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Abstract:This paper is a meek venture to introduce the compressed sensing magnetic resonance image reconstruction. I have devised this 

algorithm by minimizing total variation (TV) and L1 norm regularization with total variation denoising. MR image reconstruction has 

gained a tremendous far-reaching impact in the present technologically advanced world. The original problem will be bifurcated into two 

entities; L1norm and Total Variation [1,2]. Eventually it can be effectively solved. It helps the expedite reconstruction of the MR image 

through an iterative framework. An additional application of a denoising technique to this method was found to be very efficient and 

reliable. A comparative view of the computational complexity and reconstruction accuracy of the present method with the earlier approaches 

will open our eyes to the effectiveness of it based on the numerical results. 
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1. Introduction 

MRI stimulates a signal from the object using magnetic 

fields and radio-frequency pulses. MRI reads data using 

magnetic gradients and places it into k-space which is the 

frequency domain. K-space is a space where MRI data is 

stored. Fourier transformation of k-space translates it into 

spatial domain. The problem that we come across usually in 

MRI reconstruction is our inference of the homogeneity of the 

static magnetic field and unidirectional nature of applied field 

gradients with constant magnitude [3]. Various efforts have 

been made to solve the inhomogeneity of the magnetic field. 

One of the remedies is to contrive a remote homogeneous field 

[4]. In the present article there is an attempt to tackle the issue 

of image reconstruction in high-field MRI, incorporating the 

inhomogeneity of static magnetic fields. The clinical 

applications usually require the direct reconstruction for the 

rapid imaging by completely evading the compensating 

techniques. 

Many researchers are in an expedition to assuage the 

quantity of acquired data without contaminating the image 

quality. The undersampling of the k-space to an extend result 

in the infringement of Nyquist criterion, and also the 

reconstruction with fourier methods will cause artifacts [5]. In 

recent years some proposals are arise to eliminate the 

undersampling artifacts based on sparse models. MR images 

are not sparse in pixel representation. Medical images like 

angiograms are sparse in their pixel representation. Some of 

the medical images are sparse in their transform domain or 

there exists a transform Sparsity [6]. Certain MR images are 

sparse in the wavelet domain, for an instance the brain image 

we intend to recover occurs to have a sparse representation in 

the wavelet domain [5]. Sparsity in an image domain means 

there are hardly significant pixels with non-zero values. The 

constraints of Sparsity are not specified as non-zero 

coefficients do not possess a bunched form. The transform 

Sparsity is too have this quality as it needs only to be clear in 

some transform domain. Sparsity constraints can enable sparser 

undersampling of k-space under expedient situations [6,7]. The 

maximum exploitation of transform Sparsity is a great boon to 

the successful compression of data that encodes a few 

significant coefficients and stores them for the reconstruction 

process. 

MR images are compressible in nature. So it is unnecessary 

to acquire all the transform coefficients rather than simply 

measuring the compressed information directly from lesser 

number of measurements and by using the theory of 

compressed sensing [6,7] we are able to reconstruct the same 

image from the fully sampled set. Compressed sensing was 

first introduced in the literature of Information Theory and 

Approximation Theory. 

One does not measure the nominally defining signal 

samples, instead they are taking a linear combination of signal 

values that are much smaller. The signal reconstruction is 

carried out by certain nonlinear methods which exhibit good 

accuracy and precision. In MRI we glance over the method of 

compressed sensing, where the sampled linear combinations 

are the k-space samples or the individual fourier coefficients.  

By employing the principles of compressed sensing it is 

possible to reconstruct the entire image from a tiny subset of k-

space. 

 

2. Method 

The non-uniformly sampled data is acquired and used for the 

reconstruction process. The reconstructed image will be 
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corrupted by non-coherent artifacts. A sparse denoising 

technique can eliminate the noise contents. The noise is present 

in all the pixels. It is possible to remove the noise by using 

Split Bregman Total Variation method. Fourier transform of 

the denoised image is performed to obtain the k-space. The k-

space data contains new information and merged with the 

measured data. Thus the interference level gets reduced and the 

reconstruction process continued until we get the image. 

 

 

 

 

 

 

 

Fig. 2.1 Block diagram of MR Image reconstruction process 

with total variation denoising 

 

3. L
1
norm Minimization 

To reduce the scan time we can resort to the principles of 

compressed sensing which makes use of the randomly 

undersampled k space. The missing data can be redeemed with 

sparsity promoting regularization. The image reconstruction 

problem or the constrained optimization problem can be 

defined as 

           subject to Mv = c               (1) 

 

Where J represents a form of L1 regularization [8]. M is the 

fourier matrix, c represents compressed sensing data and v 

stands for the unknown image that we intend to reconstruct. 

