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Abstract— In this paper we proposed a hybrid method for Poisson noise amputation in MRI (Magnetic Resonance Imaging) datasets. The 
awareness should be paid while enhancing the Poisson noise, because it is vastly signal dependent. The Independent Component Analysis and 
Purelet (Poisson Unbiased Risk Estimation) performances are assessed directly. In purelet we are using Linear Expansion of thresholding. We 
approximate the mean square error to bring a dutiful transform domain thresholding. The hybrid method is in cooperation with ICA and Purelet 
Method. Foremost the ICA bring into play intended for dimensionality reduction for Multivariate Data, Subsequently Wavelet threshold Method 
exploit for Denoising. Performance Comparison is exploited in requisite of PSNR (Peak Signal to Noise Ratio) and speed of Denoising. 

 Key words— Poisson Noise, Image Denoising, Purelet, 
Thresholding, Dimensionality, Reduction, Independent Component 
Analysis, Unbiased Estimation. 

I.INTRODUCTION 
      The noise is occurred in images during the acquisition 

process, since the intrinsic and thermal fluctuations of 
acquisition devices. The other reason is only low count 
photon unruffled by the sensors while comparing others, the 
signal dependent noise is imperative. It should be unease. 
Image processing takes part in medical field of the essence. 
During the disease diagnosis, the consequences of many 
types of equipment in the medical field are in digital format. 
In the vein of X-Ray based scan reports, MRI (Magnetic 
resonance Imaging), CT (Computed tomography), PET 
(Positron Emission Tomography) furnish the digital form 
reports. There are many prehistoric methods are used for 
denoising which have its own annoyances. In this paper we 
introduce the constructive hybrid method for effectual 
separation of noise from data and eliminate it. There are 
multiscale methods and also non-multiscale methods are on 
hand for Poisson noise. At this juncture we are using the 
transform domain thresholding strategies which is a 
multiscale technique .The independent component analysis 
is employed for representing the multivariate data and to 
diminish the curse of dimensionality. 

  II. RELATED WORK  
  The general solution of Poisson noise is “Gaussianizing” 
this is carried out by non linear data that is applied to the 
raw data. It has been theorized by anscombe and applied 
first by donoho [1].In Median filtering, transform domain 
methods such as Fourier and discrete Fourier transform will 
also be employed for denoising the medical images. But 
they introduce blur in the images. This will damage the 

texture in the images. To encounter this problem the total 
variational method is utilized for medical image denoising. 
It preserves the edges in the medical images during 
denoising process. The process involved here is to reduce 
the total variation of noisy image and get a closer match to 
the original image. Split bregman method is from 
optimization theory is adapted to find the solution for non-
linear convex optimization problem. The denoising strength 
is highly depending on regularization parameter. If this 
parameter increase denoising strength also increased .the TV 
method has the disadvantage that it will introduce the 
artifacts as a result of denoising process 1. We should 
compromise with the quality of the image 2.it will damage 
small scale structures with high curvature edges [2]. 
Wavelet based methods are now widely used in medical 
image denoising and disease diagnosis. Many of these 
algorithms are related to shrinkage/thresholding to wavelet 
image coefficients. The difficult task in this is to select 
appropriate threshold selection [3]. The unnormalised Haar 
transform is apposite for Poisson noise in the view of the 
fact that it is self- reproducing across scales. By capturing 
this advantage [4] consequently the Bayesian intensity 
estimate for multiscale multiplicative innovation model is 
applied. Multiscale analysis is a powerful tool in denoising 
procedures [4]. Non local Means Algorithm which is 
introduced by Buades [5]. It is a non local averaging 
technique which can be operated on all pixels in the image 
with the same characteristics. Regrettably this method is 
very slow. The variance stabilization transform which is an 
extension of anscombe transform [6] [7] combine with filter 
banks of wavelet, ridgelets and curvelet leading to 
multiscale VSTs. For different morphologies we cannot use 
this technique. We should introduce different multiscale 
transform. 
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For the different morphologies [8], the non local PCA 
with patch based algorithm is applied to eliminate the 
Poisson noise. It also reduces .the non local PCA with patch 
based algorithm is applied to eliminate the Poisson noise. It 
also reduces the artifacts. It has the disadvantage that the 
domain shape dependencies. To avoid this, ICA [9] 
(Independent Component Analysis) in which the 
reconstructed image has the clarity compare with other 
preprocessing filters.  

