

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 5 may, 2014 Page No. 6114-6117

Ramandeep Kaur
1
 IJECS Volume 3 Issue 5 may, 2014 Page No.6114-6117 Page 6114

An Overview of Reusability of Software

Components

Ramandeep Kaur
1
, Navjot Kaur

2
, Rajwinder Kaur

3

1CTIEMT, CSE Department, Jalandhar, India

ramangrewalg@gmail.com

2Aryabhatta Group of institutes, CSE Department, Barnala, India

2navkaurtoor@gmail.com

3LCET, CSE Department, Ludhiana, India

3rajgill1989@email.com

Abstract: Reuse of software is required to improve the quality and productivity. If their need some changes in the existing software than

software can be reused rather than creating software from scratch. Software reuse is the process of creating software systems from existing

software rather than building them from scratch. This paper gives details about various concepts of reuse. For making some changes in

software no need to change the whole software working particular changes can be done with reuse in existing software. This paper explains

about the things in software that can be reused, various techniques of reuse and advantages and drawbacks of reuse. A component reuse is

famous for reuse. The quality of software depends on the quality of the reusable component.

Keywords: Software component, reuse intentions, reuse artifacts, reusable function, package, module.

1. Introduction

To improve software quality and productivity their need some

changes in the existing software. The method of enhancing the

quality and power of a software by making some changes in the

existing software is called software reuse. It is more

appropriate to do the changes in the existing software rather

than creating new software from scratch. Software reuse is the

process of creating software systems from existing software

rather than building them from scratch.

Next concept used in reuse is reusability. Reusability defines

the degree to which software can be reused. It depends upon

the new features of software that are going to be edited in the

software and on the existing features of the software.

2. Need for reuse

The concept of reuse comes from the manufacturing

companies. Let’s take an example of manufacturing company

of vehicles. Every vehicle needs to be repaired after some time.

For repairing of vehicles there is the need of spare parts. Every

manufacturing company should provide the spare parts of every

vehicle. Similar to spare parts of vehicles software reuse is

required for proper working of software. Software companies

use same concept for developing the software in parts those are

called software components. Reuse process increase the

productivity, quality, and reliability, and the decrease the costs

and implementation time.

3. Artifacts that can be reused

The software can be reused based on various factors. In today’s world

software is reused on the basis of many different artifacts produced

during the software development life cycle. Some typical examples of

reusable artifacts include:

 Source code

 Analysis and design specification

 Plans

 Data (testing)

 Documentation

 Expertise and experience (life cycle model reuse, quality

assurance)

 And any information used to create software and software

documentation.

However, while all of these items are useful, the most often reused

artifacts are software components.

Reuse of software components is becoming more and more important

in a variety of aspects of software engineering. Software component

can be any part of the software that is required for functioning of

software it can be module or and function. Components can be seen as

some part of a software system that is identifiable and reusable.

Components can be reusable functions, e.g., statistics libraries,

numerical libraries, or packages, modules, subsystems and classes.

Reuse success depends upon quality of components. A component is

fit for reuse, if it provides the required behavior in the proposed

circumstance. If we want high levels of reuse, then various

circumstances for the usage of the components should be considered.

A software component may be used for many different applications, in

different business and technical environments, by different developers

using different methods and tools, for different users in different

organizations

Ramandeep Kaur
1
 IJECS Volume 3 Issue 5 may, 2014 Page No.6114-6117 Page 6115

4. Reuse methodologies

As the development costs of software systems increase, the role

of reuse becomes more important in software engineering. For

this reason, a software engineering methodology should

support the notion of developing and leveraging reusable

software resources developing a software methodology that

supports reuse is an active focus of current research. Here,

reuse methodologies is the process of following steps that

might be performed by a software development group in

traditional software development methodologies (such as the

software development life cycle or prototyping). Six processes

are involved in developing a target software system.

The first process involves classifying the existing software

resources to be reused in the future. This has to be performed

at the initiation of the reuse program to develop a library of

software resources. It must also be performed each time a new

reusable resource is to be cataloged. The remaining processes

form part of the software development life cycle proper.

The second process is for specifying requirements for the

new system. This has to be performed regardless of whether the

software component is to be developed from scratch or not.

The third process is for identifying and selecting appropriate

target software resources from reusable software resources

based on the requirements specification.

The fourth process modifying software resources is

necessary when the library resources retrieved do not exactly

match the requirements specification.

The fifth process build new component is necessary when

there is no similar software resource in the existing reusable

software resources for some of the requirements.

Finally the sixth process is required to combine the new and

reused software resources into the target software system.

