

www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 4 April, 2013 Page No. 886-905

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 886

A Survey on SQL Injection attacks, their Detection and Prevention Techniques

V. Nithya1,R.Regan2, J.vijayaraghavan3
nithyahimalini@gmail.com1, Pondicherry Engineering College 1, Puducherry1, India

 reganr1985@gmail.com2, University College of Engineering2, Panruti, Anna University2, India
 vijay.j.raghavan@gmail.com3, Manakula Vinayagar Institute of Technology College3, Puducherry3, India

Abstract
 SQL injection is a technique that exploits a security vulnerability occurring in the database layer of an
application. The vulnerability is present when user input is either incorrectly filtered for string literal escape
characters embedded in SQL statements or user input is not strongly typed and thereby unexpectedly
executed.SQL injection is a trick to SQL query or command as an input possibly via the web pages. They occur
when data provided by user is not properly validates and is included directly in a SQL query. By leveraging
these vulnerabilities, an attacker can submit SQL commands directly access to the database. In this paper we
present all SQL injection attack types and also different technique and tools which can detect or prevent these
attacks .Finally we assessed addressing all SQL injection attacks type among current technique and tools.

 Key–Words: SQL injection attacks, prevention, detection, Web Application.

I. Introduction

As soon as the services of Internet are rising;
all web applications are depended on the Internet.
Example: online banking, university admissions,
shopping, and various government activities. So, we
can say that these activities are the key component of
today’s Internet Infrastructure. Web Applications are
the applications that can be accessed over the Internet
by using any web browser that runs on any operating
system and architecture. They have become
ubiquitous due to the convenience, interoperability,
flexibility, and availability that they provide. Web
Applications are vulnerable to a variety of new
security threats. SQLIAs are one of the most
significant of such threats. SQLIAs are increasing
continuously and posy very serious security risks
because they can give attackers unrestricted access to
the database that lie under web applications.

 Information is the most important business asset
today and achieving an appropriate level of

“Information security” can be viewed as essential in
order to maintain a competitive edge [38]. SQL
Injection Attacks (SQLIAs) is considered as one of
the top 10 web application vulnerabilities of 2010 by
the Open Web Application Security Project
(OWASP)[46], Semiannual Report (July to December
2010) from the Web Hacking Incidents Database
(WHID)[44] shows that that SQL injection are
consistently or near the top 21% of the reported
vulnerabilities in 2010 ,consider as top 2 attack and
recently in August, 2011, Hacker steals user records
from Nokia Developer Site using "SQL
injection”[47]. They are easy to detect and exploit;
that is why SQLIAs are frequently employed by
malicious user for different reasons. E.g. financial
fraud, theft, confidential data, deface website,
sabotage, espionage, cyber terrorism, or simply for
fun. Throughout 2010, Government, Finance and
Retail verticals faced different, but equally important,
outcomes. Attacks against Government agencies
resulted in defacement in 26% of SQL injection
attacks, while Retail was most affected by credit card

http://www.ijecs.in/�
mailto:vijay.j.raghavan@gmail.com�

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 887

leakage at 27% of SQL injection and finance
experienced monetary loss in 64% of attacks [44].
Furthermore, SQL Injection attack techniques have
become more common more ambitious, and
increasingly sophisticated, so there is a deep to need
to find an effective and feasible solution for this
problem in the computer security community.
Detection or prevention of SQLIAs is a topic of active
research in the industry and academia. To achieve
those purposes, automatic tools and security system
have been implemented, but none of them are
complete or accurate enough to guarantee an absolute
level of security on web application. One of the
important reasons of this shortcoming is that there is
lack of common and complete methodology for the
evaluation either in terms of performance or needed
source code modification which in an over head for
an existing system. A mechanism which will easily
deployable and provide a good performance to detect
and prevent the SQL injection attack is essential one.

II. OVERVIEW OF SQL INJECTION
ATTACK

SQL (Structured Query Language) is a textual

language used to interact with relational Database.
The typical unit of execution of SQL is the ‘query’,
which is a collection of statements that typically
return a single ‘resultset’. SQL statements can modify
the structure of databases and manipulate the contents
of databases by using various DDL, DML commands
respectively. SQL Injection occurs when an attacker
is able to insert a series of SQL statements into a

query by manipulating data input into an application
[39].

A. Definition of SQLIA
 Most web applications today use a multi-tier
design, usually with three tiers: a presentation, a
processing and a data tier. The presentation tier is the
HTTP web interface, the application tier implements
the software functionality, and the data tier keeps data
structured and answers to requests from the
application tier. Meanwhile, large companies
developing SQL-based database management systems
rely heavily on hardware to ensure the desired
performance. SQL injection is a type of attack which
the attacker adds Structured Query Language code to
input box of a web form to gain access or make
changes to data. SQL injection vulnerability allows an
attacker to flow commands directly to web
applications underlying database and destroy
functionality or confidentiality.

B.SQL Injection Attacks (SQLIA) Process

 SQLIA is hacking technique which the attacker
adds SQL statements through a web application’s
input field or hidden parameter to access to resources.
Lack of input validation in web applications causes
hacker to be successful. Basically SQL process
structured in three phases:

i. An attack sends the malicious HTTP request
to the web application.

ii. Create the SQL Statements.
iii. Submits the SQL statements to the back end

database

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 888

Figure: 1. Example for SQL injection attack data flow.

C. Consequence of SQLIA
 The result of SQLIA can be disastrous because a
successful SQL injection can read sensitive can read
sensitive data from the database, modify database
data (Insert/Update/Delete), execute administrative
operations on the Database (such as shutdown the
DBMS), recover the content on the DBMS file system
and execute commands (xp cmdshell) to the operating
system. The main consequences of these
vulnerabilities are attacks on[36]:
 i) Authorization Critical data that are stored in
a vulnerable SQL database may be altered by a
successful SQLIA, a authorization privilege.
 ii) Authentication If there is no any proper
control on username and password inside the
authentication page , it may be possible to login to a
system as a normal user without knowing the right
username and/or password.
 iii) Confidentially Usually databases are
consisting of sensitive data such as personal
information, credit card numbers and/ or social
numbers. Therefore loss of confidentially is a big
problem with SQL Injection vulnerability. Actually,
theft of sensitive data is one of the most common
intentions of attackers.

iv) Integrity By a successful SQLIA not only an
attacker reads sensitive information, but also, it is
possible to change or delete this private information.