III. WAVELET BASED DENOISING  
     The wavelet based denoising model minimizes the 

unbiased risk estimation for Poisson noise. There are mainly 
three steps are involved in the procedure. The first step is 
the transform method which includes discrete wavelet 
transform and the second step is thresholding. 

A.  Discrete wavelet transform 
    There are variety of wavelets are available for 

transform technique. They are haar, Daubeschies, Coiflits, 
Symlets, Morelet, Maxican Hat and biorthogonal wavelet. 
We are taking discrete wavelet transform of the application 
divide the image into four subbands. The LH, HL, and HH 
represent detailed features of image. The LL subband 
represents approximation of the image. The LL subband can 
be further decomposed. Based on the application we can 
restrict the level of decomposition.  

B. Thresholding 
     The selection of appropriate thresholding technique is 

the major problem in the case of wavelet transform. This 
will remove the noise by shrinking coefficients. The 
efficiency of the wavelet transform mainly based on the 
threshold selection. There are two types of thresholding 
.hard and soft thresholding. 
 

              𝑇𝑇ℎ𝑎𝑎𝑎𝑎𝑎𝑎 [𝐼𝐼, 𝜆𝜆] = � 𝐼𝐼    𝑓𝑓𝑓𝑓𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 |𝐼𝐼| > 𝜆𝜆
0             𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�                     (1) 
 
  𝑇𝑇𝑒𝑒𝑓𝑓𝑓𝑓𝑜𝑜 [𝐼𝐼, 𝜆𝜆]     =    �𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠(𝐼𝐼)𝑚𝑚𝑎𝑎𝑚𝑚(0, |𝐼𝐼| − 𝜆𝜆)      𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 |𝐼𝐼| > 𝜆𝜆

0                                              𝑓𝑓𝑜𝑜ℎ𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
� (2)                                                                           

                                      

C. Selection of threshold 
There are two types of thresholding types. Universal 

thresholding and adaptive thresholding the universal 
thresholding was proposed by Dohono and Johnstone in 
1995.the threshold 𝜆𝜆 is calculated by using the following 
equation. 

     𝜆𝜆 = 𝜎𝜎�2 𝑎𝑎𝑓𝑓𝑠𝑠(𝑀𝑀)                      (3) 
 
𝜎𝜎 is the local noise variance of each subband of the poisson 
image 
The noise variance can be estimated by, 
 

                                            
                  𝜎𝜎 = ∑ 𝑋𝑋𝐽𝐽2 𝑁𝑁−1  

𝑒𝑒=0                                        (4)                   

IV. ICA DENOISING MODEL 

ICA denoising model is introducing by Hyvarinen 
1999.for data sets which are contaminated by Gaussian 
noise can perform well by applying soft thresholding. For 
Poisson noise corrupted data sets we have to develop new 
filtering to adapt to the property of noise that is signal 
dependent. 

 For the n dimensional vector 
 
                         X=S+V                                   (5) 
 
Where S is the orthogonal signal, V is the noise. We have to 
find the V’ such that V=V’ 
 
Step1:  Evaluate the orthogonal ICA algorithm. 
‘W’ is evaluated by using set of noise free data Y. 
 
Step2:  Si=𝑒𝑒𝑒𝑒𝑇𝑇𝑍𝑍 for i=1,….. , n by using the weight vector                           
the non linear shrinkage is calculated. 
 
Step3:  for each X, ICA performs 
 
                               Y=WX                               (6) 
 The inverse transform                                                     

                𝑆𝑆 = 𝑊𝑊𝑇𝑇𝑆𝑆′                               (7) 
 
It is the unsupervised learning so it is need additional data to 
train the data. 

 

V. HYBRID METHOD 
Hybrid method uses the Independent Component 

Analysis for noise separation from the data. The wavelet 
transform is used to remove the noise. 

A. Independent component analysis 
 
The ICA method is used to find the components that are 

both statistical independent and non Gaussian. It is one type 
of non supervised learning. The m-dimensional space is 
reduced to an n dimensional space. So that the hidden 
information from the large data sets are obtained. 
The every component 𝑦𝑦𝑒𝑒 is given by 
 
                                    𝑦𝑦𝑒𝑒= ∑ 𝑒𝑒𝑒𝑒𝑖𝑖 𝑚𝑚𝑒𝑒𝑖𝑖𝑖𝑖 (𝑜𝑜),                   (8) 
    
  for    i=1,……….,n, j=1,…….,m 
 
 The problem is there is to determine the coefficient  𝑒𝑒𝑒𝑒𝑖𝑖  .the 
coefficient can be represented as matrix. 
 

