

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 1, Jan 2014 Page No. 3700-3703

Amrita Bhattacharjee
1
IJECS Volume3 Issue 1 Jan, 2014 Page No.3700-3703 Page 3700

A Novel Approach to Construct Deterministic Finite

State Automata

Amrita Bhattacharjee
1
, Bipul Syam Purkayastha

2

 1Department of Computer Science,

Assam University Silchar 788011, India

amritabhattacharjee10@gmail.com

2Department of Computer Science,

Assam University Silchar 788011, India

bipulsyam@gmail.com

Abstract: The finite-state automaton is one of the most significant tools of computational linguistics. It is divided into two parts

Deterministic and Nondeterministic. In this paper description of how automata are used to describe regular languages is given. Some

illustrations about finite state automaton and state-transition table and their contribution to represent regular languages are given in this

paper. An algorithm to construct deterministic finite state automata is presented. This algorithm gives finite state automaton of a word over

regular languages instantly.

Keywords: Finite state automaton, State transition table, Context free grammar, Regular languages

1. Introduction

 The finite-state automaton is one of the most significant

tools of computational linguistics. It is a mathematical object

that takes a word as input and decides either to accept it or

reject it. Since all computational problems are reducible into

accept or reject query on words, automata theory plays a vital

role in computational theory. The automata are in only one

state at a time. They can change from one state to another when

initiated by a triggering event or condition, this is called a

transition. The automaton is represented as a directed graph

known as state graph which consists of a finite set of vertices

known as nodes, together with a set of directed links between

pairs of vertices called arcs. Vertices are represented by circles

and arcs by arrows. We can also represent an automaton with a

state-transition table. As in the graph notation, the state-

transition table represents the start state, the accepting states,

and what transitions leave each state with which symbols.

Finite state automata is divided into two parts one whose

behavior during recognition is fully determined by the state it is

in and there is one and only one state to which the automaton

can transition from its current state is called "Deterministic". In

contrast, a “Nondeterministic” finite automaton has the power

to be in several states at one time. This ability is often

expressed as an ability to guess something about its input.

Finite-state automata have been used in many areas of

computational linguistics. Their use can be justified by both

linguistic and computational arguments. The usefulness of an

automaton for defining a language is that it can express an

infinite set in a closed form. Linguistically, finite automata

are suitable since they permit one to express without difficulty

most of the relevant phenomena encountered in the empirical

study of language. They often lead to a compact representation

of lexical rules, or idioms and words that appears as natural to

linguists. Graphic tools also allow one to visualize and modify

automata. This helps in correcting and completing a grammar.

From the computational point of view, the use of finite-state

machines is mainly motivated by considerations of time and

space efficiency. Time efficiency is usually achieved by using

deterministic automata. The output of deterministic machines

depends, in general linearly, only on the input size and can

therefore be considered as optimal from this point of view.

Space efficiency is achieved with classical minimization

algorithms for deterministic automata.

 Finite automata now also constitute an affluent section of

theoretical computer science. Many books [1, 2] and research

papers [3, 4, 5] are written on the subject. A few examples are

cited in this context. Finite automata are used in text

processing, compilers, and hardware design. Finite-state

automata are very constructive mathematical models of

computation used to design both computer programs and

sequential logic circuits.

 There are numbers of papers which have investigated on the

development of algorithms to construct finite state automata. A

few examples [6, 7 …11] are cited in this context.

 Organization of this paper is as follows. The following

section 2 recapitulates the basic preliminaries of Finite State

Automata. Section 3 goes toward description of how automata

are used to describe regular languages. Section 4, an algorithm

to construct deterministic finite state automata is proposed.

Section 5 gives result analysis of the above algorithm. We

conclude the paper in Section 6 by summarizing the

observations.

Amrita Bhattacharjee
1
IJECS Volume3 Issue 1 Jan, 2014 Page No.3700-3703 Page 3701

2. Preliminaries

First of all we recall some definitions.

Regular expression: A regular expression, first developed

by Kleene in 1956 is a formula in a language that is used

for specifying simple classes of strings. A string is any

sequence of alphanumeric characters like letters, numbers,

spaces, tabs, and punctuation.