D. Classification of SQLIA

An SQL injection attack has a set of
properties, such as assets under threat, vulnerabilities
being exploited and attack techniques utilized by
threat agents.

i) By Attacker Intent
An important classification of SQLIA is related to the
attacker's intent, or in other words, the goal of the
attack.

 a) Extracting data This category of attacks
tries to extract data values from the back end
database. Based on the type of web application, this
information could be sensitive, for example, credit
card numbers, social numbers; private data are highly
valuable to the attacker. This kind of intent is the
most common type of SQLIA.
 b) Adding or modifying data The purpose of
these attacks is to add or change data values within a
database.
 c) Performing database finger printing In
this category of attack the malicious user wants to
discover technical information on the database such
as the type and version that a specific web application
is using. It is noticeable that certain types of databases
respond differently to different queries and attacks,
and this information can be used to "fingerprint" the
database. Once the intruder knows the type and the
version of the database it is possible to organize a
particular attack to that database.

d) By passing authentication By this attack,
intruders try to bypass database and application

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 889

authentication mechanisms. Once it has been over
passed, such mechanisms could allow the intruder to
assume the rights and privileges associated with
another application user.

e) Identifying injects able parameters Its goal
is to explore a web application to discover which
parameters and user-input fields are vulnerable to
SQLIA. By using an automated tool called a
"vulnerabilities scanner" this intent can be identified.
 f) Determining database schema The goal of
this attack is to obtain all the database schema
information (such as table names, column names, and
column data types). This is very useful to an attacker
to gather this information to extract data from the
database successfully. Usually by exploiting specific
tools such as penetration testers and vulnerabilities
scanners this goal is achieved.
 e) Performing denial of service In these
category intruders make interrupt in system services
by performing some instruction so the database of a
web application shutdown, thus denying service
happens. Attacks involving locking or dropping
database tables also fall into this category.

ii) Vulnerabilities

a) Insufficient Input Validation Input
validation is an attempt to verify or filter any input for
malicious behavior. Insufficient input validation will
allow code to be executed without proper verification
of its intention. Attacker taking advantages of
insufficient input validation can utilize malicious
code to conduct attacks [37].

b) Privileged account A privileged account
has a degree of freedom to do what normal accounts
cannot. Its action may also exempt from auditing and
validation. This present vulnerability since a
jeopardized privileged account, such as an
administrator account, can compromise much more
than what a jeopardized regular account can.
 c) Extra Functionalit: Extra functionalities
meant to provide a broader range of vulnerability,
since combinations of this functionality may result in
unintended actions. For example, xp_cmdshell is
meant to provide users with a way executing
operating system commands, but commonly used to
added unauthorized users into the operating system.

iii). Asserts

 Asserts are information or data an unauthorized
threat agent attempt to gain.

a) Database Server Fingerprint The database
server fingerprints contains information about the
database system in use. It indentifies the specific type
and version of the database, as well as the
corresponding SQL language dialect. A compromise
of this asset may allow attackers to construct
malicious code specifically for the SQL language
dialect in question.

b) Database Schema The database schema
describes the server’s internal architecture Database
Structure information such as table names, size and
relationships are defined in the data schema. Keeping
this asset private is essential in keeping the
confidentiality and integrity of the database data .A
compromise in the database schema may allow
attackers to know the exact structure of the database,
including table, rows and column headings.

c) Database Data T he database data is the
most crucial asset in any database system. It contains
the information in the tables described in the database
schema, such as prices in an online store, personal
information of clients, administrator passwords, etc.
A compromise in the database data will usually result
in failure of the system’s intended functionality, thus,
its confidentiality and integrity must be protected.

d) Network A network interconnects
numerous hosts together and allows communication
between them. A compromise in a network will most
likely compromise every host in the network. Some
networks may also be interconnected with other
networks, furthering the potential damage, should an
attack be successful.

E). Method logy for a Successful SQLIA
 Attack techniques are the specific means by which
a threat agent carries out attacks using malicious
code. Threat agent may use many different methods
to achieve their goals, often combing several of these
sequentially or combing several or employing them in
different varieties[39].
i) Tautologies
Attack Intent: Bypassing authentication, identifying
inject able parameters, extracting data.
Description: A SQL tautology is a statement that is
always true. Tautology-based SQL injection attacks
are usually used to bypass user authentication or to
retrieve unauthorized data by inserting a tautology

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 890

into a conditional statement. A typical SQL tautology
has the form “or <comparison expression>”, where
the comparison expression uses one or more relational
operators to compare operands and generate an
always true condition. The general goal of a
tautology-based attack is to inject SQL tokens that
cause the query’s conditional statement to always
evaluate the true.
For example, SELECT * FROM user WHERE id=’1’
or ‘1=1’-‘AND password=’1234’;The “or 1=1” is the
most commonly known tautology.

ii) Piggy-backed Query
Attack Intent: Extracting data, adding or modifying
data, performing denial of service, executing remote
commands
Description: In the piggy-backed Query attacker tries
to append additional queries to the original query
string. On the successful attack the database receives
and executes a query string that contains multiple
distinct queries. In this method the first query is
original whereas the subsequent queries are injected.
This attack is very dangerous; attacker can use it to
inject virtually any type of SQL command. For
example, SELECT * FROM user WHERE
id=’admin’ AND password=’1234’; DROP TABLE
user; --’; Here database treats above query string as
two query separated by “;” and executes both. The
second sub query is malicious query and it causes the
database to drop the user table in the database.

iii) Logically Incorrect
 Attack Intent: Identifying inject able parameters,
performing database finger-printing, extracting data.
Description: This attack takes advantage of the error
messages that are returned by the database for an
incorrect query. These database error messages often
contain useful information that allow attacker to find
out the vulnerable parameter in an application and the
database schema. For example, SELECT * FROM
user WHERE id=’1111’ AND password=’1234’
AND CONVERT (char, no); the purpose of this
attack is to collect the structure and information of
CGI.

iv) Union query:
Attack Intent: Bypassing Authentication, extracting
data.

Description :Union query injection is called as
statement injection attack. In this attack attacker
insert additional statement into the original SQL
statement. This attack can be done by inserting either
a UNION query or a statement of the form “;< SQL
statement >” into vulnerable parameter. The output of
this attack is that the database returns a dataset that is
the union of the results of the original query with the
results of the injected query. For example, SELECT *
FROM user WHERE id=’1111’ UNION SELECT *
FROM member WHERE id=’admin’ --’ AND
password=’1234’;

v) Stored Procedure
Attack Intent: Performing privilege escalation,
performing denial of service, executing remote
commands.
Description: In this technique, attacker focuses on the
stored procedures which are present in the database
system. Stored procedures run directly by the
database engine. Stored procedure is nothing but a
code and it can be vulnerable as program code. For
authorized/unauthorized user the stored procedure
returns true/false. As an SQLIA, intruder input “;
SHUTDOWN; --" for username or password. Then
the stored procedure generates the following query:
For example, SELECT accounts FROM users
WHERE login= '1111' AND pass='1234 ';
SHUTDOWN;--; This type of attack works as
piggyback attack. The first original query is executed
and consequently the second query which is
illegitimate is executed and causes database shut
down. So, it is considerable that stored procedures are
as vulnerable as web application code [21].

vi) Inference
Attack Intent: Identifying injectable parameters,
extracting data, determining database schema
 Description: By this type of attack, intruders change
the behaviour of a database or application. There are
two well known attack techniques that are based on
inference: blind injection and timing attacks.

