 2, pp. 78-101, 1966.

[9] Alfred V. Aho, Jeffrey D. Ullman, et.al.,

―Principles of Optimal Page Replacement‖,

Journal of ACM, Vol 18, Issue 1, Pages 80-

93,Jan 1971.

[10] R. Turner and H. Levy, ―Segmented FIFO

Page Replacement‖, In Proceedings of

SIGMETRICS ,1981.

[11] A. Dan and D. Towsley, ―An Approximate

Analysis of the LRU and FIFO Buffer

Replacement Schemes‖, in Proceedings of ACM

SIGMETRICS, Boulder, Colorado, United

States, pp. 143—152,1990.

[12] Y. Smaragdakis, S. Kaplan, and P. Wilson,

―EELRU: simple and effective adaptive page

replacement,‖ in Proceedings of ACM

SIGMETRICS international conference on

Measurement and modeling of computer

systems, New York, USA, pg. no. 122–133, 1999.

[13] T. Johnson and D. Shasha, ― 2Q : A Low

Overhead High Performance Buffer

Management Replacement Algorithm‖ , In

Proceedings of the 20th International

Conference on VLDB, pg. no. 439–450, 1994.

[14] D. Lee, J. Choi, J. Kim, S. Noh, S. Min, Y.

Cho, and C. Kim, ―LRFU: A Spectrum of

Policies that Subsumes the LRU and LFU

Policies‖, IEEE Transactions on Computers, vol.

50, Issue no. 12, pp.1352-1361, Dec. 2001

[15] N. Megiddo and D. S. Modha, ―ARC: A

self-tuning, low overhead replacement cache,‖

in Proceedings of the 2nd USENIX Conference

on File and Storage Technologies (FAST), pg

no. 115–130, Mar 2003.

[16] S. Jiang and X. Zhang, ―LIRS: An efficient

low inter-reference recency set replacement

policy to improve buffer cache performance,‖ in

Proceedings of the ACM SIGMETRICS

Conference on Measurement and Modeling of

Computer Systems, pg. no. 31–42, June 2002.

[17] Seon-yeong Park, et.al., ―CFLRU: A

Replacement Algorithm for Flash Memory‖,

CASES'06, October 23–25, Seoul, Korea ,2006.

[18] LI Zhan-sheng, et.al.,―CRFP: A Novel

Adaptive Replacement Policy Combined the LRU

and LFU‖, IEEE 8th International Conference

on Computer and Information Technology

Workshops, 2008.

[19] Andhi Janapsatya, Aleksandar Ignjatovi´c,

et.al., ―Dueling CLOCK: Adaptive Cache

Replacement Policy Based on The CLOCK

Algorithm‖, 2010.

[20] T. Puzak, et.al, ―Analysis of cache

replacement algorithms,‖ Ph.D. dissertation,

Dep. Elec. Comput. Eng., Univ. Massachusetts,

Feb.1985.

[21] F. Zhou, R. von Behren, and E. Brewer,

―AMP: Program context specific buffer

caching,‖ in Proceedings of the USENIX

Technical Conference, Apr. 2005

[22] C. Gniady, A. R. Butt, and Y. C. Hu,

―Program-counter based pattern classification in

buffer caching‖, in Proceedings of 6th

Symposium on Operating System Design and

Implementation ,pg. no. 395–408, Dec. 2004.

[23] J. M. Kim, J. Choi, J. Kim, S. H. Noh, S.

L.Min, Y. Cho, and C. S. Kim,―A low-overhead,

high-performance unified buffer management

scheme that exploits sequential and looping

references,‖ in 4th Symposium on Operating

System Design and Implementation ,pg. no. 119–

134, Oct. 2000

[24] Jongmoo Choiy, Sam H. Nohz, Sang

LyulMiny, Yookun Cho, ―An Adaptive Block

Management Scheme Using On-Line Detection

of Block Reference Patterns‖, International

Workshop on , pg no. 172 – 179, Dayton, Aug

1998.

Namrata Dafre, IJECS Volume 3. Issue 6 June, 2014 Page No.6260-6266 Page 6266

[25] Yifeng Zhu, Hong Jiang ,―RACE: A Robust

Adaptive Caching Strategy for Buffer Cache‖,

IEEE Transaction on computers, 2007.

[26]Urmila Shrawankar, Reetu Gupta, ―Block

Pattern Based Buffer Cache Management‖, The

8th International Conference on Computer

Science & Education, April 26-28, Colombo,

2013.

[27]Reetu Gupta, Urmila Shrawankar,

―Managing Buffer Cache by Block Access

Pattern‖, IJCSI International Journal of

Computer Science Issues, Vol. 9, Issue 6, No 2,

November 2012.

[28] P. Cao, E. W. Felten, et.al,―Implementation

and performance of integrated application-

controlled file caching, prefetching, and disk

scheduling,‖ ACM Transactions on Computer

Systems, vol. 14, Issue 4, pp. 311–343, 1996.

[29] R. H. Patterson, G. A. Gibson, E. Ginting,

D. Stodolsky, and J. Zelenka, ―Informed

prefetching and caching,‖ in Proceedings of the

fifteenth ACM symposium on Operating systems

principles (SOSP), New York, USA: ACM Press,

1995.

[30]A. Jaleel, C. Jean, S. C. Steely, ―ShiP:

Signature Based Hit Predictor for High

Performance Caching‖, ACM International

symposium on Computer Architectur, pg 430-

431,2011.

[31] Zhiyang Ding,et.al., ―An Automatic

Prefetching and Caching System‖, IEEE, 2010.

[32] Heung Seok Jeon, ―Practical Buffer Cache

Management Scheme based on Simple

Prefetching‖, IEEE Transactions on Consumer

Electronics, Vol. on - 52, Issue No. 3, August

2006.

[33] G. Keramidas, P. Petoumenou, S. kaxiras,

―Cache Replacement Based on Reuse Distance

Prediction‖, Computer Design IEEE

International Conference, Pg no. 245-250, Oct

2007.

[34] G. Keramidas, P. Petoumenou, S. kaxiras, ―

Instruction Based Reuse Distance Prediction for

Efficient Cache Management‖, Pet International

Symposium on System, Architecture, Modeling

and Simulations, pg no. 48-49, July 2009.