Regular language: The class of languages that are

definable by regular expressions are regular languages.

Given a finite alphabet Σ, the following constants are

defined as regular languages:

i. Empty set: ∅ denoting the set ∅.

ii. Empty string: ε denoting the set containing only the

"empty" string, which has no characters at all.

iii. Literal character: “a” in Σ denoting the set containing

only the character a.

The following operations over given regular languages R and

S are defined to produce more regular languages:

 Concatenation: RS denoting the set {αβ | α in set described

by language R and β in set described by S}. For

example , , , , ,abc d e fg abce abcfg de dfg .

 Alternation: R | S denoting the union of sets described by R

and S. For example, if R describes ,ab cd and S

describes , ,cd fg h , language R|S describes

 , , ,ab cd fg h .

 Kleene star: This is the set of all strings that can be made

by concatenating any finite number (including zero) of

strings from set described by R. For example, {"0","1"}*

is the set of all finite binary strings (including the empty

string),and

*

, , , , , , , , , ,ab c ab c abc abab cab cc ababab abcab

Context-free grammar: A context-free grammar G is

defined by the 4-tuple: , , ,G V R S where

1. V is a finite set; each element v V is called a non-

terminal character or a variable. Each variable

represents a different type of phrase or clause in the

sentence. Variables are also sometimes called

syntactic categories. Each variable defines a sub-

language of the language defined byG .

2. is a finite set of terminals, disjoint from V , which

make up the actual content of the sentence. The set of

terminals is the alphabet of the language defined by

the grammar G .

3. R is a finite relation from V to
*

V . The

members of R are called the rules or productions of

the grammar. S is the start variable, used to represent

the whole sentence (or program). It must be an

element ofV .

The asterisk represents the Kleene star operation.

Automata theory definition: An automaton is represented

formally by a 5-tuple 0, , , ,Q q F , where:

 Q is a finite set of states.

 Σ is a finite set of symbols, called the alphabet of the

automaton.

 δ is the transition function, that is, δ: Q × Σ → Q.

 q0 is the start state, that is, the state of the automaton

before any input has been processed, where q0∈ Q.

 F is a set of states of Q (i.e. F⊆Q) called accept states.

State transition table: We can also represent an automaton

with a state-transition table. Like finite state automata the state-

transition table represents the start state, the accepting states,

and what transitions leave each state with which symbols.

Input word: An automaton reads a finite string of symbols

a1,a2,...., an , where ai ∈ Σ, which is called an input word. The

set of all words is denoted by Σ*.

Run: A run of the automaton on an input word w = a1,a2,....,

an ∈ Σ*, is a sequence of states q0,q1,q2,...., qn, where qi ∈ Q

such that q0 is the start state and qi = δ(qi-1,ai) for 0 < i ≤ n. In

words, at first the automaton is at the start state q0, and then the

automaton read symbols of the input word in sequence. When

the automaton reads symbol ai it jumps to state qi = δ(qi-1,ai). qn

is said to be the final state of the run.

Deterministic & Nondeterministic Finite state automata:

Finite state automata is divided into two parts one whose

behavior during recognition is fully determined by the state it is

in and there is one and only one state to which the automaton

can transition from its current state is called "Deterministic". In

contrast, a “Nondeterministic” finite automaton has the power

to be in several states at one time. This ability is often

expressed as an ability to guess something about its input.

3. Use of finite state automata to describe

regular languages

A finite state automaton is a very important notion for the

study of regular languages. Some illustrations about finite state

automaton and state-transition table and their contribution to

represent regular languages are given in this section. Using an

FSA to recognize the language of a child calling his mother is

given below:

We define the language a child calling his mother as any

string from the following (infinite) set:

maa!

maaa!

maaaa!

maaaaa!

maaaaaa!

 … .