Blind Injection: Sometimes developers hide

the error details which help attackers to compromise
the database. In this situation attacker face to a
generic page provided by developer, instead of an
error message. So the SQLIA would be more difficult
but not impossible. An attacker can still steal data by

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 891

asking a series of True/False questions through SQL
statements. Consider two possible injections into the
login field:

For example, SELECT accounts FROM users
WHERE id= '1111' and 1 =0 -- AND pass = AND
pin=0

SELECT accounts FROM users WHERE
login= 'doe' and 1 = 1 -- AND pass = AND pin=0

If the application is secured, both queries
would be unsuccessful, because of input validation.
But if there is no input validation, the attacker can try
the chance. First the attacker submits the first query
and receives an error message because of "1=0 ". So
the attacker does not understand the error is for input
validation or for logical error in query. Then the
attacker submits the second query which always true.
If there is no login error message, then the attacker
finds the login field vulnerable to injection.

Timing Attacks: A timing attack lets an

attacker gather information from a database by
observing timing delays in the database's responses.
This technique by using if-then statement cause the
SQL engine to execute a long running query or a time
delay statement depending on the logic injected. This
attack is similar to blind injection and attacker can
then measure the time the page takes to load to
determine if the injected statement is true. This
technique uses an if-then statement for injecting
queries. WAITFOR is a keyword along the branches,
which causes the database to delay its response by a
specified time.

For example, declare @ varchar (8000) select
@s = db_name () if (ascii (substring (@s, 1, 1)) &
(power (2, 0))) > 0 waitfor delay '0:0:5'
Database will pause for five seconds if the first bit of
the first byte of the name of the current database is 1.
Then code is then injected to generate a delay in
response time when the condition is true. Also,
attacker can ask a series of other questions about this
character. As these examples show, the information is
extracted from the database using a vulnerable
parameter.

vii) Alternate Encodings
Attack Intent: Evading detection.
Description: In this technique, attackers modify the
injection query by using alternate encoding, such as
hexadecimal, ASCII, and Unicode. Because by this

way they can escape from developer's filter which
scan input queries for special known "bad character".
For example attacker use char (44) instead of single
quote that is a badcharacter. This technique with join
to other attack techniques could be strong, because it
can target different layers in the application so
developers need to be familiar to all of them to
provide an effective defensive coding to prevent the
alternate encoding attacks. By this technique,
different attacks could be hidden in alternate
encodings successfully. In the following example the
pin field is injected with this string: "0; exec
(0x73587574 64 5f177 6e), " and the result query is:
SELECT accounts FROM users WHERE login="
AND pin=0; exec (char (0x73687574646j776e))

This example use the char () function and
ASCII hexadecimal encoding. The char () function
takes hexadecimal encoding of character(s) and
returns the actual character(s). The stream of numbers
in the second part of the injection is the ASCII
hexadecimal encoding of the attack string. This
encoded string is translated into the shutdown
command by database when it is executed.

III. RELATED WORK

In order to detect and prevent SQL Injection
attacks, filtering and other detection methods are
being researched. This section explains the related
work.
Black Box Testing Huang and colleagues [5] propose
WAVES, a black-box technique for testing Web
applications for SQL injection vulnerabilities. The
technique uses a Web crawler to identify all points in
a Web application that can be used to inject SQLIAs.
It then builds attacks that target such points based on a
specified list of patterns and attack techniques.
WAVES then monitors the application’s response to
the attacks and uses machine learning techniques to
improve its attack methodology. This technique
improves over most penetration-testing techniques by
using machine learning approaches to guide its
testing. However, like all black-box and penetration
testing techniques, it cannot provide guarantees of
completeness.

WebSSARI WebSSARI [9] use static analysis to
check taint flows against preconditions for sensitive
functions. It works based on sanitized input that has

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 892

passed through a predefined set of filters. The
limitation of approach is adequate preconditions for
sensitive functions cannot be accurately expressed so
some filters may be omitted.

SecuriFly SecuriFly [23] is tool that is implemented
for java. Despite of other tool, chase string instead of
character for taint information and try to sanitize
query strings that have been generated using tainted
input but unfortunately injection in numeric fields
cannot stop by this approach. Difficulty of identifying
all sources of user input is the main limitation of this
approach.

Static Code Checkers JDBC-Checker is a technique
for statically checking the type correctness of
dynamically generated SQL queries [6, 7]. This
technique was not developed with the intent of
detecting and preventing general SQLIAs, but can
nevertheless be used to prevent attacks that take
advantage of type mismatches in a dynamically-
generated query string. JDBC-Checker is able to
detect one of the root causes of SQLIA
vulnerabilities in code improper type checking of
input. However, this technique would not catch
more general forms of SQLIAs because most of these
attacks consist of syntactically and type correct
queries. Wassermann and Su propose an approach that
uses static analysis combined with automated
reasoning to verify that the SQL queries generated in
the application layer cannot contain a tautology [19].
The primary drawback of this technique is that its
scope is limited to detecting and preventing
tautologies and cannot detect other types of attacks.

Dynamic Analysis Dynamic analysis, unlike static
analysis, can locate vulnerabilities of SQL injection
attacks without making any a adjustments to web
applications. Open source program Paros [45] scans
not only SQLIAs vulnerabilities, but also other
vulnerabilities within the web application. Paros is
not perfect because it uses predetermined attack codes
to scan and uses HTTP response to the success-rate of
the attack. Sania [24] finds and collects SQL injection
attack vulnerabilities between the web application and
databases. Then, it proceeds to generate SQL
Injection attack codes. After attacking with the
generated code, it collects the SQL query from the
attack. After the normal SQL query is compared and

analyzed with the SQL query collected from the
attack using the parse tree, the success rate of the
attack is verified. Since a parse tree is used, Sania is
more accurate than using HTTP response verification.
Yonghee Shin [42] proposed to use Input Flow
Analysis and input validation analysis to build a
white-box, and generated test input data to locate
SQL Injection vulnerabilities. Dynamic analysis
method is advantageous because no web application
adjustments are necessary. However, the
vulnerabilities found in the web application must be
manually fixed by the developers and not all of them
can be found without predefined attacks.

Combined Static and Dynamic Analysis:
AMNESIA is a model-based technique that combines
static analysis and runtime monitoring [12, 13]. In its
static phase, AMNESIA uses static analysis to build
models of the different types of queries an application
can legally generate at each point of access to the
database. In its dynamic phase, AMNESIA
intercepts all queries before they are sent to the
database and checks each query against the statically
built models. Queries that violate the model are
identified as SQLIAs and prevented from executing on
the database. In their evaluation, the authors have
shown that this technique performs well against
SQLIAs. The primary limitation of this technique is
that its success is dependent on the accuracy of its
static analysis for building query models. Certain
types of code obfuscation or query development
techniques could make this step less precise and result
in both false positives and false negatives.

