

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN: 2319-7242

Volume 3 Issue 5 may, 2014 Page No. 6228-6233

Sandeep Sharma, IJECS Volume 3 Issue 5, May 2014 Page No. 6228-6233 Page 6228

A STUDY ON SOFTWARE RELIABILITY, RELIABILITY TESTING

AND GOMPERTZ MODEL
Sandeep Sharma

M.Tech(CSE) Student

Arni University, Indora Kangra, India

Sanintel123@gmail.com

ABSTRACT

Reliability is defined as the ability of a system or component to perform its required functions under

stated conditions for a specified period of time.There are various parameters which improves the

reliability of the software.It is necessary to maintain the reliability of the software to keep track of correct

information about any company the details of the information includes resource, money, employees,

transaction details and many more, Now a days demand on complex systems has increased more rapidly.

The size and complexity of computer systems has grown during the past decades in a very impressive

manner.Due to the increase in size and complexity of the systems it become difficult to maintain the

reliability of the system.Software reliability is closely related to safety engineering and system safety, in

that they use common methods for their analysis and may require input from each other. Software

reliability focuses on costs of failure caused by various threats, software failure and many more.Various

approaches can be used to improve the reliability of the software, however, it is hard to balance

development time and budget with software reliability. But the best approach to assure software reliability

is to develop a high quality software through all of the stages of software life cycle.

KEYWORDS

Software reliability, Reliability testing, Gompertz Model,

1.INTRODUCTION

Software is Non-Tangible as it cannot be seen and

touched, but it is very necessary for the successful

use of computers. It is necessary that the

reliability of software should be measured and

evaluated, as it is in hardware[2]. IEEE 982.1-

1988 defines Software Reliability Management as

“The process of optimizing the reliability of

software through a program that emphasizes

software error prevention, fault detection and

removal, and the use of measurements to

maximize reliability in light of project constraints

such as resources, schedule and performance[1].

One of the purposes of software engineering is to

produce reliable software. Software plays a

critical role not only in scientific and business

applications, but also in all our daily life.

Although several works have been done towards

the production of fault-free software, developing

reliable software is one of the most difficult

problems facing software industry nowadays.

Developing reliable software can be costly and

time consuming process. Yet more, the fact that

software project managers require accurate

information about how software reliability grows

in order to effectively manage their budgets and

projects[1].

There has been extensive work in measuring

reliability using mean time between failure and

mean time to failure. Successful modeling has

been done to predict error rates and reliability

These activities address the first and third aspects

of reliability, identifying and removing faults so

Sandeep Sharma, IJECS Volume 3 Issue 5, May 2014 Page No. 6228-6233 Page 6229

that the software works as expected with the

specified reliability. These measurements have

been successfully applied to software as well as

hardware. But in this paper, we would like to take

a different approach to software reliability, one

that addresses the second aspect of reliability,

error prevention.

 2. ERRORS FAULTS AND FAILURES

The terms errors, faults and failures are often used

interchangeable[3], but do have different

meanings. In software, an error is usually a

programmer action or omission that results in a

fault. A fault is a software defect that causes a

failure, and a failure is the unacceptable departure

of a program operation from program

requirements. When measuring reliability, we are

usually measuring only defects found and defects

fixed. If the objective is to fully measure

reliability we need to address prevention as well

as investigate the development starting in the

requirements phase what the programs are

developed to.

It is important to recognize that there is a

difference between hardware failure rate and

software failure rate.When the component is first

manufactured, the initial number of faults is high

but then decreases as the faulty components are

identified and removed or the components

stabilize. The component then enters the useful

life phase, where few, if any faults are found. As

the component physically wears out, the fault rate

starts to increase. The following figure graphically

shows the increase in failure rate due to side effect

Figure 1

Software however, has a different fault or error

identification rate. For software, the error rate is at

the highest level at integration and test. As it is

tested, errors are identified and removed. This

removal continues at a slower rate during its

operational use the number of errors continually

decreasing, assuming no new errors are

introduced. Software does not have moving parts

and does not physically wear out as hardware, but

is does outlive its usefulness and becomes

obsolete.

3. RELIABILITY TESTING

The purpose of reliability testing is to discover

potential problems with the design as early as

possible and, ultimately, provide confidence that

the system meets its reliability

requirements.Reliability testing may be performed

at several levels and there are different types of

testing[2,3].Complex systems may be tested at

component, circuit board, unit, assembly,

subsystem and system levels. For example,

performing environmental stress screening tests at

lower levels, such as piece parts or small

assemblies, catches problems before they cause

failures at higher levels. Testing proceeds during

each level of integration through full-up system

testing, developmental testing, and operational

testing, thereby reducing program risk. However,

testing does not mitigate unreliability risk.

It is not always feasible to test all system

requirements. Some systems are prohibitively

expensive to test; some failure modes may take

years to observe; some complex interactions result

in a huge number of possible test cases; and some

tests require the use of limited test ranges or other

resources. In such cases, different approaches to

testing can be used, such as accelerated life

testing, design of experiments, and simulations.

