

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 4 April, 2013 Page No. 972 -975

Mrs.C.Sathya, IJECS Volume 2 Issue 4 April, 2013 Page No. 972-975 Page 972

An Adaptive Architecture for Autonomic Orchestration of Web Services
Mrs.C.Sathya, Mrs.T.Hemalatha

Lecturer, Department of CSE

PSNA College of Engineering and Technology Dindigul, India
sathi.saras@gmail.com

Asso. Prof , Department of CSE
PSNA College of Engineering and Technology Dindigul, India

hemashek@yahoo.com

Abstract
Web service is an emerging paradigm in which loosely coupled software components are published, located and invoked on the web as a part of
distributed applications. The advantage of employing web service composition is to create and consume a value added service by composing
simple and complex software components which are deployed at different locations in an autonomic manner. The centralized web service
composition approaches suffer from performance bottleneck and a single point failure. The web services are also distributed across
geographical boundaries and they may be constantly removed or upgraded. The solution for the above problem is dynamic composition of web
services. The proposed framework can handle any kind of users irrespective of their role in order to utilize the proposed architecture either as a
provider or as a consumer. The proposed system performs autonomic composition of web services on-the-fly in order to perform dynamic
composition of the services related to each other.

General Terms
Web services, SOAP, XML, UDDI

Keywords
Autonomic Composition, Centralized Service composition,
Dynamic Service Composition, Service Invocation.

1. INTRODUCTION
Web service is a method of communication between two
electronic devices over the World Wide Web. The W3C defines a
"Web service" as "a software system designed to support
interoperable machine-to-machine interaction over a network”.
Web Services are self-contained, modular, distributed, dynamic
applications that can be described, published, located, or invoked
over the network to create products, processes, and supply chains.
These applications can be local, distributed, or Web-based. Web
services are built on top of open standards such as TCP/IP, HTTP,
Java, HTML, and XML. It has an interface described in a
machine-process able format (specifically WSDL-Web Service
Description Language). Other systems interact with the Web
service in a manner prescribed by its description using SOAP(
Simple Object Access Protocol) messages, typically conveyed
using HTTP with an XML serialization in conjunction with other
Web-related standards. Web services are elements of distributed
applications. The applications use the services by composing or
putting them together. Architecture for service-based applications
has three main parts:

• Service provider

• Service requestor
• Service registry

Providers publish or announce their services on registries, where
the requestors find them and invoke them.

Fig 1: Web Service Architecture

The service providers will register their services in service registry.
Service requestor finds required services in registry using a service
broker and service requestors bind to them.

2. WEB SERVICE STANDARDS
2.1 XML (eXtensible Markup Language)

 XML is a markup language that defines a set of rules for
encoding documents in a format that is both human-readable and

Service
requestor

Service
provider

Service
registry

Bind(3)
Xml

Publish(1) Find(2)

Web
service

Service
description

http://www.ijecs.in/�
mailto:sathi.saras@gmail.com�
mailto:hemashek@yahoo.com�
http://en.wikipedia.org/wiki/Markup_language�
http://en.wikipedia.org/wiki/File_format�
http://en.wikipedia.org/wiki/Human-readable_medium�

Mrs.C.Sathya, IJECS Volume 2 Issue 4 April, 2013 Page No. 972-975 Page 973

machine-readable. The design goals of XML emphasize
simplicity, generality, and usability over the Internet.

2.2 SOAP
SOAP is a simple, lightweight XML-based protocol for
exchanging structured and type information on the web. The
overall design goal of SOAP is to provide a minimum of
functionality. The protocol defines a messaging framework that
contains no application or transport semantics. It uses
HTTP/FTP/SMTP as a transport protocol. As a result, the
protocol is modular and very extensible. SOAP message structure
consists of three parts, envelope, header and body.

Fig 2: SOAP Structure

2.2.1 SOAP-Envelope
The SOAP Envelope element is the root element of a SOAP
message. This element defines the XML document as a SOAP
message. A SOAP protocol message contains an envelope which
contains a header and a body.
2.2.2 SOAP header
 SOAP header is optional, and contains information that
might be subject to processing by intermediate SOAP nodes.
When designing applications that use SOAP, information that
might be useful to intermediaries should be placed in the header.
2.2.3 SOAP body
 The SOAP body is mandatory, and contains the payload
of the message, which is intended for the final SOAP
receiver, and is not intended for processing by intermediate
nodes.
2.3 UDDI
Universal Description, Discovery and Integration is a platform-
independent, XML based registry by which businesses can list
themselves on the Internet, and a mechanism to register and
locate web service application. UDDI has led to automated
discovery and the resulting execution of e-commerce transactions
would result in an exceedingly liquid and frictionless environment
for business.