SQLCHECK: Su and Wassermann [10] implement
their algorithm with SQLCHECK on a real time
environment. It checks whether the input queries
conform to the expected ones defined by the
programmer. A secret key is used for the user input
delimitation. The analysis of SQLCHECK shows no
false positives or false negatives. Also, the overhead
runtime rate is very low and can be implemented
directly in many other Web applications using
different languages

SQLrand Boyd, Keromytis [11] proposed SQLrand
which uses instruction set randomization of SQL
statement to check SQL injection attack. It uses a
proxy to a append key to SQL keyword. A de-

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 893

randomizing proxy then converts the randomized
query to proper SQL queries for the database. The
key is not known to the attacker, so the code injected
by attacker is treated as undefined keywords and
expressions which cause runtime exceptions and the
query is not sent to database. The disadvantage of
this system is its complex configuration and the
security of the key. If the key is exposed, attacker can
formulate queries for successful attack.

Thomas et al.’s Scheme SQL provides the prepare
statement[40], which separates the values in a query
from the structure of SQL.The programmer defines a
skeleton of an SQL query and then fills in the holes of
the skeleton at runtime. The programmer defines a
skeleton at runtime. The prepare statement makes it
harder to inject SQL queries because the SQL queries
because the SQL structure cannot be changed.
Thomas et al., in [26] suggest an automated prepared
statement generation algorithm to remove SQL
Injection Vulnerabilities. They implement their
research work using four open source projects
namely: (i) Net-trust, (ii) I Trust, (iii) Web Goat,
and (iv) Roller. Based on the experimental results,
their prepared statement code was able to
successfully replace 94% of the SQLIVs in four open
source projects. To use the prepare statement, we
must modify the web application must be rewritten to
reduce the possibility of SQL injection.

SQLIA Prevention Using Stored Procedures Stored
procedures are subroutines in the database which
the applications can make call to [17]. The
prevention in these stored procedures is
implemented by a combination of static analysis
and runtime analysis. The static analysis used for
commands identification is achieved through
stored procedure parser and the runtime analysis by
using a SQLChecker for input identification.[9]
Proposed a combination of static analysis and
runtime monitoring to fortify the security of potential
vulnerabilities.

Proxy Filters Security Gateway [8] is a proxy
filtering sys- tem that enforces input validation rules
on the data flowing to a Web application. Using their
Security Policy Descriptor Language (SPDL),
developers provide constraints and specify
transformations to be applied to application

parameters as they flow from the Web page to the
application server. Because SPDL is highly
expressive, it allows developers considerable freedom
in expressing their policies. However, this approach
is human-based and, like defensive programming,
requires developers to know not only which data
needs to be filtered, but also what patterns and filters
to apply to the data

Intrusion Detection Systems: Valeur and colleagues
[25] pro- pose the use of an Intrusion Detection System
(IDS) to detect SQLIAs. Their IDS system is based on
a machine learning technique that is trained using a
set of typical application queries. The technique
builds models of the typical queries and then monitors
the application at runtime to identify queries that do
not match the model. In their evaluation, Valeur and
colleagues have shown that their system is able to
detect attacks with a high rate of success. However,
the fundamental limitation of learning based
techniques is that they can provide no guarantees
about their detection abilities because their success is
dependent on the quality of the training set used. A
poor training set would cause the learning technique
to generate a large number of false positive and
negatives.

Ali et al.’s Scheme Ali et al.’s Scheme [1] adopts the
hash value approach to further improve the user
authentication mechanism. They use the user name
and password as hash values. SQLIPA (SQL Injection
Protector for Authentication) prototype was
developed in order to test the framework. The user
name and password hash values are created and
calculated at runtime for the first time the particular
user account is created.

Ruse et al.’s Approach: In [27], Ruse et al. propose a
technique that uses automatic test case generation to
detect SQL Injection Vulnerabilities. The main idea
behind this framework is based on creating a specific
model that deals with SQL queries automatically.
Adding to that, the approach identifies the
relationship (dependency) between sub-queries. Based
on the results, the methodology is shown to be able to
specifically identify the causal set and obtain 85%
and 69% reduction respectively while experimenting
on few sample examples.

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 894

Shin et al.’s approach suggests SQLUnitGen, a
Static-analysis-based tool that automate testing for
identifying input manipulation vulnerabilities: [28].
The authors apply SQLUnitGen tool which is
compared with FindBugs, a static analysis tool. The
proposed mechanism is shown to be efficient as
regard to the fact that false positive was completely
absent in the experiments

CANDID Bishtet al [3] proposed CANDID. It is a
Dynamic Candidate Evaluations method for
automatic prevention of SQL Injection attacks. This
framework dynamically extracts the query structures
from every SQL query location which are intended by
the developer (programmer). Hence, it solves the
issue of manually modifying the application to create
the prepared statements.

SQL DOM Scheme SQL DOM framework is
suggested by McClure and Kruger in [14]. They
closely consider the existing flaws while accessing
relational databases from the OOP (Object-Oriented
Programming) Languages point of view. They mainly
focus on identifying the obstacles in the interaction
with the database via CLIs (Call Level Interfaces).
SQL DOM object model is the proposed solution to
tackle these issues through building a secure
environment for communication.

SAFELI proposes a Static Analysis Framework in
order to detect SQL Injection Vulnerabilities.
SAFELI framework aims at identifying the SQL
Injection attacks during the compile-time[29]. This
static analysis tool has two main advantages. Firstly,
it does a White-box Static Analysis and secondly, it
uses a Hybrid-Constraint Solver. For the White-box
Static Analysis, the proposed approach considers the
byte-code and deals mainly with strings. For the
Hybrid-Constraint Solver, the method implements an
efficient string analysis tool which is able to deal with
Boolean, integer and string variables.
\
Parse Tree Validation Approach Buehrer et al. [20]
adopt the parse tree framework. They compared the
parse tree of a particular statement at runtime and
its original statement. They stopped the execution of
statement unless there is a match. This method was
tested on a student Web application using SQLGuard.
Although this approach is efficient, it has two major

drawbacks: additional overheard computation and
listing of input (black or white).

Swaddler Swaddler [18] analyzes the internal state of
a web application. It works based on both single and
multiple variables and shows an impressive way
against complex attacks to web applications. First the
approach describes the normal values for the
application’s state variables in critical points of the
application’s components. Then, during the detection
phase, it monitors the application’s execution to
identify abnormal states.

DIWeDa approach Roichman and Gudes [30]
propose IDS (Intrusion Detection Systems) for
the backend databases. They use DIWeDa, a
prototype which acts at the session level rather than
the SQL statement or transaction stage, to detect the
intrusions in Web applications. The proposed
framework is efficient and could identify SQL
injections and business logic violations too.

