

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 3 Issue 1 Jan, 2014 Page No. 3736-3742

 A.Bhuvaneshwari, IJECS Volume 3. Issue 1 Jan, 2014 Page No.3736-3742 Page 3736

Assessment of Service Composition Plan using Colored Petri Nets
Dr.A.Bhuvaneswari

1
, S.Uma

2
, S.Sakthitharan

3
, G.Srinivasan

4

1 Professor, CSE Department, Adhiparasakthi Engineering College, Melmaruvathur, India

bhuvan@adhiparasakthi.in
2Assistant Professor, CSE Department, Adhiparasakthi Engineering College, Melmaruvathur, India

hiumas.sm@gmail.com
3Assistant Professor, CSE Department, Adhiparasakthi Engineering College, Melmaruvathur, India

tharansakthi@adhiparasakthi.in
4Assistant Professor, CSE Department, Adhiparasakthi Engineering College, Melmaruvathur, India

nandha987@gmail.com

Abstract: Semantic web service composition constructs the OWL-S composite process automatically based on AI planning techniques. The

need for verification of the service composition plan is essential as it is error prone. Colored Petri Nets had been proposed for verification due to

its graphical, contains formal semantics and allows various analyses. The verification is done by constructing a CPN for an online book

purchasing scenario using CPN tools and analyzing it through simulation. “CPN Tools” is the tool used to simulate the entire process flow and
provide the statistics about liveliness, fairness and boundedness properties. An online book purchase has been considered as a case study.

Keywords: Semantic Web Service Composition, Verification, Colored Petri Nets, Reachability, Semantic Reliability

1. Introduction

With the success of web services in internet and intranet, web

service composition has turned out to be a widely accepted

approach to construct the business processes. To attain the goal

of a business process a combination of related web services is

required. The automation of web service composition is a

challenge mostly addressed by the planning domain of

Artificial Intelligence [1] and further supported by the

development of semantic web services [2]. AI planning

automatically generates a composition plan to provide the

order in which the related web services should be executed.

Semantic web services augment semantics to the existing web

service description and support automation of web service

discovery and composition.

 The generated composition plans are error prone as they

possess characteristics like concurrency, correlation, and may

contain deadlock. Hence the verification of the correctness of

their behavior is essential and carried out with various

techniques [3], [4]. Among those techniques

petri nets [5], [6] have gained popularity due to their graphical

and formal representation.

 A Petri net is a bipartite directed graph with two types of

node namely places and transitions, a set of arcs that connect

places with transitions or transitions with places and tokens

located in places that represent the current state of the net. The

behavior of web service composition is an ordered set of

operations which can be mapped into petri nets. The mapping

is done by representing web service operations with transitions

and the state of service operations with places.

 The composition plan is expected to be semantically reliable

i.e. the type of the tokens within a place and also the tokens

transferred between two transitions should be functionally

compatible. Such verification is not possible using petri nets as

it lacks in specifying the type of the token. Hence the Colored

Petri Nets [7], a variation of Petri nets that combines the

qualities of petri nets and a high level programming language

can be employed to solve the problem. The qualities of petri

nets provide the primitives for the description of the

synchronization of concurrent processes, while that of

programming languages provide the primitives for the

definition of types for tokens.

 Colored Petri Net (CP-nets or CPN) is a graphic oriented

language with well-defined mathematical foundation for

design, specification, simulation and verification of systems.

CP-nets have two forms of representation namely (i) Algebraic

Colored Petri nets and (ii) Graphical Colored Petri nets.

Algebraic CP-nets represent net structure in an algebraic form

and the dynamic behavior as algebraic equations. The structure

of the net is represented in a matrix. The state of a CP-net is

represented using a state equation. The solution of this state

equation helps in analyzing the properties of the net. Hence the

CP-net in algebraic form may be verified using reachability

analysis based on the state equation.

 Graphical CP-nets represent the net structure as a graph and

have four major elements: places, transitions, arcs and tokens.

The places describe the states of the system, the transitions

describe the actions and arc expressions describe how the state

of the CP-net changes when the transitions occur. Each place

contains a set of markers called tokens. Each token is

associated with a color to indicate its identity. As in petri nets

the tokens are moved from one place to another on firing a

A.Bhuvaneshwari, IJECS Volume 3. Issue 1 Jan, 2014 Page No.3736-3742 Page 3737

transition. The major difference is in the color of the involved

tokens which specify the functional dependency between the

places. Often the color associated with the tokens represents a

type of the data-value. The analysis of a CP-net in graphical

form may be done by simulation with the aid of available tools.