2.4 WSDL
The Web Services Description Language is an XML-based
interface description language which is used for describing the
functionality offered by a web service. A WSDL description of a
web service (also referred to as a WSDL file) provides a machine-
readable description of how the service can be called, what
parameters it expects, and what data structures it returns. It thus
serves a roughly similar purpose as a method signature in a
programming language. WSDL describes services as collections
of network endpoints, or ports. The WSDL specification provides
an XML format for documents for this purpose. WSDL is often

used in combination with SOAP and an XML Schema to provide
Web services over the Internet.
3. RELATED WORK
Place Agent based autonomic service composition was described
by Hongxia Tong et al [1] in which a distributed algorithm for web
service composition (DPAWSC) is presented. DPAWSC is based
on the distributed decision making of autonomous service agents
and addresses the distributed nature of web service composition.
Since it involves multiple agents, it is difficult to achieve
coordination. One more drawback is prior knowledge about the
service is needed. Dynamic Invocation of web services proposed
by Tere G.M et al [2] explains a framework for client to
dynamically invoke web services. This framework can increase the
use and reliability of web services invocation in a dynamic,
heterogeneous environment. But service registry accepts service
information passively and it contains too much classifications and
information. Ontology bootstrapping process for web services is
described by Aviv Segev et. al. [3]. Ontological bootstrapping aims
at automatically generating concepts and their relations in the
given domain and is a promising technique for ontology
construction. The WSDL descriptor is evaluated using two
methods, namely Term Frequency/Inverse Document Frequency
(TF/IDF) and web context generation. The result of two methods is
integrated and evaluated using third method called concept
evocation. The drawback here is designing and maintaining
ontologies. Christof Ebert et al [4] explains guidelines for
orchestrating web services with BPEL. The business process
execution language supports modeling and executing business
processes from both the user and system perspectives. Web service
application developers can use BPEL to orchestrate service
interactions in a global system view to manage individual
interactions based on outside events. But proficient use of any
BPEL framework requires knowledge of underlying technologies.
After programmers write a BPEL program they must package it
and deploy it in the selected container. The steps differ among
products and require considerable effort to get right the first time.
Philipp Leitner et al [5] presents a message based service
framework that supports implementation of SOAs, enabling
dynamic invocation of web services. This framework enables the
application developers to create service clients which are not
coupled to any service provider. The disadvantage here is clients
have to find a service that they want to invoke. Abdaladhem
Albreshne et al [6] explain different technologies used for web
service orchestration and composition. Frances M.T. Brazier et al
[7] provides information regarding agents and service oriented
computing for autonomic computing. Autonomic computing
systems are expected to free system administrators to focus on
higher-level goals.

4. PROBLEM FORMULATION
4.1 Requirements of service composition
The Service composition mechanisms are being employed to
deliver support to complex user tasks within service-oriented
environments. The mechanism of combining two or more services
together to form a complex service is known as service
composition. Service composition mechanisms are classically
treated as extensions to service discovery techniques. Typically, a
service composition system accepts a complex user task as an input
and attempts to meet the needs of the task at hand by appropriately
matching the task requirements with the available services.

Web service composition lets developers create
application on top of service-oriented computing native
description, discovery and communication capabilities. Such
applications are rapidly deployable and
offer developers with reuse possibilities and users can seamlessly
access to a variety of simple and complex services. Composition of

SOAP-Envelope

SOAP- Header

SOAP- Body

http://en.wikipedia.org/wiki/Machine-readable_data�
http://en.wikipedia.org/wiki/Internet�
http://en.wikipedia.org/wiki/Platform-independent�
http://en.wikipedia.org/wiki/Platform-independent�
http://en.wikipedia.org/wiki/Internet�
http://en.wikipedia.org/wiki/Web_service�
http://en.wikipedia.org/wiki/XML�
http://en.wikipedia.org/wiki/Interface_description_language�
http://en.wikipedia.org/wiki/Web_service�
http://en.wikipedia.org/wiki/Method_signature�
http://en.wikipedia.org/wiki/XML�
http://en.wikipedia.org/wiki/File_format�
http://en.wikipedia.org/wiki/SOAP_(protocol)�
http://en.wikipedia.org/wiki/XML_Schema_(W3C)�
http://en.wikipedia.org/wiki/Internet�

Mrs.C.Sathya, IJECS Volume 2 Issue 4 April, 2013 Page No. 972-975 Page 974

Web services has received much interest to support business-to-
business or enterprise application integration.
4.2 Service Invocation
To invoke a service we need following information,

• Service Address- Where to contact the service. For
example, the endpoint of a web service.

• Service Contract-What you are supposed to send to the
server and what. If anything, it is supposed to sent to
you.