The desired level of statistical confidence also

plays an role in reliability testing. Statistical

confidence is increased by increasing either the

test time or the number of items tested. Reliability

test plans are designed to achieve the specified

reliability at the specified confidence level with

the minimum number of test units and test

time[5]. Different test plans result in different

levels of risk to the producer and consumer. The

desired reliability, statistical confidence, and risk

levels for each side influence the ultimate test

plan. The customer and developer should agree in

advance on how reliability requirements will be

tested.

http://en.wikipedia.org/wiki/Failure_mode
http://en.wikipedia.org/wiki/Design_of_experiments
http://en.wikipedia.org/wiki/Simulation

Sandeep Sharma, IJECS Volume 3 Issue 5, May 2014 Page No. 6228-6233 Page 6230

A key aspect of reliability testing is to define

"failure". Although this may seem obvious, there

are many situations where it is not clear whether a

failure is really the fault of the system. Variations

in test conditions, operator differences, weather

and unexpected situations create differences

between the customer and the system developer.

One strategy to address this issue is to use

a scoring conference process. A scoring

conference includes representatives from the

customer, the developer, the test organization, the

reliability organization, and sometimes

independent observers. The scoring conference

process is defined in the statement of work. Each

test case is considered by the group and "scored"

as a success or failure. This scoring is the official

result used by the reliability engineer.

As part of the requirements phase, the reliability

engineer develops a test strategy with the

customer. The test strategy makes trade-offs

between the needs of the reliability organization,

which wants as much data as possible, and

constraints such as cost, schedule and available

resources. Test plans and procedures are

developed for each reliability test, and results are

documented.

4. IMPORTANCE OF RELIABILITY

TESTING

The application of computer software has crossed

into many different fields, with software being an

essential part of industrial, commercial and

military systems. Because of its many applications

in safety critical systems, software reliability is

now an important research area.

Although software engineering is becoming the

fastest developing technology of the last century,

there is no complete, scientific, quantitative

measure to assess them. Software reliability

testing is being used as a tool to help assess these

software engineering technologies.

To improve the performance of software product

and software development process, a thorough

assessment of reliability is required. Testing

software reliability is important because it is of

great use for software managers and practitioners.

5. TYPES OF RELIABILITY TESTING

Software reliability testing includes feature

testing, load testing, and regression testing,

reliability growth test and Reliability evaluation

based on operational test [4].

I. .Feature test

Feature testing checks the features

provided by the software and is conducted

in the following steps:

Each operation in the software is executed

once. Interaction between the two

operations is reduced and Each operation

is checked for its proper execution.The

feature test is followed by the load test.

II. Load test

This test is conducted to check the

performance of the software under

maximum work load. Any software

performs better up to some amount of

workload, after which the response time of

the software starts degrading. For example,

a web site can be tested to see how many

simultaneous users it can support without

performance degradation.This testing

mainly helps

for Databases and Application

servers.Load testing also requires software

performance testing, which checks how

well some software performs under

workload.

III. Regression test

Regression testing is used to check if any

new bugs have been introduced through

previous bug fixes. Regression testing is

conducted after every change or update in

the software features. This testing is

periodic, depending on the length and

features of the software.

IV. Reliability growth test

This testing is used to check new

prototypes of the software which are

initially supposed to fail frequently. The

causes of failure are detected and actions

are taken to reduce defects. Suppose T is

total accumulated time for prototype. n(T)

is number of failure from start to time T.

The graph drawn for n(T)/T is a straight

line. This graph is called Duane Plot. One

can get how much reliability can be gained

after all other cycles of test and fix it.

http://en.wikipedia.org/wiki/Regression_testing
http://en.wikipedia.org/wiki/Databases
http://en.wikipedia.org/wiki/Application_servers
http://en.wikipedia.org/wiki/Application_servers
http://en.wikipedia.org/wiki/Software_performance_testing
http://en.wikipedia.org/wiki/Software_performance_testing

Sandeep Sharma, IJECS Volume 3 Issue 5, May 2014 Page No. 6228-6233 Page 6231

solving eq.1 for n(T),

where K is e
b
. If the value of alpha in the equation

is zero the reliability can not be improved as

expected for given number of failure. For alpha

greater than zero, cumulative time T increases.

This explains that number of the failures doesn't

depends on test lengths.

Designing test cases for current release

If we are adding new features to the current

version of software, then writing a test case for

that operation is done differently.

 First plan how many new test cases are to be

written for current version.

 If the new feature is part of any existing

feature, then share the test cases of new and

existing features among them.

 Finally combine all test cases from current

version and previous one and record all the

results.

There is a predefined rule to calculate count of

new test cases for the software. if N is the

probability of occurrence of new operations for

new release of the software, R is the probability of

occurrence of used operations in the current

release and T is the number of all previously used

test cases then

V. Reliability evaluation based on

operational test

The method of operational testing is used

to test the reliability of software. Here one

checks how the software works in its

relevant operational environment. The

main problem with this type of evaluation

is constructing such an operational

environment. Such type of simulation is

observed in some industries like nuclear

industries, in aircraft etc. Predicting future

reliability is a part of reliability evaluation.