CPN Tools[8] is preferred for its flexible user interface,

improved interaction techniques and graphical feedback that

informs about the status and simulations.

 This paper deals with the usage of Colored Petri Nets to

verify the semantic web service composition plan represented

by OWL-S. The verification is carried out by employing

reachability analysis of an algebraic CP-net and simulation

using CPN Tools. As QoS of a generated plan had been

investigated in a different dimension in the previous works [9],

[10] only the semantic reliability of the plan is considered in

this paper.

 The next section provides the literature related to the

verification of the composition plan, Section 3 provides a

detailed description of Colored Petri Nets and CPN Tools,

Section 4 explains the relationship between OWL-S and CPN,

Section 5 presents the motivating scenario that reveals the need

for Colored Petri Nets, Section 6 provides the construction of

CPN for the case study, Section 7 provides the mathematical

analysis of CP-nets and Section 8 provides the simulation and

state-space analysis of CP-nets using CPN Tools and Section 9

provides the conclusion of the paper.

2. Related work

This section discusses the various verification techniques and

tools that could be applied for verifying web service

composition. SPIN is a tool used for verification of software

systems. The input to this tool is a program written using

Promela, a meta-language for processes and their properties are

specified using linear temporal logic. It checks whether the

program satisfies the stated properties. In order to make use of

SPIN to verify the OWL-S processes they should be converted

into Promela.

Process algebra is a small concurrent language that abstracts

from many details and focuses on particular features. Process

algebras are modeled by means of labeled transition systems.

The process algebra name Finite State Process represents a

finite labeled transition system. A tool, LTSA (Labeled

Transition System Analyzer) for Finite State Process traverses

the state-space defined by a model and reports about the first

safety or progress error that is encountered but not more than

one of each type. FSP used in LTSA can be efficiently used

only for design time validation.

Petri Nets were used to model and verify the business

processes. Many researchers had worked on variations of Petri

Nets namely workflow nets, business process nets and colored

petri nets. Among them Colored Petri Nets additionally verifies

the type of the data which helps in checking the semantic

reliability of the composition plan. As most of the available

techniques focuses on design time validation, Colored Petri

Net that focuses on data with their type is preferred in this

paper for verification of composition plan. The application

areas of CPN include the design and verification of

communication protocols, distributed systems, embedded

systems, automated production systems, VLSI chips and

automated business processes.

 In the previous works [11, 12] of the authors the verification

of the generated composition plan was carried out using LTSA.

As it was experienced that LTSA can identify only the first

progress error, an alternate verification tool was required. The

survey lead to the identification of CP-nets for the verification

of composition plan as specified in [13] which performs the

mathematical verification of the CP-nets using verification

algorithms for reachability, boundedness, semantic consistency

which includes QoS consistency.

3. Colored Petri Net

Colored Petri Nets provide a framework for the construction

and verification of business processes constructed as

composition plan. CPN models are executable and hence can

be simulated to verify the behavior of composition plan.

Simulation provides a visual feedback of every step and

realization of application domains. The state space method of

CP-nets validates and verifies the functional correctness of the

composition plan. A state space is constructed which verifies

the behavioral properties of the composition plan such as

absence of deadlocks, reachability of a given state and

guaranteed delivery of a given service. The basic constructs of

a CP-net are as follows:

3.1 Places: Places are the containers of data transferred

between the transitions in a CP-net.

3.2 Markings: Markings represent the state of a CP-net which

consists of a number of tokens positioned on the individual

places. Each token possess a value (color) based on the type of

the place on which it inhabit. The token values and the data

types are referred as token colors and color sets respectively.

The tokens present on a particular place are called as the

marking of that place. The marking of a place is a multi-set of

token values which means that a place may have several tokens

with the same token value. As an example, possible marking of

the place book database is the following:

 1`(“T1”,”A1”,100,false) ++ `(“T1”,”A4”,200,true)

This marking contains 1 token with value (“T1”,”A1”, 100,

false) and 2 tokens with the value (“T1”,”A4”, 200, true).