• Service Semantics- What the service actually does.
Web service invocation modes specify how the clients

consume web services.
Typically the clients consume the web services in any one of the
two ways.
4.2.1 Static Invocation:
Static Invocation uses pre-generated stub. This stub corresponds
to a WSDL specification agreed in advance. The client need not
parse the WSDL file when the method is invoked, but it suffers
from tight coupling and versioning problems.

4.2.2 Dynamic Invocation:
Dynamic invocation generates the stub at the time of the method
invocation. This stub is generated by parsing the WSDL

document that describes the web service. Client does not need
proxy stub and the changes to WSDL file will not affect the web
service invocation but it is complex and slow compared to static
invocation.

4.3 Challenges in Service Composition
There are two methods of web service composition. They are,
Centralized composition and Autonomic composition
4.3.1 Centralized service Composition
In centralized composition there is a centralized administrator who
has a control over all other web services and this controller is
responsible for invoking the services. It has its own advantages
such as efficient monitoring, fault handing, easy maintenance, and
less complexity. But it suffers from
performance bottleneck, Single Point failure and lack of trust.
4.3.2 Autonomic Composition
Here everything is decentralized. The service composition will be
done at runtime based on user requirements in an autonomic
manner.
Advantages Highly scalable

•

5. PROPOSED SYSTEM
5.1 Objective
The objective of our proposed system is to design an autonomic
model for dynamic invocation and dynamic composition of web
services. Autonomic computing is the solution proposed to cope
with the complexity of today’s computing environments.
Autonomic computing systems are expected to free system
administrators to focus on higher-level goals. Self-management is
an important element of autonomic computing. It can perform
following functions without human intervention. They are,
Self-configuration- configuring themselves automatically when
computing resources are added or removed.
Self-healing- discovering when, where and why they are ailing and
performing the appropriate self-repair and fault-correction
operation
Self-optimization- monitoring and controlling resources to ensure
optimal functioning with respect to defined requirements, as well
as optimizing performance and efficiency by retuning and
reconfiguring themselves.
Self-protection- proactively identifying and protecting themselves
from arbitrary or malicious attacks or cascading failures.
Among all the functions of autonomic computing, we are focusing
on self-configuration in our proposed system.

5.2 System Design
The proposed unified architecture provides a federated
environment between the service provider and service consumer.
In such procedure, the provider’s web method is hosted in the
container of federated environment and its corresponding
information in the WSDL contracts are stored in both public and
private UDDI registry for further use.
5.2.1 System Description
The client requests for a service in the portal. The portal gets the
service requirements from the user that will be forwarded to the
requirement block. This block in turn, searches for the method in
WSDL contracts stored in public UDDI registry and returns the
service name to the block. Then this block requests for WSDL
contract for the respective service from UDDI registry. The UDDI

Figure 3: System design

registry sends all the WSDL contracts that contain the specific
method. Then all the contracts are placed in a registry called
WSDL contract registry. All the information will be passed to the
orchestrator which is responsible for dynamic invocation of web
services. If the web service is not found then the tracker will
display the error message.

5.2.2 Module Description
The modules in proposed system are,

1. user interface
2. global Registry
3. contract requestor
4. Orchestrator

Service
Requesto

Portal
request
handler

Service
Requireme

WSDL Contract
Requestor

UDDI
registry

Local
UDDI
registr

Orchestrator

Tracker

Web

Mrs.C.Sathya, IJECS Volume 2 Issue 4 April, 2013 Page No. 972-975 Page 975

5. Tracker
6. Web services

5.2.2.1 User Interface
This module processes the requirements of the user and interacts
with the federated environment to invoke the web services in an
autonomic manner.
5.2.2.2 Global registry
The global UDDI registry stores the WSDL contracts of all the
services
5.2.2.3 Contract Requestor
Contract requestor module request for WSDL contracts from the
UDDI registry.
5.2.2.4 Orchestrator
Orchestrator does the work of service composition and determines
the Order in which services will be invoked.
5.2.2.5 Tracker
When there is any problem in invocation of services or if the
service is not found then tracker helps in indicating the situation to
the orchestrator
5.2.2.6 Web Services
This module is collection of web services designed for the
federated environment. List of web services designed for our
framework are,

1. Civil Supply Web Service
2. RTO Web Service
3. Passport web service
4. Institutional web service
5. Survey web service
6. Police web service
7. Voters web service

5.3 Experiment/Implementation
The proposed unified architecture is implemented in java. Apache
Axis framework is used in order to handle the SOAP-HTTP
request and response messages which is in XML constructs.
For experimentation the following web service are being under
development for testing the autonomic orchestration of simple web
services in order to implement e-governance using complex
scenario. When any client(Service Requestor) places the request in
the web portal, it is forwarded to the service requirement module.
The request submitted by the client is analyzed and is searches the
service descriptions that matches both the public registry and in
private registry. On fetching the contracts by WSDL contract
requestor it is stored in an ordered form in the local registry of the
federated environment. Orchestrator does the invocation of
independent web services provided by the different providers as
per an order. On invoking the web methods, the remote web
methods proxy is generated and it executes the service method and
returns the response in the form of SOAP messages. The response
is stored and forwarded by the tracker for the invocation of
subsequent web services, there by orchestrating the simple web
service to complex web service composition.