Fig 1: Reuse methodology process

5. Reuse intentions

Depending on whether the internals of a software component

are visible to reusers it can be defined as black-box or white-

box reuse. If a component is a black box we cannot modify its

internals: we use it as is. White-box components are usually

modified, even though this is not necessarily the case. They

offer both as-is reuse and reuse by adaptation. The term glass-

box reuse means white-box visibility but black-box reuse.

5.1 Black-Box Reuse

Reusing a component as a black box means using it without

seeing, knowing or modifying any of its internals. The

component provides an interface that contains all the

information necessary for its utilization. The implementation is

hidden and cannot be modified by the reuser. Thus reusers get

the information about what a component is doing, but they do

not have to worry about how this is achieved.

5.2 White-Box Reuse

White-box reuse means reuse of components of which internals

are changed for the purpose of reuse. White boxes are typically

not reused as is, but by adaptation. They create more

opportunities for reusers due to the ease of making arbitrary

changes. On the negative side of white-box reuse, it requires

additional testing and costlier maintenance. Unlike black

boxes, a new component derived by modifications to an

existing component must be regarded as a new component and

thoroughly tested. Additionally, the new component requires

separate maintenance.

5.3 Glass-Box Reuse

The term glass-box reuse is used when components are used as-

is like black boxes, but their internals can be seen from outside.

This gives the reuser information about how the component

works without the ability to change it. But this

information may be crucial for understanding how certain tasks

are carried out. It may also give the reuser some confidence

from being able to see inside the component and capture how it

works. Additionally, getting internal information provides some

kind of knowledge transfer and, for example, can help in

building new components.

5.4 Generative Reuse

Generative reuse is itself a reuse technique, but it can be seen

as kind of black-box reuse. Instead of picking one of several

existing black boxes, a component's specification is created and

its implementation automatically generated by a program

generator. The program generator is a black box, its internals

are of no interest to the reuser. Also, the generated

implementation will not be modified. If changes are necessary,

they will be made in the specification and the implementation is

recreated.

6. Types of software reuse

6.1 Opportunistic reuse

While getting ready to begin a project, the team realizes that

there are existing components that they can reuse. A team

planned the strategically designs components so that they will

be reusable in future projects. Opportunistic reuse can be

categorized further:

6.1.1 Internal reuse

A team reuses its own components. This may be a business

decision, since the team may want to control a component

critical to the project.

6.1.2 External reuse

A team may choose to license a third party component.

Licensing a third party component typically costs the team 1 to

20 percent of what it would cost to develop internally. The

team must also consider the time it takes to find, learn and

integrate the component.

6.2 Systematic software reuse

Ramandeep Kaur
1
 IJECS Volume 3 Issue 5 may, 2014 Page No.6114-6117 Page 6116

Independent of what a component is, Systematic Software

Reuse influences almost whole software engineering process.

For providing guidance in the creation of high quality software

systems at low-cost the software process models were

developed. The original models were based on the

misconception that systems are built from scratch according to

stable requirements. Software process models have been

adapted since based on experience and several changes and

improvements have been suggested since the classic waterfall

model. With increasing reuse of software, new models for

software engineering are emerging. New models are based on

systematic reuse of well-defined components that have been

developed in various projects. These trends are particularly

evident in markets, such as electronic commerce and data

networking, where reducing development cycle time is crucial

to business success.

6.3 Horizontal reuse

Horizontal reuse refers to software components used across a

wide variety of applications. In terms of code assets, this

includes the typically envisioned library of components, such

as a linked list class, string manipulation routines, or graphical

user interface (GUI) functions. Horizontal reuse can also refer

to the use of a commercial off-the-shelf (COTS) or third-party

application within a larger system, such as an email package or

a word processing program. A variety of software libraries and

repositories containing this type of code and documentation

exist today at various locations on the Internet.

6.4 Vertical reuse

Vertical reuse, significantly untapped by the software

community at large, but potentially very useful, has far

reaching implications for current and future software

development efforts. The basic idea is the reuse of system

functional areas, or domains that can be used by a family of

systems with similar functionality. The study and application of

this idea has spawned another engineering discipline, called

domain engineering. This brings us to application engineering

the form and structure of the application engineering activity

are crafted by domain engineering so that each project working

in a business area can leverage common knowledge and assets

to deliver a high-quality product, tailored to the needs of its

customer, with reduced cost and risk. Domain engineering

focuses on the creation and maintenance of reuse repositories

of functional areas, while application engineering makes use of

those repositories to implements new products.

7. Reuse benefits

Various benefits of software reuse are the following:-

7.1 Savings in costs and time

As a developer uses already pre-defined components, hence,

the activities associated with components specification, design

and implementation are now replaced with finding components,

their adaptation to suit new requirements, and their integration.