                         �

𝑒𝑒1(𝑜𝑜)
𝑒𝑒2(𝑜𝑜)
⋮

𝑒𝑒𝑠𝑠(𝑜𝑜)

�  =  𝑒𝑒�

𝑚𝑚1(𝑜𝑜)
𝑚𝑚2(𝑜𝑜)
⋮

𝑚𝑚𝑠𝑠(𝑜𝑜)

�               (9) 

 
 
        The original signal should find from the mixers  𝑚𝑚1(𝑜𝑜),
𝑚𝑚2(𝑜𝑜), 𝑚𝑚3(𝑜𝑜) this is the blind sourceseperation 
problem.merely we know the petite amount of information 
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regarding the original signal.the ‘w’ matrix can be 
calculated from the inverse of the matrix that capable of 
mixing coefficient 𝑎𝑎𝑒𝑒𝑖𝑖  

      B. Forbidding of Gaussian variables 

     The restraint in ICA method is that the independent 
components ought to non Gaussian. If Gaussian variable 
present in our data, formulate that ICA is impossible. Their 
joint density function is given by  
 

               𝑝𝑝(𝑚𝑚1, 𝑚𝑚2) =
1

2𝜋𝜋
𝑒𝑒 − (𝑚𝑚1

2 + 𝑚𝑚2
2/2)       (10) 

 
From the equation we can see that the density is absolutely 
symmetric. So it does not have any information on the 
directions of the columns of the mixing matrix W. For that 
reason W cannot be approximated.          

 
Fig 1. The multivariate distribution of two independent Gaussian variables.  

 More austerely, we can prove that the distribution of any 
orthogonal transformation of the Gaussian (x1, x2) has 
extremely the same distribution as (x1, x2). For the 
Gaussian variable we can just estimate the ICA model up to 
an orthogonal transformation. The matrix W is not exclusive 
for Gaussian independent component. 

C.  Source separation based on independent property 
       The estimation of coefficients 𝑒𝑒𝑒𝑒𝑖𝑖  is difficult, for the 
reason that the estimation method works in many different 
state of affairs. The solution is good representation of 
multivariate data. If we consider the statistical independence 
of the data the problem is easily solved. When comparing 
uncorrelatedness, the independence is the stronger property. 
Uncorrelation between the components does not show that 
the components are independent. The failure of the PCA and 
factor analysis cannot separate the components in actual 
fact, because it follows the uncorrelatedness property. 

D.  Measures of non gaussianity 

   The measure of nongaussianity is given by negentropy. 
It is based on the information theoretic quantity of 
(differential) entrophy. It is the basic concept of information 
theory. The random variable entropy can be construed as the 
degree of information that the observation of the variable 
give unpredictable and unconstructed the variable is the 
larger its entropy. Entropy is intimately related to the coding 
length of the random variable. 
                         Entropy H is defined for a discrete random 
variable Y as 

             𝐻𝐻(𝑌𝑌) = −∑ 𝑝𝑝(𝑦𝑦 = 𝑎𝑎𝑒𝑒)𝑒𝑒 log𝑝𝑝(𝑦𝑦 = 𝑎𝑎𝑒𝑒)         (11) 

         Where p, 𝑎𝑎𝑒𝑒  are the possible values of Y 
This can be also generalized for continuous valued random 
variable and vectors. 
 The differential entropy H of a random vector Y with 
density f(y) is given by 
 
                   𝐻𝐻(𝑦𝑦) = −∫𝑓𝑓(𝑦𝑦) log 𝑓𝑓(𝑦𝑦)𝑎𝑎𝑦𝑦                       (12) 
 
  The result of the information theory is that the largest 
entropy among all will be for the Gaussian variables of 
equal variance. So nongaussianity measured by entropy. The 
measure of non gaussianity is always nonnegative. A 
slightly modified version of the definition of differential 
entropy called negentropy J is defined as follows 
 

                   𝐽𝐽(𝑦𝑦) = ℎ�𝑦𝑦𝑠𝑠𝑎𝑎𝑔𝑔𝑒𝑒𝑒𝑒 � − 𝐻𝐻(𝑦𝑦)                           (13) 
 
𝑦𝑦𝑠𝑠𝑎𝑎𝑔𝑔𝑒𝑒𝑒𝑒  is the Gaussian random variable of the same 
covariance matrix as y. By means of above mentioned 
Properties of negentropy is always non negative and it is 
zero only if y has a Gaussian distribution. It has the 
additional property is that it is invariant for invertible linear 
transformations. The computations are complex. 