Conventionally, multi-sets are written as a sum (++) using the

symbol prime (`) to denote the number of appearances of an

element.

3.3 Types:

 Each place has an associated type (color set) determining the

type of data that place may contain. The type is similar to a

data type in a programming language. They may be complex as

a record that contains one field as a text string, another as a real

and third as an integer. As an example, a possible type

definition is the following:

 colset Author = STRING;

 colset Price = INT;

 colset Avail = BOOL;

 colset APA = product Author*Price*Avail;

The definition APA is a complex type that consists of a

string, integer and boolean data type.

3.4 Transitions:

 The actions of a CP-net are represented by means of

transitions, drawn as rectangles with their names written inside.

A.Bhuvaneshwari, IJECS Volume 3. Issue 1 Jan, 2014 Page No.3736-3742 Page 3738

The transition “findauthor” models the action that finds the

author of the book for a given title.

3.5 Arcs and arc expressions:

The transitions and places are connected by arcs. When a

transition occurs the tokens are removed from the places

connected to incoming arcs and added to the places connected

to outgoing arcs. The number of tokens added and removed by

a transition is determined by the arc expressions written next to

the arcs. A double arc represents the bidirectional flow of data

with same arc expression.

The formal definition of the CPN can be given as: A CPN

is a tuple CPN = (, P, T, A, N, C, G, E, I) where:

(i) is a finite set of non-empty types also called color sets.

(ii) P is a finite set of places.

(iii) T is a finite set of transitions.

(iv) A is a finite set of arcs such that:

 P T = P A = T A = Ø.

(v) N is a node function.

It is defined from A into P TT P.

(vi) C is a color function.

It is defined from P into .

(vii) G is a guard function. It is defined from T into

expressions such that:

t T: [Type(G(t)) = B Type(Var(G(t))) ]

(viii) E is an arc expression function. It is defined from A

into expressions such that:

aA: [Type(E(a)) = C(P)MS Type(Var(E(a))) ] where

P is the place of N(a).

(ix) I is an initialization function. It is defined from P into

closed expressions such that:

 p P: [Type(I(p)) = C(p)MS].

The net structure of CPN can be denoted by a matrix with n

rows and m columns where n and m represent the number of

transitions and number of places respectively.

 A = [aij] an n x m matrix of integers where

 {

 ()

 {

 ()

 A
+
 = [

]n x m and A
-
 = [

]n x m

 A is the incidence matrix which defines the whole structure

of CPN, A
+
 is the output matrix that represents the arcs from

transition i to place j and A
-
 is the input matrix that represents

the arcs from place j to transition i. When a transition triggers

and there is a state change in the system, the final state can be

obtained by evaluating the state equation of the system. The

state equation of the CPN is given by Mi = Mi-1 + A
T
 ∗ σ ,

where Mi is an intermediate state and Mi-1 is its previous state,

σ is the firing vector and A
T
 is the transpose of the incidence

matrix. The properties of the CP-net are analyzed based on the

incidence matrix and the solution obtained for the state

equation.

CPN Tools analyzes CP-nets in two ways such as (a)

simulation and (b) state space analysis. Simulation feedback

is updated during the syntax check and simulations. Green

circles indicate the number of tokens that are present at the

time of simulation on each place, and current markings appear

in green text boxes next to the places. Green halos around

transitions are used to indicate enabled transitions. Pages

containing enabled transitions are underlined with green in the

index, and their page tabs are also underlined with green. The

full or partial state spaces are generated and analyzed for CP-

nets by the CPN Tools. The state space requires a syntactical

constraint which specifies that all places and transitions should

have unique names. The state space report contain information

about: statistics about the generation of the state space,

boundedness properties, home properties and liveliness

properties.

The statistical report contains information about the size in

terms of the number of nodes and arcs in the state space. The

boundedness properties contain information about the maximal

and minimal number of tokens that may be located on the

individual places in reachable markings. Home properties tell

about the markings or sets of markings to which it is always

possible to return. Liveliness properties tell that a set of

binding elements remains active.

4. OWL-S/CPN relationship

A Semantic Web Service is a semantically described web

service using service ontology, which facilitates machine

readability of capabilities and integrates service with

application domain. The semantic descriptions of web services

are essential to permit automation in discovery, composition

and execution among various users and application domains.