Amrita Bhattacharjee
1
IJECS Volume3 Issue 1 Jan, 2014 Page No.3700-3703 Page 3702

We can also represent an automaton with a state-transition

table. As in the graph notation, the state-transition table

represents the start state, the accepting states, and what

transitions leave each state with which symbols. Here‟s the

state-transition table for the FSA of the above Figure:

More examples:

Example 1

Let us consider the word „Hi‟ A Finite State Automaton for this

word is

The State transition table is

Example 2

Let us consider another word „Hello‟ A Finite State automaton

for this word is

The state Transition table is

4. An Algorithm to Construct Deterministic

Finite State Automata

 The following pseudo code gives instantly the Deterministic

Finite State Automata of a string.

Algorithm:

01 Initialize a word = ‘ w ’

02 Set len = length of w

03 For 0 to len doi

04 Draw an Arrow mark

05 If leni // finite state

06 Draw two circles [one is inner & name it iq ,

another is outer]

07 else

08 Draw a circle and name it iq

09 If 0i

10 Label the Arrow mark with character of the

word at
thi position

11 End

5. Result Analysis

The algorithm introduced gives finite state automaton of a

word over regular languages instantly. Initial and final stages

are distinct. The stages are named as iq . The stages are

separated by arrow mark. The character of the word at the
thi

position is marked above the arrow mark. Using the above

algorithm finite state automata of some words are given below.

Example (i): The FSA of the word “abcd” is

Example (ii): The FSA of the word “book” is

Example (iii): The FSA of the word “technology” is

6. Conclusion

A finite state automaton is a very important notion for the study

of regular languages. In this paper finite state automata and

state transition table are discussed in the context of regular

languages. An algorithm to construct deterministic finite state

automata is introduced. This algorithm gives finite state

automaton of a word over regular languages instantly. Initial

and final stages are distinct. The stages are named as iq . The

stages are separated by arrow mark. The character of the word

at the
thi position is marked above the arrow mark. With this

algorithm further investigations can be done on the field of

FSA. The extension of this algorithm towards non-deterministic

finite state automata is an open problem.

Amrita Bhattacharjee
1
IJECS Volume3 Issue 1 Jan, 2014 Page No.3700-3703 Page 3703

References

[1] Daniel Jurafsky and James H. Martin, Speech and

Language Processing, Prentice-Hall, 2007 (book style)

[2] J. E. Hopcroft, Rajeev Motwani and J. D. Ullman,

“Introduction to Automata Theory Languages and

Computation,” Pearson Education Publishing Company,

Second Edition (book style)

[3] M. O. Rabin, and D. Scott, “Finite automata and their

decision problems”, IBM Journal of Research and

Development, 1959, 3(2), 114–125

[4] Josh Bongard Hod Lipson “Active Co evolutionary

Learning of Deterministic Finite Automata” Journal of

Machine Learning Research 6 (2005) 1651–1678

[5] Boris Melnikov, Alexandra Melnikova, “A New

Algorithm of Constructing the Basis Finite Automaton”

Informatica, Institute of Mathematics and Informatics,

Vilnius, 2002, Vol. 13, No. 3, 299–310

[6] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, “The Design

and Analysis of Computer Algorithms,” Addison-Wesley

Publishing Company, 1974

[7] Jan Daciuk, Stoyan Mihov, Bruce Watson, and Richard

Watson, " Incremental construction of minimal acyclic

finite state automata," Computational Linguistics,

26(1):3–16, April 2000

[8] John E. Hopcroft. “An n log n algorithm for minimizing

the states in a finite automaton” In Z. Kohavi, editor,

The Theory of Machines and Computations, pages189–

196. Academic Press, 1971

[9] Dominique Revuz. “Dictionnaires et lexiques: m´ethodes

et algorithms” PhD thesis, Institut Blaise Pascal, Paris,

France, 1991. LITP 91.44.

[10] Dominique Revuz. “Minimisation of acyclic

deterministic automata in linear time” Theoretical

Computer Science, 92(1):181–189, 1992

[11] Bruce Watson. A fast new (semi-incremental) algorithm

for the construction of minimal acyclic DFAs. In Third

Workshop on Implementing Automata, pages 91–98,

Rouen, France, September 1998. Lecture Notes in

Computer Science, Springer

Author Profile

<Author Photo>

Amrita Bhattacharjee received the M.Sc. degree in Mathematics

from Gauhati University in 2009.