E.Preprocessing of ICA 
   Before applying practical algorithm we should do 

preprocessing. 

1) Centering: 
The basic and necessary of preprocessing is to center X. 

That is subtract its mean vector m=E(x).so as to make X a 
zero mean variable. This implies that is zero mean as well as 
can be seen by taking expectations on both sides on the 
following equation. 

 
                                       𝑆𝑆 = 𝑋𝑋𝑊𝑊                                      (14)       

 
After estimating the mixing matrix A with centered data we 
can complete the estimation by adding the mean vector of S 
back to the centered estimates of S.teh mean vector of S is 
given by 
  
                                         𝐴𝐴−1𝑚𝑚                                          (15) 
 
Where, ‘m’ is the mean that was subtracted in the 
preprocessing steps. 

2) Whitening: 
Another useful preprocessing strategy ICA is to first whiten 
the observed variables. Before the algorithm transfer the 
observed vector linearly. The new vector 𝑋𝑋 �  which is white 
is obtained.it has the uncorrelated componenet whose 
variances are unity. 
 

                               𝐸𝐸[�̅�𝑚�̅�𝑚𝑇𝑇] = 𝐼𝐼                                     (16) 
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Covariance matrix is equal to the identity matrix. One of the 
popular methods of whitening is to use Eigen value 
decomposition .EVD of the covariance matrix 

                                                                                                                    
                                   𝐸𝐸[𝑋𝑋𝑋𝑋𝑇𝑇] = 𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇                        (17)                               

 
E is the orthogonal matrix of Eigen vector of 𝐸𝐸[𝑋𝑋𝑋𝑋𝑇𝑇], d is 
the diagonal matrix. Whitening reduces the number of 
parameters to be estimated. 

F. ICA  algorithm 
 Here the ICA algorithm for one unit is given. The unit is 

referred as the single neuron having weight vector W. So as 
to the neuron is able to update the learning rule. The unit 
vector ’W’ such that the projection 𝑒𝑒𝑇𝑇x which maximizes 
nongaussianty.non gaussianity is measured by the 
approximations of negentropy 𝐽𝐽𝑒𝑒𝑇𝑇x.the variance of 𝑒𝑒𝑇𝑇𝑚𝑚 
must be unity. For the whitened data this is corresponding to 
restraining the norm of W to be unity. The fixed point 
iteration scheme is used to find a maximum of the 
nongaussianity of 𝑒𝑒𝑇𝑇𝑋𝑋. it can be also derived as an 
approximate the newton iteration, denote by g. The 
derivation of the nonquadratic function G for example, 
 
                          𝑠𝑠1(𝑔𝑔) = 𝑜𝑜𝑎𝑎𝑠𝑠ℎ(𝑎𝑎,𝑔𝑔)                                 (18) 
                              

                              𝑠𝑠2(𝑔𝑔) = 𝑔𝑔
𝑒𝑒𝑚𝑚𝑝𝑝(−𝑔𝑔2)

2
                             (19) 

 
Where1 ≤ 𝑎𝑎1 ≥ 2 is constant 𝑎𝑎1 = 1 
Steps: 

1. choose an initial weight vector W(any random ) 
 

2. let 𝑊𝑊+ = 𝐸𝐸�𝑚𝑚𝑠𝑠(𝑊𝑊𝑇𝑇𝑋𝑋)�   −  𝐸𝐸[𝑠𝑠′(𝑊𝑊𝑇𝑇𝑋𝑋)]𝑊𝑊 
 

3. let  W=𝑊𝑊+/‖𝑊𝑊+‖ 
 

4. If not converged go back 2 
 
Convergence means that the old and new values of W point 
in the same direction. That is the dot product is equal to one. 
There is no necessity that the vector converges to a single 
point. Since W and  𝑊𝑊+define the same direction. 
 

G. Purelet 
   Haar wavelet has the property which conserving Poisson 
statistics in its low pass channel. The second property of 
unnormalized haar transform applied to Poisson data. It is 
the statistical relation between a scaling coefficient (parent) 
and its child is very simple. 
 The efficiency of this approach came from the following 
two points. 
 