Positive Tainting and Syntax Aware Evaluation: In
this approach [15] valid input strings are initially
provided to the system for detection of SQLIA. At
runtime, it categorizes input strings and propagates
the untrusted or other than trusted markings based on
the initialization. After that, a ‘syntax aware
evaluation’ is performed for evaluating the
propagated strings. Thus, based on the evaluation, if
untrusted strings are found, such queries are restricted
from passing into the database server for processing.
During initialization of the trusted strings, it performs
identification and marking based on inputs. The
strings are categorized as: (i) hard coded strings, (ii)
strings implicitly created by Java and (iii) strings
originated from external sources. In case of syntax-
aware evaluation, it performs syntax evaluation at the
database interaction point. Syntax defines the trust
policies which are the functions defined by the web
programmer. Functions perform pattern matching and
if the result of matching gives positive outcome, the
tool allows the query to be executed on the database
server. Following issues are there in this method - (i)
Initialization of trusted strings are developers
dependent and (ii) Persistent storage of trusted strings
may cause second order attack [41].

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 895

Context Sensitive String Evaluation (CSSE) The
basic idea behind this approach is to find out the root
cause of SQLIA [31]. The root cause is the origin of
the data (information about the data, termed as
metadata) i.e., user-provided or developer-provided.
Thus, any data provided by the user is marked as
untrusted and data provided by the applications are
termed as trusted. The untrusted metadata are used for
syntactic analysis based on ‘Context Sensitive String
Evaluation (CSSE)’. Injection may also occur due to
programming flaws during developments. CSSE is
basically based on syntactical analysis, which first
distinguishes string constants (for e.g., select *from
users where login=’$login_name’) and numerical
constants (e.g., select * from users where pin=$pin).
It then removes all unsafe characters (un-escaped
quotes) in alphanumeric identifiers and non-numeric
characters in numeric identifiers. This operation is
performed before sending the query to the database
server. Following issues are there in this approach (i)
Initialization of the unsafe characters is dependent on
the web programmer, and (ii) Removal of unsafe
characters restricts the application functionality.

SQL Prevent SQL Prevent [22] is consists of an
HTTP request interceptor. The original data flow is
modified when SQL Prevent is deployed into a web
server. The HTTP requests are saved into the current
thread-local storage. Then, SQL interceptor intercepts
the SQL statements that are made by web application
and pass them to the SQLIA detector module.
Consequently, HTTP request from thread-local
storage is fetched and examined to determine whether
it contains an SQLIA. The malicious SQL statement
would be prevented to be sent to database, if it is
suspicious to SQLIA.

Combinatorial Approach R. Ezumalai and G. A-
2009 [32] used a signature based technique against
SQL Injection Attacks. In this technique, they used
three modules to detect security issues. A monitoring
module which takes input from web application and
sent to analysis module. An analysis module which
finds out the hotspots from application, it uses
Hirschberg algorithm. Hirschberg algorithm is a
string comparison algorithm which works on divide
and conquer rule. It stores all the keywords in the
specifications module.

Manual Approaches MeiJunjin highlights the use of
manual approaches in order to prevent SQLI input
manipulation flaws. In manual approaches, defensive
programming and code review are applied[33]. In
defensive programming: an input filter is
implemented to disallow users to input malicious
keywords or characters. This is achieved by using
white lists or black lists. As regards to the code
review [43], it is a low cost mechanism in detecting
bugs; however, it requires deep knowledge on
SQLIAs.

Automated Approaches Besides using manual
approaches, MeiJunjin [33] also highlights the use of
automated approaches. The author notes that the two
main schemes are: Static analysis FindBugs and Web
vulnerability scanning. Static analysis FindBugs
approach detects bugs on SQLIAs, gives warning
when an SQL query is made of variable. However, for
the Web vulnerability scanning, it uses software
agents to crawl, scans Web applications, and detects
the vulnerabilities by observing their behavior to the
attacks.

Specification-Based Approach Kemalis and
Tzouramanis [4] proposed a specification-based
approach to detect SQL injection attacks. This
technique is based on the assumption that an injected
statement and the intended statement of the program
have different structures. Therefore, a comparison of
their structures can tell if the submitted statement is
malicious. The specifications used to describe the
intended structure of all the application-generated
statements. The specifications describe the rules about
what syntactic structure an application-generated SQL
query should follow in order to be considered as
legitimate [4]. Kemalis and T zouramanis created
specifications for their applications using Extended
Backus Naur Form (EBNF) based on the ISO/IEC
SQL database language criteria.

Fine-grained Access Control Scheme In [16],
Roichman and Gudes, in order to secure Web
application databases, suggest using a fine-grained
access control to Web databases. They develop a new
method based on fine-grained access control
mechanism. The access to the database is supervised
and monitored by the built-in database access control.
This approach is efficient in the fact that the security

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 896

and access control of the database is transferred from
the application layer to the database layer. This is a
solution of the vulnerability of the SQL session
traceability. Besides that, it is a framework which is
applicable to almost all database applications.
Therefore, it significantly decreases the risk of attacks
at the backend of the database application.

Haixia and Zhihong’s Database Security Testing
Scheme: In [34], Haixia and Zhihong propose a
secure database testing design for Web applications.
They suggest a few things; firstly, detection of
potential input points of SQL Injection; secondly,
generation of test cases automatically, then finally
finding the database vulnerability by running the test
cases to make a simulation attack to an application.
The proposed methodology is shown to be efficient as
it was able to detect the input points of SQL Injection
exactly and on time as the authors expected.
However, after analyzing the scheme, we find that the
approach is not a complete solution but rather it needs
additional improvements in two main aspects: the
detection capability and the development of the attack
rule library.

Detection based on removing SQL query attribute
values Inyong Lee, Soonki Jeong [2] proposed an
approach to detect SQL injection attacks is based on
static and dynamic analysis. This method removes the
attribute values of SQL queries at runtime (dynamic
method) and compares them with the SQL queries
analyzed in advance (static method) to detect the SQL
injection. When run the application each dynamical
generated query is compared or performs XOR
operation with fixed query if it results zero then that
particular query allowed to the database and if it not
results to zero then that query reported as abnormal
query stop sending to database.

IV EVALVATION

 In this section, the SQL injection detection or

prevention techniques presented in section III would
be compared. We first consider which attack types
each technique is able to address. For the subset of
techniques that are based on code improvement, we
look at which defensive coding practices the
technique helps enforce. Finally, we evaluate the
deployment requirements of each technique.