The major efforts in specifying the semantic description of web

services are Web Ontology Language for Services(OWL-S)

which provides the machine readable form of properties and

capabilities of a web service, Web Service Modeling Ontology

(WSMO) which includes definitions for goals, mediators and

web services and Semantic Annotations for WSDL (SA-

WSDL) which defines the semantic annotation by referring

semantic models. As OWL-S is the most popularly used

language for semantic web services, this paper considers and

provides its relationship with CP-nets.
OWL-S ontology shown in Figure 1 provides three essential

types of knowledge about a web service: (i) Service Profile

providing the information required to discover a service, (ii)

Service Model providing information about how to use the web

service and (iii) Service Grounding specifying the details about

how to access the web service. The upper ontology of OWL-S

is shown in the following Figureure. The class Service refers a

web service and acts as a domain for the properties presents,

describedBy, and supports. The respective ranges of those

properties are the classes ServiceProfile, ServiceModel, and

ServiceGrounding. Each instance of Service will presents a

ServiceProfile description, be describedBy a ServiceModel

description, and supports a ServiceGrounding description. The

details of profiles, models, and groundings may vary from one

instance of Service to another.

Figure 1: OWL-S ontology

Service

ServiceProfile

ServiceGrounding

ServiceModel

presents

supports

describedby

A.Bhuvaneshwari, IJECS Volume 3. Issue 1 Jan, 2014 Page No.3736-3742 Page 3739

The basic constructs of the CP-nets is provided in detail in

Section 3. The relationship between OWL-S and CPN can be

tabulated as in Table 1. The service parameters of OWL-S

includes the input and output data of a service which are

represented as places in a CPN.

The service operations are the logic implemented to execute

the service represented as transitions in a CPN. The types of

input and output data are represented by the color set of the

CPN. The service precondition is the condition that must be

satisfied to invoke the service and the service effect is the state

of the environment after the service execution. They are

represented with the input and output places of a CPN

respectively. The direction of message transmission and the

values that are transmitted are represented with the arcs and arc

expressions of a CPN.

Table 1: Relationship between OWL-S and CPN

S. No. OWL-S CPN

1 Service Parameters Places

2 Service Operations Transitions

3 Type of Service Parameters Color Set

4 Service Precondition Input Places

5 Service Effects Output Places

6
Direction of message

transmission

Arcs and arc

expression

5. Motivating Scenario
A scenario in which the user needs to purchase a book

through online shopping requires the composition of web

services. When a user provides title of the book as input, the

services to find the details of the author, price and availability

of the book, find an alternate book if the requested book is not

available, check the validity of the credit card and process the

credit card should be arranged. The arrangement should check

the availability of the requested book and if available purchase

the same. Otherwise find an alternate book and purchase it.

This can be constructed as a web service composition plan by

using AI planning techniques.

The LTSA tool provides a Finite State Process (FSP)

translation mechanism to convert generated workflows into a

complete FSP specification. It mechanically assists the user in

building and translating the OWL-S implementation to FSP.

The FSP for the plan generated for the process specified in the

case study is shown in Figure 2.

Figure 2: Plan generated by the Planner

The FSM generated by the LTSA tool can be verified and

validated by the Animator plug-in which helps in visualizing

the execution order of the generated plan. Figure 3 shows the

execution pattern of the plan generated if the book is available.

Figure 3: Execution of the Plan

However LTSA can verify only the first safety or progress

error that is encountered but not more than one of each type.

When both safety and progress violations are there at the same

time due to different root causes the decision should be made

on which error has to be addressed. Giving priority to the

progress issue rather than the safety issue had the effect of

hiding of the safety issue that would come out later.

Hence an alternate approach was required for the verification

process and Colored Petri Nets were employed. The

verification of reachability and safety properties of the service

composition plan was done by a mathematical approach. The

boundedness, liveliness, fairness and home properties were

verified using CPN Tools.

5. Construction of CPN using CPN Tools

A sample OWL-S process is shown in Figure 4 for the

findauthor service which takes the title of the book as input and

returns the author of the book.