3.1 Split Bregman Iteration 

Split Bregman algorithm [9] has a good convergence rate. It 

converts the constrained optimization [10] problem into an 

unconstrained problem. 
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The constrained optimization problem can be converted to 

unconstrained problem by using Bregman algorithm. 

 

 

 

 

Algorithm: Split Bregman Iteration 
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the function shrink is defined as  

shrink(u,v) = 
 

| |
 max(| |     )             (4) 

The parameters τ and μ are affecting the convergence rate. 

The tempo of the image reconstruction problem is entirely 

depends on the speed of optimization or minimization problem. 

Most of the computational bottlenecks are occurring in the 

update of v
k+1

. Conjugate gradient method is used for the 

updating v
k+1

. 
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we can write the above equation to the form  

 

(                =                (7) 

 

Equation is solved by using conjugate gradient method. 

 

4. Experimental Result 

The image reconstruction method is compared with the Non 

Uniform Fast Fourier Transform and Total Variation 

regularization. 

   
(a) Phantom image         (b) Brain image      (c) Exact brain image 

 

Figure. 4.1 Images used for simulation 

Figure. 4.1 shows the images which are used for the 

simulation purpose. The phantom image and the brain image had 

a pixel size of 256 256 and 512 512 respectively. 
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Figure.4.2 MR Image reconstruction from differently 

undersampled k-space data. 

Figure 4.2 shows the reconstructed MR brain images with 

different undersampled k-space values. (a) shows the 

reconstruction with 23.5 k-space data. (b) using 27%  of 

samples. In (b) the edges are more cleared compared to (a). If 

we are using more k-space samples like (c), the SNR and 

quality of image increases.(d) shows the reconstructed image 

which uses almost 45% of the k-space values. The 

reconstruction error for the (d) is very less and 

thereconstructed image is almost an exact replica of the brain 

image. 

 

      (a)reconstructed image                      (b)TV denoised image 

Fig.4.3 Reconstructed and  total variation denoised image  

Figure 4.3 represent the importance of total variation 

denoising in MRI reconstruction. The reconstruction is done 

with 30% of k-space samples. Fine structers are not visible in 

the presence of artifacts. Total variation denoising helps to 

overcome the difficulties in the presence of artifacts, arised due 

to the field inhomogenity and off-resonanc effects. The fine 

structures and the edge portions are more visible in denoised 

image.   

 Min max interpolation method is used to find the Non 

Uniform Fast Fourier Transform(NUFFT) with 6 level 

interpolation. MRI is often acquired on non-uniform grids in k-

space, the Non Uniform Fast Fourier Transform can be used 

for the reconstruction purpose. In this reconstruction the 

magnetic inhomogenity effects are not considered. Field 

correction is applied for the total variation regularization. The 

NUFFT and Total variation  methods are compared to the 

proposed method with different k-space undersampled values. 

It is found that L
1
 norm minimization with Total variation 

denoising shows the lowest reconstruction error and highest 

SNR. 

 

Table . Brain image reconstruction error  ‖        ‖  

 

Reduction 

factor 

 

NUFFT 

 

TV 

 

L1norm with 

TV denoising 

1.25x 1.4954e+04 .5147 .4953 

2.25x 1.6214e+04 36.0482 14.31 

3.25x 1.665e+04 39.8761 19.47 

4.25x 1.683e+04 49.7351 29.83 

 

The table  gives a comparison of the L
1
norm with TV 

denoising method with total variation and NUFFT. The 

computational complexity of the implemented method is some 

what higher than the other two methods. But the SNR is so 

high and able to produce the reconstructed image with less 

number of input samples. 

 

Figure.4.3 Brain image reconstruction error after 200 

iterationsat 2.25x undersampling. The error, ‖        ‖ . 

Figure. 4.3 represents the reconstruction errors per 

iterations. From the graph it can be shown that the Split 

Bregman with TV denoising is more efficient than the Total 

Variation method. Also the method shows good convergence 

rate. 

5. CONCLUSION 

 We had discussed here the principle of compressed sensing 

along with its application for the fast MR Imaging. We showed 

how to reduce the scanning time by the maximum exploitation 

of the sparsity. This method is so fast that it subjects to 

expedite convergence in the presence of magnetic 

inhomogeneous fields. It necessities the knowledge of k-space 

trajectory and magnetic field inhomogeneity profile. The 

application of this method can be successfully carried out to 

certain types of issues where the signal is a linear function of 

the spin density. 

 

(d) Reconstruction from 2.25x 

       undersampled k-space 

(c) Reconstruction from 3.25x 

         undersampled k-space 

(b) Reconstruction from 3.75x 

   undersampled k-space 
(a) Reconstruction from 4.25x 

undersampled k-space 
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