 1.   The stein’s unbiased estimate states that a prior free 
unbiased estimate of the predicted (MSE) that is flanked by 
the unknown original image and the denoised one. In the 
case of Poisson data, It is called PURE (Poisson unbiased 
risk estimate). 
 
2.   The linear parameterization in the denoising process 
carried in the course of a linear expansion of Threshold 
(LTE). The parameters from these expansions are the 
solution of linear equations when we minimize the subband 
dependent quadratic unbiased estimate of the MSE. 
 

H. Properties of Poisson noise 

Property 1 
     The sum of independent Poisson   random variables is 
also a Poisson random variable. The intensity is equal to the 
sum of intensities 
                                  
           𝑚𝑚1 + 𝑚𝑚2~𝓅𝓅(𝜇𝜇1 + 𝜇𝜇2)                                (20) 

Property 2 
     If 𝑚𝑚~𝑝𝑝(𝜇𝜇) and 𝜃𝜃:𝑅𝑅 → 𝑅𝑅 is a real fuction such that  
𝐸𝐸{|𝜃𝜃(𝑚𝑚)|} <∝ then 
                                                                
      𝜀𝜀{𝜇𝜇𝜃𝜃(𝑚𝑚)} = 𝜀𝜀{𝑚𝑚𝜃𝜃(𝑚𝑚 − 1)}                              (21) 
 
 This is the Poisson equivalent of stem’s lemma for 
Gaussian statistics. 

Property 3 
Let 𝑚𝑚~𝐵𝐵(ℓ, 𝜂𝜂) be the binomial random   variable, 

where 𝜂𝜂𝜂𝜂[0,1] represents the probability of success. If the 
number of trails ℓ𝜂𝜂𝑁𝑁 is random and follows a Poisson 
distribution with mean 𝜆𝜆, then m is itself Poisson distributed 
with mean𝜇𝜇 = 𝜂𝜂𝜆𝜆 
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Fig 1.filter bank implementation of  unnormalised discrete wavelet transform.the level of decomposition is defined by the 
subscript j=1….J.S is the noisy vector coefficients.Ѳ is the thresholding level. δj is the noise free wavelet estimated vector 

coefficients 

 



 

    

Dr.S.Vasuki, IJECS Volume 2 Issue 4 April, 2013 Page No. 948-955 Page 952 
 

 

 I. The unnormalised haar discrete wavelet transform 
  The unnormalised haar discrete wavelet transform can be 
represented by a standard two channel filter bank. The low 
pass and high pass filter is represented by z transform 
                               

                        �𝐻𝐻𝑎𝑎
(𝑧𝑧) = 1 + 𝑧𝑧−1

𝐺𝐺𝑎𝑎(𝑧𝑧) = 1 − 𝑧𝑧−1
�                          (22) 

  The corresponding synthesis pair is 
                                                                                    

                         �𝐻𝐻𝑆𝑆
(𝑍𝑍) = 1/2𝐻𝐻𝑎𝑎(𝑍𝑍−1)

𝐺𝐺𝑆𝑆(𝑍𝑍) = 1/2𝐺𝐺𝑎𝑎(𝑍𝑍−1)
�                      (23) 

                                                                                   

J. Wavelet thresholding (pure) 
The new estimator wavelet domain estimate whish has 

the soft threshold with pure optimized threshold. The 
transposition of Donoho and Johnstone’s Gaussian SURE 
shrink to Poisson noise removal are regarded as PURE 
shrink estimator. Here the threshold optimization is the 
minimization of PURE. 

    Compare to Gaussian noise the Poisson noise in this 
case is stationary and utterly described by its variance for 
Poisson data. The amount of noise is directly proportional to 
the intensity what we are going to estimate. The amount of 
shrinkage is measured by setting the threshold T as 
proportional to the square root of the scaling coefficient at 
the same location and scale. This is the standard deviation. It 
will bring the substance of wavelet coefficient. Every 
wavelet coefficient of the unnormalised Haar transform tag 
along a skellm distribution. 
          