<process:AtomicProcess rdf:ID="FINDAUTHOR

__PROCESS">

<service:describes rdf:resource="# FINDAUTHOR

__SERVICE"/>

<process:hasInput rdf:resource="#_BOOKTITLE"/>

<process:hasOutput rdf:resource="#_ AUTHOR "/>

<process:hasOutput rdf:resource="#_ EDITION"/>

<process:Input

rdf:ID="_BOOKTITLE"><process:parameterType

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyU

RI">http://127.0.0.1/ontology/books.owl#Title</process:par

ameterType>

</process:Input>

<process:Output

rdf:ID="_AUTHOR"><process:parameterType

rdf:datatype="http://www.w3.org/2001/XMLSchema#anyU

RI">http://127.0.0.1/ontology/books.owl#Author</process:

parameterType>

</process:Output>

<process:hasEffect>

<expr:SWRL-Condition rdf:ID="AuthorFound">

<swrl:classPredicate

rdf:resource="http://127.0.0.1/ontology/ontosem.owl#be_av

ailable"/>

<swrl:argument1

rdf:resource="#_AUTHOR"/></expr:SWRL-Condition>

A.Bhuvaneshwari, IJECS Volume 3. Issue 1 Jan, 2014 Page No.3736-3742 Page 3740

Figure 4: OWL-S Snippet - “findauthor” service

The OWL-S processes involved in the case study are

converted into CPN as shown in Figure 5. The color set of a

place is typically written below the place and is declared using

the Standard ML [9] programming languages. For example,

place Title has the color set Title which is a string. The

declarations of the color sets, functions and variables used in

CPN are listed in Figure 6.

Figure 5: CPN for Book Purchase OWL-S process

Figure 6: Color set - online book purchase scenario

7. Simulation and State-Space Analysis

 The verification of the service composition plan using the

CPN tool is explained below.

Step 1: The author and price are found from the database. If

the book is available then the credit card processing is

proceeded as shown in Figure 9

Figure 9: Book available and credit card checked

Step 2: Else if the book is not available the alternate book is

selected which are shown in the following Figureures Figure

10 and Figure 11

Step 3: Finally the book is purchased and the credit card is

used for purchase and the amount is debited from the credit

card which is reflected in Figure 12.

Simulation works like testing a program and can be used to

prove or verify properties of the trivial systems. Hence it can

be alternated by state space analysis. A state space constructs a

directed graph with a node for each reachable marking and an

arc for each occurring binding element. The state space

analysis of the colored petri net constructed for the case study

consists of three parts. The first part provides the statistics of

the full state space which contains 11 nodes and 11 arcs in the

CPN calculated in 0 seconds as shown in Table 2.

A.Bhuvaneshwari, IJECS Volume 3. Issue 1 Jan, 2014 Page No.3736-3742 Page 3741

Figure 10: Unavailability of Book

Figure 11: Alternate book Selection

Figure 12: Credit Card Processing

The second part shows the integer bounds of the places in the

CPN as given in Table 3. The upper and lower integer bounds

are the maximal and minimal number of tokens that can be

located on the individual places in the reachable markings. The

place Title has either one or not token which indicates that the

title of the book may be available or not which also reflects in

the avail and notavail places. This indicates that the system

behaves as expected.

Table 2: Statistics of Full State Space

Statistics

State Space SCC graph

Nodes: 1

Arcs : 11

Secs : 0

Status : Full

Nodes: 11

Arcs : 11

Secs : 0

Table 3: Boundedness – Upper and Lowe Bounds

Boundedness

Place Upper Bound Lower

Bound

Title 1 0

avail 1 0

book_database 4 4

credit_card_database 2 2

not_available 1 0

verfd 1 0

The third part shows the Home and Liveliness Properties. A

home marking is a marking which is reachable from all

reachable markings, i.e., a marking which can always be

reached independently of what has previously happened. Here

there is a single home marking M11. A dead marking is a

marking with no enabled transitions. Here the case study has a

single dead marking, and that is similar to the home marking.

Dead transitions are similar to dead code in a programming

language and it means that each transition is enabled in at least

one reachable marking. A live transition is a transition which

can always, no matter what happens, become enabled again.

From the liveliness properties shown in Table 4 it can be

observed that there are no dead and live transitions. When

there are dead markings as in our case study there cannot be

any live transitions.