A) Comparative Analysis: It would be difficult to
give which scheme or approach is the best as each
one has some proven benefits for specific types of
settings (i.e., systems). Hence, in this section, we note
down how various schemes work against the
identified SQL Injection attacks. For the purposes of
the comparison, we divide the techniques into two
categories: detection and prevention techniques.
Prevention techniques are techniques that statically
identify vulnerabilities in the code and Detection
techniques are techniques that detect attacks mostly at
runtime. Table 1 shows a chart of the schemes and
their defense and prevention capabilities against
various SQLIAs. The symbol “•” is used for
technique that can successfully stop all attacks of that
type. The symbol “×” is used for technique that is not
able to stop attacks of that type. The symbol “o”
refers to technique that stop the attack type only
partially because of limitations of the underlying
approach. Though many approaches have been
identified as detection or prevention techniques, only
few of them were implemented in practicality. Hence,
this comparison is not based on empirical experience
but rather it is an analytical evaluation. Table 2,
illustrates the addressing percentage of SQL Injection
attacks among SQL Injection prevention or detection
techniques. The percentage of techniques that stop
Tautology is calculated by this formula:

X= 59% where X denotes percentage of techniques

that stop Tautology attack.
Two attack types alternate encodings and

stored procedures, caused problems for most
techniques. With stored procedures, the code that
generates the query is stored and executed on the
database. Almost all the types attack have steadily
addressed by techniques except Stored Procedure,
which cannot be stopped by some techniques. It is
evident that only 22%of techniques can stop Stored
Procedure ,on other hand 59% of current techniques
can stop tautologies, Inference and 54% of current
techniques can stop Piggy backed,
Logically/Incorrect, Union queries completely. It
interesting that almost steadily, 31%of attack types

= X

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 897

could be addressed by these techniques partially
.Nevertheless it is unfortunate that 45% of techniques
cannot stop Store Procedure and Alter Encoding with

45% stopping and 22% non stopping by preventive
and detective techniques.

TABLE 1: COMPARISON OF SQLI DETECTION AND PREVENTION TECHNIQUES WITH

RESPECT TO ATTACK TYPES

Attack
Types

Detection techniques

Prevention Techniques

 Sw
addler [18]

 SQ
L Prevent [22]

 SQ
Lrand[11]

 SA
FELI [29]

 SQ
LIPA

[1]

 SQ
LG

uard[11]

 SQ
LC

heck [10]

 Tautology C
hecker [19]

 ID
S[25]

 D
etection based on

rem
oving SQ

L query

 D
IW

eD
a [30]

 C
SSE[31]

 C
A

N
D

ID
[3]

 A
utom

ated A
pproaches[33]

 A
M

N
ESIA

[12,13]
 W

ebSSA
R

I[9]
 W

A
V

ES[5]

 SQ
LD

O
M

[14]
 Security G

atew
ay[8]

 SecuriFly[23]
 Positive Tainting[15]
 JD

B
C

 C
hecker[6,7]

Tautologi
es o • • × • • • • o • × • o • • • o • o o • o

Piggy-
backed o • • • × • • × o • × • o • • • o • o o • o

Logically
/ Incorrect o • • • × • • × o • × • o • • • o • o o • o

Union o • • • × • • × o • × • o • • • o • o o • o
Stored

Procedure o • × • × × × × o • × × o × × • o × o o • o

Inference o • • • × • • × o • • • o • • • o • o o • o
Alternate
Encodings o • • • × • • × o • × × o × • • o • o o • o

TABLE 2: PERCENTAGE OF SQL INJECTION DETECTION OR PREVENTION TECHNIQUES

S.No. Attack types

Technique that can

stop all attacks of

that type(•)

Technique that can

stop the attack only

partially(o)

Technique that

is not able to

stop attacks of

that type(×)

1 Tautologies 59 31 9

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 898

2 Piggy-backed 54 31 13

3 Logically / Incorrect 54 31 13

4 Union 54 31 13

5 Stored Procedure 22 31 45

6 Inference 59 31 9

7 Alternate Encodings 45 31 22

ii) Evaluation of Prevention Techniques with

Respect to Defensive Coding Practices: Our initial

evaluation of the techniques against various attack

types indicates that the prevention techniques perform

well against most of these attacks. We hypothesize

that this result is due to the fact that many of the

prevention techniques are actually applying defensive

coding best practices to the code base.

TABLE 3: ANALYSIS OF CODE IMPROVEMENT METHODS WITH RESPECT TO

DEVELOPMENT ERRORS

Technique
Input type

checking

Encoding of

input

Identification

of input

sources

Positive

pattern

matching

JDBC

Checker

[6,7]

Yes No No No

SecuriFly

[23]
No Yes Yes No

Security

Gateway[8]
Yes Yes No Yes

SQLDOM

[14]
Yes Yes N/A No

WebSSARI

[9]
Yes Yes Yes Yes

Therefore, we examine each of the prevention

techniques and classify them with respect to

defensive coding practice that they enforce. Not

surprisingly, we find that these techniques enforce

many of these practices. Table 3 summarizes, for

each technique, which of the defensive coding

practices it enforces.

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 899

iii) Comparison of techniques based on

deployment requirement Each prevention and

detection technique evaluated based on the

following criteria: (a) Does the technique require

developers to modify their code base? (b) What is

the degree of automation of prevention aspect of

the technique? (c) What is the degree of

automation of detection aspect of the technique?

(d) What are additional factors needed to

successfully use the technique? The results of this

classification are summarized in Table 4. A table

4 determines the degree of automation of

technique in the prevention or detection of attacks

and also it could be cleared that which technique

needs to modify the source code of application.

Moreover additional elements that is required for

each technique is illustrated.

TABLE 4: ANALYSIS OF PREVENTION AND DETECTION TECHNIQUES BASED ON

ADDITIONAL ELEMENTS

S.No. Techniques
Source Code

Modification

Attack

Prevention

Attack

Detection

Additional

Requirements

1 AMNESIA[12,13] Not needed Automatic Automatic N/A

2
Automated

Approaches[33]
Not needed Automatic Automatic N/A

3 CANDID[3] Not needed Automatic Automatic N/A

4 CSSE[31] Not needed Automatic Automatic
Custom PHP

interpreter

5 DIWeDa [30] Not needed N/A Automatic N/A

6

Detection based on

removing SQL query

attribute values [2]

Not needed Automatic Automatic N/A

7 IDS[25] Not needed
Report

generate
Automatic

IDS system training

set

8 JDBC Checker[6,7] Not needed

Code

modification

suggested

Automatic N/A

9 Positive Tainting[15] Not needed Automatic Automatic N/A

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 900

S.No. Techniques
Source Code

Modification

Attack

Prevention

Attack

Detection

Additional

Requirements

10 SQLCheck [10] Needed Automatic
Partially

automatic
Key Management

11 SQLGuard Needed Automatic
Partially

automatic
N/A

12 SQLIPA[1] Not needed
Partially

automatic
Automatic N/A

13 SAFELI [29] Not needed N/A
Partially

automatic
N/A

14 SQLrand[11] Needed Automatic Automatic

Developer training,

Key Management,

Proxy filter

15 SQL Prevent [22] Not needed Automatic Automatic N/A

16 SecuriFly[23] Not needed Automatic Automatic N/A

17 Security Gateway[8] Not needed Automatic

Detailed

manual

Specification

Proxy filter

18 SQLDOM[14] Needed Automatic Automatic Developer training

19 Swaddler [18] Not needed Automatic Automatic Training

20 Tautology Checker [19] Not needed

Code

modification

suggested

Automatic N/A

21
WAVES[5]

Not needed

Report

generate
Automatic N/A

22 WebSSARI[9] Not needed
Partially

automatic
Automatic N/A

V.CONCLUSION

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 901

Most of the web applications uses

intermediate layer to accept a request from the

user and retrieve sensitive information from the

database. Most of the time they use scripting

language to build intermediate layer. To breach

security of database hacker often uses SQL

injection techniques. Generally attacker tries to

confuse the intermediate layer technology by

reshaping the SQL queries. Perhaps, attacker will

change the activities of the programmer for their

benefits.