The pure shrink estimator is 
                                
𝜃𝜃𝑃𝑃𝑃𝑃𝑅𝑅𝐸𝐸𝑒𝑒ℎ𝑎𝑎𝑒𝑒𝑠𝑠𝑟𝑟 (𝑎𝑎, 𝑒𝑒; 𝑎𝑎) = 𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠(𝑎𝑎𝑠𝑠)𝑚𝑚𝑎𝑎𝑚𝑚 �|𝑎𝑎𝑠𝑠|𝑎𝑎�|𝑒𝑒𝑠𝑠| ,0�  (24)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

K.  Purelet 
The PURE shrink produce which follows the SURELET 
strategy, 

 The wavelet estimator which is devised as a linear 
expansion of threshold 
  
                  𝜃𝜃𝐿𝐿𝐸𝐸𝑇𝑇(𝑎𝑎, 𝑒𝑒:𝑎𝑎) = ∑ 𝑎𝑎𝑟𝑟𝜃𝜃𝑟𝑟𝑟𝑟

𝑟𝑟=1 (𝑎𝑎, 𝑒𝑒)                     (25)        
 
  𝜃𝜃𝐾𝐾 is the generic estimators which should be choosen as 
orbitrarily. 

L. Thresholding function 

         The linearly parameterized thresholding function with 
𝑟𝑟 = 2 then the  𝑠𝑠𝑜𝑜ℎ  component is defined by 

𝜃𝜃𝑠𝑠𝐿𝐿𝐸𝐸𝑇𝑇(𝑎𝑎, 𝑒𝑒; [𝑎𝑎1𝑎𝑎2]𝑇𝑇) = 𝑎𝑎1𝑎𝑎𝑠𝑠 + 𝑎𝑎2�1 − 𝑒𝑒−�
𝑎𝑎𝑠𝑠2

2𝑇𝑇2� �� 𝑎𝑎𝑠𝑠       (26) 

 
For denoting the compromising the parameter 𝑎𝑎1,𝑎𝑎2 are to be 
defined. 

VI. RESULTS 
   In this paper, we deals with two approaches. First we separate the 
Poisson noise and then denoised the image. In second method first 
we separate the Poisson noise from the image and then denoised 
the image and the performance analysis are measured in the mean 
of PSNR  
The MSE value is calculated. 
 

𝑀𝑀𝑆𝑆𝐸𝐸 =
1
𝑚𝑚𝑠𝑠

� �‖𝐼𝐼(𝑒𝑒, 𝑖𝑖) − 𝑟𝑟(𝑒𝑒, 𝑖𝑖)‖2     (27)         
𝑠𝑠−1

𝑖𝑖=0

𝑚𝑚−1

𝑒𝑒=0

 

 
The PSNR value is calculated by 
 
 

        𝑃𝑃𝑆𝑆𝑁𝑁𝑅𝑅 = 10𝑎𝑎𝑓𝑓𝑠𝑠10
𝑀𝑀𝐴𝐴𝑋𝑋𝐼𝐼

2

𝑀𝑀𝑆𝑆𝐸𝐸
= 20𝑎𝑎𝑓𝑓𝑠𝑠10

𝑀𝑀𝐴𝐴𝑋𝑋𝐼𝐼  
√𝑀𝑀𝑆𝑆𝐸𝐸   

   (28) 
 
When compared to first method the second method provide 
the better results and is denoted by means of PSNR value 
and mean square value. 
 
 
 
               Image 1                                    Image 2 
 

    
 

Fig. 3 Original Images 
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Fig. 4  Noisy images 

 
 
 
 
 
 
 
 
 
 

   
 

Fig. 5 Noise separation then denoised output 

 

   
 

Fig. 6 Denoising and then noise separated output 

                                        TABLE I 

  
                   PSNR 

 
              MSE 

Denoised 
and then 
noise 
separated 
image 

Noise 
separated 
and then 
Denoised 
image 

Denoised 
and then 
noise 
separated 
image 

Noise 
separated 
and then 
Denoised 
image 

 
 
Image 1 

 
   
       27.89 

 
 
     29.56 

 
 
    79.82 

 
 
72.64 

 
 
Image 2 

 
    
      31.04 

 
    
     33.47 

 
    
     82.31 

 
 
78.37 

 

 

 

 
    TABLE 2 PERFORMANCE ANALYSES 
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VII. CONCLUSION 
 Thus from the above discussed two methods, the noise 

separation and then denoised method shows best results. It has the 
minimum distortion in terms of PSNR and MSE. For denoising the 
Poisson noise, Purelet approach is taken. In this method the 
selection of thresholding problem is rectified by means of linear 
expansion of thresholding.  
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