Table 4: Home and Liveliness

Home and Liveliness Properties

Home Markings [11]

Dead Markings [11]

Dead Transition Instances None

Live Transition Instances None

9. Conclusion

 The verification of the correctness of generated plans is

carried out by using colored petri nets. The verification is done

by converting an OWL-S process into CPN using CPN Tools

and analyzing simulation and state space analysis. The

simulation and state space analysis done using CPN Tools

verified the boundedness, liveliness and provided a statistical

report about the constructed CPN. Thus the verification of the

service composition plan had been successfully carried out

using colored petri nets.

10. References

1. Joachim Peer, “Towards Automatic Web Service

Composition using AI Planning Techniques”,

International Journal of AI Planning Techniques,

pp.1-18, 2003

2. Katia Sycara, P. Massimo, Paolucci. Anupriya,

Ankolekar. Naveen, Srinivasan. “Automated

discovery, interaction and composition of Semantic

Web services”, International Journal of Web

Semantics Vol.1, No.1,pp. 27-46, 2003.

3. G.J. Holzmann. “The Spin Model Checker: Primer

and Reference Manual”, Addison-Wesley, Boston,

MA, USA, 2004.

A.Bhuvaneshwari, IJECS Volume 3. Issue 1 Jan, 2014 Page No.3736-3742 Page 3742

4. J. Magee and J. Kramer, “Concurrency: State Models

and Java Programs”, Wiley, New York, NY, USA,

second edition, 2006

5. Juan C. Vidal, Manuel Lama, Alberto Bugarín,

“Toward the use of Petri nets for the formalization of

OWL-S Choreographies”, International Journal of

Knowledge information System, pp. 1-37, 2011.

6. Wang J., Timed Petri Nets: Theory and Application,

Kluwer Academic Publishers, 1998.

7. R. Farahbod, U. Glasser, and M. Vajihollahi,

“Specification and validation of the business process

execution language for web services”, Proceedings of

the 11th International Workshop on Abstract State

Machines,

8. http://www.daimi.au.dk/CPNtools/

9. Bhuvaneswari, A. Dr.Karpagam, G.R. “An Optimized

Service Selection for Service Composition”,

Proceedings of the International Conference: ICAC

2011 On Advances in Computing, PSG College of

Technology, Coimbatore, India, Dec 9-11, 2011, pp.

153-162

10. Bhuvaneswari, A. Dr. Karpagam, G.R. “QoS

Considerations for a Semantic Web Service

Composition”, European Journal of Scientific

Research, Vol.65, No.3, 2011, pp. 403-415

11. Bhuvaneswari, A. and Karpagam, G.R. “Applying

fluent calculus for automated and dynamic semantic

web service composition”, Int. Conf. on Intelligent

Semantic Web-Services and Applications, June,

Amman, Jordan. 2010, pp.124–131.

12. Karpagam, G.R. and Bhuvaneswari, A. “AI planning-

based semantic web service composition”, Int. J.

Innovative Computing and Applications, Vol. 3, No.

3, pp.126–135, 2011.

13. Yue Ni, Yushun Fan, “Model Transformation and

formal verification for Semantic Web Services

Composition”, Journal of Advances in Engineering

Software. 41: 879 – 885, 2010.

Author Profile

Dr. A. Bhuvaneswari is Professor with 15 years

of experience in Department of Computer science

and Engineering in Adhiparasakthi Engineering

College. She is an ISTE member and interested in

the field of web services, Model Driven

Architecture and cloud service discovery. She has

published papers in IEEE and ACM digital

libraries and National/International Journals and reviewer of

International Journals. She has authored a book on Computer

Programming.

Ms. S. Uma is Assitant Professor with 7.5 years of

experience in Department of Computer Science and

Engineering in Adhiparasakthi Engineering College.

She has published papers in national journals in the

areas including networks and information security.

Mr. Sakthitharan. S. has gained his Bachelors

and Masters degree in Computer Science and

working as Assistant Professor at Adhiparasakthi

Engineering College with experience of 1.5 years.

He has presented papers in International

conferences. He has been awarded as „Young

Investigator Award‟ by IRNet.

Mr. G. Srinivasan is Assistant Professor with 1.5

years experience in Department of Computer

Science and Engineering in Adhiparasakthi

Engineering College. He has presented papers in

international conferences in the area of Data

Mining and Warehousing. His current research

areas includes networking and cloud computing.