In this paper, we assessed detecting and

preventing SQL injection attacks among current

SQL Injection detection and prevention

techniques. To perform this evaluation, we first

identified the various types of SQLIAs known to

date. Then we investigated SQL injection

detection and prevention techniques. After that we

compared these techniques in terms of their ability

to stop SQLIA. Regarding the results some

current techniques ability should be improved for

stopping SQLI attacks. We also studied the

different mechanisms through which SQLIAs can

be introduced into an application and identified

which techniques were able to handle which

mechanisms. We also found a general distinction

between detection and prevention techniques. And

we also suggested that prevention techniques try

to incorporate defensive coding best practices into

their attack prevention mechanisms. The SQL

injection attack also stopped using approach such

as Blacklist malicious hosts, Minimize admin-

level access to a database, Normalize inputs,

Model Based Hybrid Approach ,SVM(Support

Vector Machine) ,ASCII Based String Matching,

share intelligence on SQL injection attacks

detection and prevention technique.

Future evaluation work direction on

evaluating the technique precision, stability,

flexibility and effectiveness in practice to show

strength and weakness of the techniques.

REFERENCES

 [1] S. Ali, SK. Shahzad and H. Javed,

“SQLIPA: An Authentication Mechanism

against SQL Injection”, European Journal of

Scientific Research ISSN 1450-216X

Vol.38 No.4 (2009), pp 604-611.

[2] Inyong Lee , Soonki Jeong Sangsoo Yeoc,

Jongsub Moond, “A novel method for SQL

injection attack detection based on removing

SQL query attribute”, Journal Of

mathematical and computer modeling,

Elsevier 2011.

[3] P. Bisht, P. Madhusudan, and V. N.

Venkatakrishnan, “CANDID: Dynamic

Candidate Evaluations for Automatic

Prevention of SQL Injection Attacks”, ACM

Transaction on information System Security,

pp.1–39, 2010.

[4] Kemalis, K. and T. Tzouramanis, “SQL-IDS:

A Specification-based Approach for SQL

http://www.informationweek.com/news/security/vulnerabilities/231601413�

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 902

injection Detection”, SAC’08. Fortaleza,

Ceará, Brazil, ACM , pp.2153 2158, 2008.

[5] Y. Huang, S. Huang, T. Lin, and C. Tsai,

“Web Application Security Assessment by

Fault Injection and Behavior Monitoring”, in

Proceedings of the 11th International World

Wide Web Conference (WWW 03), May 2003.

[6] C. Gould, Z. Su, and P. Devanbu. JDBC

Checker, “A Static Analysis Tool for

QL/JDBC Applications”, in Proceedings of

the 26th International Conference on Software

Engineering (ICSE04) Formal Demos, pp

697–698, 2004.

[7] C. Gould, Z. Su, and P. Devanbu, “Static

Checking of Dynamically Generated Queries

in Database Applications”, in Proceedings of

the 26th International Conference on

Software Engineering (ICSE 04), pages 645–

654, 2004.

[8] D. Scott and R. Sharp, “Abstracting

Application-level Web Security”, in

Proceedings of the 11th International

Conference on the World Wide Web (WWW

2002), pages 396–407, 2002.

[9] Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T.

Lee, and S. Y. Kuo, “Securing Web

Application Code by Static Analysis and

Runtime Protection ”, in proceedings of the

12th International World Wide Web

Conference (www 04), May 2004.

[10] Z. Su and G. Wassermann “The essence

of command injection attacks in web

applications”, In ACM Symposium on

Principles of Programming Languages

(POPL’2006), Jan.2006.

[11] S. W. Boyd and A. D.

Keromytis,“SQLrand: Preventing SQL

Injection Attacks”, in Proceedings of the 2nd

Applied Cryptography and Network Security

Conference, pages 292–302, Jun. 2004.

[12] W. G. Halfond and A. Orso, “AMNESIA:

Analysis and Monitoring for NEutralizing

SQL-Injection Attacks”, in Proceedings of the

IEEE and ACM International Conference on

Automated Software Engineering (ASE 2005),

Long Beach, CA, USA, Nov 2005.

[13] W. G. Halfond and A. Orso, “Combining

Static Analysis and Runtime Monitoring to

Counter SQL-Injection Attacks”, in

Proceedings of the Third International ICSE

Workshop on Dynamic Analysis (WODA

2005), pages 22–28, St. Louis, MO, USA,

May 2005.

[14] McClure, and I.H. Kruger, "SQL DOM:

compile time checking of dynamic SQL

statements," Software Engineering, ICSE

2005, Proceedings. 27th International

Conference on, pp. 88- 96, 15-21 May 2005.

[15] William G. Halfond, Alessandro Orso,

"Using Positive Tainting and Syntax Aware

Evaluation to Counter SQL Injection Attacks",

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 903

14th ACM SIGSOFT international symposium

on Foundations of software engineering,

ACM. pp: 175 – 185, 2006.

 [16] Roichman, A., Gudes, E., "Fine-grained

Access Control to Web Databases"

Proceedings of 12th SACMAT Symposium,

France (2007).

 [17] Amirtahmasebi, K., Jalalinia, S.R., and

Khadem, S., "A survey of SQL injection

defense mechanisms" International

Conference for Internet Technology and

Secured Transactions (ICITST 2009), 9-12 ,1-

8,Nov. (2009).

 [18] Macro Cova, Davide Balzarotti. Swaddler:”

An Approach for the Anomaly-based

Detection of State Violations in Web

Applications”, Recent Advances in Intrusion

Detection, Proceedings, volume: 4637 Pages:

63-86 Published: 2007.

[19] G. Wassermann, Z. Su, “An analysis

framework for security in web applications,”

In: Proceedings of the FSE Workshop on

Specification and Verification of Component-

Based Systems, SAVCBS, , pp. 70–78, 2004.

 [20] Buehrer, G., Weide, B.W., and Sivilotti,

P.A.G., “ Using Parse Tree Validation to

Prevent SQL Injection Attacks” Proc. of 5th

International Workshop on Software

Engineering and Middleware, Lisbon,

Portugal (2005) 106–113.