6. GOMPERTZ MODEL

The gompertz model includes Standard Gompertz

Model and Modified Gompertz model :

i. The Standard Gompertz Model

The standard Gompertz reliability growth

model is often used when analyzing

success/failure data and reliability data

obtained in developmental reliability

growth programs. The standard Gompertz

model is most applicable when the

reliability data follow a concave shape, as

shown in the figure.

Figure 2

The standard Gompertz model is mathematically

given by the following 3-parameter equation:

where:

 T: time, launch number or stage number, T > 0

 R: the system's reliability at T.

 a: the upper limit that the reliability

approaches asymptotically as T ∞, or the

maximum reliability that can be attained.

 ab: initial reliability at T = 0.

Sandeep Sharma, IJECS Volume 3 Issue 5, May 2014 Page No. 6228-6233 Page 6232

 c: the growth pattern indicator (small values

of c indicate rapid early reliability growth

and large values of c indicate slow reliability

growth).

The estimated parameters in RGA are unitless.

The solution for the parameters, given Ti and Ri, is

accomplished by fitting the best possible line

through the data points. Many methods are

available, all of which tend to be numerically

intensive. For more details about the parameter

estimation method used in RGA.

ii. The Modified Gompertz Model

Sometimes reliability growth data with an

S-shaped trend, such as the one shown in

the next figure, cannot be described

accurately by the standard Gompertz or

logistic curves. Since these two models

have fixed values of reliability at the

inflection points, only a few reliability

growth data sets following an S-shaped

reliability growth curve can be fitted to

them. A modification of the standard

Gompertz curve overcomes this

shortcoming by considering a shift in the

vertical coordinate:

where:

 T: time, launch number or stage number, T >

0.

 R: system's reliability at T.

 d: shift parameter.

 d + a: upper limit that the reliability

approaches asymptotically as T ∞.

 d + ab: initial reliability at T = 0.

 c: growth pattern indicator (small values

of c indicate rapid early reliability growth

and large values of c indicate slow growth.

The Reliability vs. Time plot for this model looks

like the figure shown next.

Figure 3

The parameters of the modified Gompertz model

can be estimated using linear regression and

confidence bounds can also be estimated; for more

details about how to estimate confidence bounds.

Many scenarios can be modeled with the S-shape

behavior of the modified Gompertz. The S-shape

behavior essentially distinguishes between

multiple "phases" in the product reliability growth

program. In the beginning of testing, scarcity in

discovering problems and delays in identifying

fixes can cause the improvement in reliability to

be small. During the second phase, fixes become

available and, with any additional discovered

failures and implemented fixes, significant

improvements are observed and the reliability

grows at a fast pace. In the third phase, fewer and

fewer failure modes are uncovered, as most of the

failure modes have already been discovered. In

addition, the reliability growth program might

start running into limitations of technology and

design that slow down the reliability growth.

7. CONCLUSION

This study includes Software reliability, reliability

testing and Gompertz model. The increase in

number of software faults and failures affect the

performance of various services provided by the

software Therefore software reliability has

become more & more important. Reliability is the

capability of software to maintain a determined

level of performance within the time period. To

improve the performance of software product and

software development process, a thorough

assessment of reliability is required. Gompertz

reliability growth model is often used when

analyzing success/failure data and reliability data

Sandeep Sharma, IJECS Volume 3 Issue 5, May 2014 Page No. 6228-6233 Page 6233

obtained in developmental reliability growth

programs. We do focus on the various parameters

which affects the performance of the software

with the help of certain mathematical calculations

we can determine the failure and the fault

occurred with time. Identify those components

which are not working properly apply various

testing on it, update the software properly with

time improves the software performance.

REFERENCES

1. A. Yadav & R. A. Khan “Critical Review on

Software Reliability Models” International

Journal of Recent Trends in Engineering, Vol

2, No. 3, November 2009.

2. Dr. Linda Rosenberg ,Ted Hammer, Jack

Shaw “SOFTWARE METRICS AND

RELIABILITY”.

3. Chiu, Kuei-Chen “A discussion of software

reliability growth models with time-varying

learning effects “American Journal of

Software Engineering and Applications July

20, 2013.

4. Zainab Al-Rahamneh, Mohammad Reyalat,

Alaa F. Sheta, Sulieman Bani-Ahmad, Saleh

Al-Oqeili “A New Software Reliability

Growth Model: Genetic-Programming-Based

Approach” Journal of Software Engineering

and Applications, 2011, 4, 476-48.

5. Latha Shanmugam, Dr. Lilly Florence” An

Overview of Software Reliability Models”

International Journal of Advanced Research in

Computer Science and Software Engineering

Sandeep Sharma did diploma in

computer science engineering from Govt.

polytechnic college kangra H.P(India) in

December 2007.After diploma he joined B.tech in

computer science engineering in Lovely

Professional University (LPU) jalandhar

Punjab(India) and got Degree in 2011.After

B.tech he joined M.tech in computer science

engineering in Arni university Indora H.P(India)

and he is a M.tech(computer science engineering)

research scholar at Arni university Indora

H.P(India).