7.2 Increase in productivity

A developer is given an opportunity to work with more abstract

notions related directly to the problem at hand and to ignore

low-level, implementation details. It has been shown that

working at a higher level of abstraction leads to an increase in

development productivity.

7.3 Increase in reliability

This also leads to an improved reliability of systems built of

reusable components rather than of those built entirely from

scratch.

7.4 Increase in ease of maintenance

This of course has a very positive impact on the quality of such

systems maintenance.

7.5 Improvement in documentation and testing

Whenever a new system is created by simple selection and

altering of such components, then, their documentation and

tests will have to be much easier to develop as well.

7.6 High speed and low cost replacement of aging systems

As the reuse-based systems share a very large collection of

program logic via the reuse library, thus, they are significantly

less complex and much smaller in size than those developed

from scratch. Such systems will therefore need less effort

during porting or adaptation to new hardware and software

environments.

8. Reuse drawbacks

Despite the benefits of software reuse, it is not as widely

practiced as one might assume. There are many factors that

directly or indirectly influence the success or failure of reuse.

These factors can be of conceptual, technical, managerial,

organizational, psychological, economic or legal nature. Some

of these are:-

 Reusing code, as compared with development of

entirely new systems, is boring.

 Locally developed code is better than that developed

elsewhere.

 It is easier to rewrite complex programs from scratch

rather than to maintain it

 There are no tools to assist programmers in finding

reusable artifacts.

 In majority of cases, developed programs are too

specialized for reuse.

 Adopted software development methodology does not

support software reuse.

 Reuse is often ad-hoc and is unplanned.

 There is no formal training in reusing code and designs

effectively.

 Useful reusable artifacts are not supported on the

preferred development platform.

 The reuse process is too slow.

 Interfaces of reusable artifacts are too awkward to use.

 Code with reusable components is often too big or too

inefficient.

 Programs built of reusable components are not readily

transportable.

 Reusable components do not conform to adopted

standards.

Ramandeep Kaur
1
 IJECS Volume 3 Issue 5 may, 2014 Page No.6114-6117 Page 6117

 Reuse techniques do not scale up to large software

projects.

 There are no incentives to reuse software.

9. Conclusion

This paper reviews the concepts of software reuse, reusability,

reuse artifacts, intentions, advantages and disadvantages, types

and methodology of reuse. With reuse productivity and

efficiency of software can be improve. Reuse is the best way

for making new changes in the existing software rather than

making efforts for change in the software from the scratch.

Reuse have various advantages, it increases the quality,

productivity, reusability and decreases the development cost.

There exist some situations where software reuse is not

appropriate depend upon the requirements of software. This

paper gives the information related the reuse artifacts that can

be reused. Most of engineers work with reuse of coding. But in

now days software component reuse is popular. A component

of software can be an object, class, function or anything related

to the software that is responsible for the smooth working of

the software. The methodology followed for reuse is similar to

the software development life cycle. There are various types of

software reuse types opportunistic reuse, systematic reuse,

horizontal reuse and vertical reuse on the basis of these

technologies software can be reused.

References

[1] Kuljit Kaur, Parminder Kaur, Dr. Hardeep Singh, 2005,

Quality Constraints on Reusable Components.

[2] Neha Budhija and Satinder Pal Ahuja, 2011, Review of

Software Reusability.

[3] Yongbeom Kim, Edward A. Stohr, 1991, software reuse:

issued and research directions.

[4] Johannes Sametinger, 1997, software engineering with

reusable components.

[5] Bruce W. Weide, William F. Ogden, and Stuart H.

Zweben, 1991, Reusable Software Components.

[6] B.Jalender, Dr A.Govardhan, Dr P.Premchand, 2011,

Breaking the Boundaries for Software Component Reuse

Technology

[7] Jacob L. Cybulski, Parkville, Introduction to Software

Reuse

Author Profile

Ramandeep Kaur received the B.Tech. and M.Tech. degrees in

Information technology and Computer Scinence and Engineering

from Guru Nanak Dev Engineering College, Ludhiana and Guru

Nanak Dev University, Amritsar in 2010 and 2012, respectively.

Working as Assistant Professor at CT Group of Institutions,

Jalandhar, India.

Navjot Kaur received the B.Tech. and M.Tech. degrees in

Information technology and Computer Scinence and Engineering

from Guru Nanak Dev Engineering College, Ludhiana and Punjabi

University, Patiala in 2010 and 2012, respectively. Working as

Assistant Professor at Aryabhatta Group of institutes, CSE

Department, Barnala,India.

Rajwinder Kaur received the B.Tech. degrees in Information

technology and Computer Scinence and Engineering from Guru

Nanak Dev Engineering College, Ludhiana in 2010. Working as

Assistant Professor at CT Group of Institutions, Jalandhar, India.