6. CONCLUSION
Web services technologies are becoming a de facto standard to
integrate distributed applications and systems using XML-based
standards. When a single service cannot satisfy the user needs then
many services will be combined to provide a service. The biggest
challenge in dynamic orchestration and dynamic invocation is that
all the clients cannot have sufficient knowledge about interface
description and invocation semantic of web methods. Our proposed
architecture aids in creation of highly decentralized, coordinated

and federated environment in which any type of clients can
consume any services which is registered in our federated system
without having any sufficient knowledge about the service
description, service interface detail and corresponding details about
web method. These can suite variety of e-governance scenarios.
The proposed system will be tested for various applications under
e-governance scenarios which will be highly significant for
satisfying the future demands.

5. REFERENCE
[1] Hongxia Tong, Jian Cao, Shensheng Zhang, and Minglu Li,

“A Distributed Algorithm for Web Service Composition
Based on Service Agent Model”, IEEE Transactions on
parallel and Distributed Systems”, vol.22,No.12, December
2011

[2] Tere G.M, Jadhav B.T and Mudholkar R.R, “Dynamic
Invocation of Web Services”, Advances in Computational
Research, ISSN:0975-3273 and E-ISSN:0975-9085, volume
4, Issue 1,2012,pp78-82

[3] Aviv Segev,Quan Z.Sheng, “Bootstrapping Ontologies for
web services”, IEEE transactions on services computing,
vol.5. no.1, January-March 2012

[4] Christof Ebert, “Orchestrating Web Services with BPEL”,
March/April 2008, IEEE Software

[5] Philipp Leither, Florian Rosenberg and Schahram Dustdar,
“DAIOS- Efficient Dynamic Web Service Invocation”,
Distributed Systems Group, Technical University of Vienna,
2007

[6] Abdaladhem Albreshne, Patrik Furer, Jacques Pasquier, “Web
Services Orchestration and composition”, September 2009

[7] Frances M.T. Brazier, Jeffrey O.Kephart, H.Van Dyke
Parunak and Michael N.Huhns, “Agents and Service-Oriented
Computing for Autonomic Computing”, IEEE Internet
Computing 2009.

[8] Brahim, Medjahed, Rezgui, Athman, Mourad, “Infrastructure
for E-Government web Services”,IEEE Internet Computing
2003

[9] Swaroop Kalasapur, Behrooz A. Shirazi, “Dynamic Service
Composition in Pervasive Computing”, IEEE Transactions on
Parallel and Distributed Systems, vol. 18, No. 7, July
2007

	INTRODUCTION
	WEB SERVICE STANDARDS
	XML (eXtensible Markup Language)
	SOAP
	UDDI
	WSDL

	RELATED WORK
	PROBLEM FORMULATION
	Requirements of service composition
	Service Invocation
	Static Invocation:
	Dynamic Invocation:
	Dynamic invocation generates the stub at the time of the method invocation. This stub is generated by parsing the WSDL document that describes the web service. Client does not need proxy stub and the changes to WSDL file will not affect the web servic...

	Challenges in Service Composition
	Centralized service Composition
	Autonomic Composition

	PROPOSED SYSTEM
	Objective
	The objective of our proposed system is to design an autonomic model for dynamic invocation and dynamic composition of web services. Autonomic computing is the solution proposed to cope with the complexity of today’s computing environments. Autonomic ...
	Self-configuration- configuring themselves automatically when computing resources are added or removed.
	Self-healing- discovering when, where and why they are ailing and performing the appropriate self-repair and fault-correction operation
	Self-optimization- monitoring and controlling resources to ensure optimal functioning with respect to defined requirements, as well as optimizing performance and efficiency by retuning and reconfiguring themselves.
	Self-protection- proactively identifying and protecting themselves from arbitrary or malicious attacks or cascading failures.
	Among all the functions of autonomic computing, we are focusing on self-configuration in our proposed system.

	System Design
	System Description
	Module Description
	User Interface
	Global registry
	Contract Requestor
	Orchestrator
	Tracker
	Web Services

	Experiment/Implementation

	CONCLUSION
	5. REFERENCE