[21] M. Howard and D. Leblanc, “Writing Secure

Code”, Microsoft Press, Redmond,

Washington, second edition, 2003.

[22] P.Grazie., PhD, “SQL Prevent thesis”,

University of British Columbia (UBC)

Vancouver, Canada,2008.

[23] M. Martin, B. Livshits, and M. S. Lam., “

Finding Application Errors and Security Flaws

Using PQL: A Program Query Language”

ACM SIGPLAN Notices, Volume: 40, Issue:

10 Pages: 365-383, 2005.

[24] Y. Kosuga, K. Kernel, M. Hanaoka, M.

Hishiyama, Y. Takahama, “Sania: Syntactic

and Semantic Analysis for Automated Testing

Against SQL Injection”, in: Proceedings of

the Computer Security Applications

Conference 2007, 2007, pp. 107–117.

[25] F. Valeur, D. Mutz, and G. Vigna., “ A

Learning-Based Approach to the Detection of

SQL Attacks” in Proceedings of the

Conference on Detection of Intrusions and

Malware and Vulnerability Assessment

(DIMVA), Vienna, Austria, July 2005.

[26] S. Thomas, L. Williams, and T. Xie, “On

automated prepared statement generation to

remove SQL injection vulnerabilities”,

Information and Software Technology 51,

589–598 (2009).

[27] M. Ruse, T. Sarkar and S. Basu., “Analysis &

Detection of SQL Injection Vulnerabilities via

Automatic Test Case Generation of Programs”

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 904

10th Annual International Symposium on

Applications and the Internet pp. 31 – 37

(2010).

[28] Y. Shin, L. Williams and T. Xie,

"SQLUnitGen: Test Case Generation for SQL

Injection Detection," North Carolina

StateUniv., Raleigh Technical report, NCSU

CSC TR 2006-21, 2006.

[29] X. Fu, X. Lu, B. Peltsverger, S. Chen, K.

Qian, and L. Tao., “ A Static Analysis

Framework for Detecting SQL Injection

Vulnerabilities”,COMPSAC 2007, pp.87-96,

24-27 July 2007

[30] A. Roichman, E. Gudes, “DIWeDa -

Detecting Intrusions in WebDatabases”. In:

Atluri, V. (ed.) DAS 2008. LNCS, vol. 5094,

pp. 313–329. Springer, Heidelberg (2008).

[31] Tadeusz Pietraszek and Dhris Vanden

Berghe., “Defending against Injection Attacks

through Context-Sensitive String Evaluation”,

Proceedings of Recent Advances in Intrusion

Detection (RAID2005).

.[32] R. Ezumalai, G. A. (2009). “Combinatorial

Approach for Preventing SQL Injection

Attacks,” S2009 IEEE International Advance

Computing Conference (IACC 2009). Patiala,

India: pp.1212-1217

[33] Mei Junjin, “An Approach for SQL Injection

Vulnerability Detection,” Proc. of the 6th Int.

Conf. on Information Technology: New

Generations, Las Vegas, Nevada, pp. 1411-

1414, Apr. 2009.

[34] Haixia, Y. and Zhihong, N., “A database

security testing scheme of web application”

Proc. of 4th International Conference on

Computer Science & Education 2009 (ICCSE

'09), 25-28 July (2009), 953-955.

[35]

 [36] Atefeh Tajpour, Suhaimi Ibrahim, Maslin

Masrom, “SQL Injection Detection and

Prevention Techniques” International

Journal of Advancements in Computing

Technology Volume 3, Number 7, August

201110.4156/ijact.vol3.issue7.11

Y. Huang, S. Huang, T. Lin, and C. Tsai, “A

Testing Framework for Web Application

Security Assessment,” Computer Networks,

volume: 48 Issue: 5, pages: 739-761, 2005

[37] Diallo Abdoulaye Kindy and Al-Sakib Khan

Pathan” “A Survey on SQL Injection:

Vulnerabilities, Attacks, and Techniques”

IEEE 15th International Symposium on

Consumer Electronics, 2011

[38] Mohammed Firdos ,Alam Sheikh, Secure

Query Processing By Blocking SQL Injection

Attack (SQLIA), International Journal of

Research in management ISSN 2249-5908,

Issue1,Vol.3(November-2011).

[39] M.Kiani, A. Clark, and G.Mohay,

“Evaluation of Anomaly Based Character

Distribution Models in the Detection of SQL

Injection Attacks,” The Third International

V. Nithya, IJECS Volume 2 Issue 4 April, 2013 Page No. 886-905 Page 905

Conference on Availability, Reliability, and

Security, IEEE Computer Society,2008.

[40] Stephen Thomas, Laurie Williams, “Using

Automated Fix Generation to Secure SQL

Statements” , Third International Workshop

on Software Engineering For Secure Systems

(SESS’07), pages9-9, May 2007.

[41] C Anley, Advanced SQL Injection in SQL

Server Applications, “White Paper Next

Generation Security Software Ltd”., 2002,

[42] Y. Shin, " Improving the identification of

actual input manipulation vulnerabilities", in:

14th ACM SIGSOFT Symposium on

Foundations of Software Engineering ACM,

2006.

[43] R. A. Baker, "Code Reviews Enhance

Software Quality," In Proceedings of the 19th

international conference on Software

engineering (ICSE'97) pp. 570 - 571, Boston,

MA, USA. 1997.

 [44] “The Web Hacking Incident Database

Semiannual (WHID) Report from July to

December 2010”, Trust wave Holdings, Inc,

2010.

[45]Paros.Parosproxy.org.

http://www.parosproxy.org/.

[46] The Open Web Application Security

Project,”OWASP TOP Project”,

https://www.owasp.org/SQL_Injection.

[47]The SQL injection,

http://en.wikipedia.org/wiki/SQL_injection

[48]OWASP,http://www.owasp.org/index.php/Ma

in_Page.

[49]WebSecurityDojo,http://www.mavensecurity.

com/web_security_dojo

[50] Damn Vulnerable Web Application,

http://www.dvwa.co.uk.

[51]Daffodil,http://crm.daffodilsw.com/article/call

-centre-crm.html

http://www.parosproxy.org/�
https://www.owasp.org/SQL_Injection�
http://www.owasp.org/index.php/Main_Page�
http://www.owasp.org/index.php/Main_Page�
http://www.owasp.org/index.php/Main_Page�
http://www.mavensecurity.com/web_security_dojo�
http://www.mavensecurity.com/web_security_dojo�
http://www.mavensecurity.com/web_security_dojo�
http://www.dvwa.co.uk/�
http://crm.daffodilsw.com/article/call-centre-crm.html�
http://crm.daffodilsw.com/article/call-centre-crm.html�
http://crm.daffodilsw.com/article/call-centre-crm.html�

