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ABSTRACT- In the last few decades with the rapid improvement in the field of computer technology, data 
and communication the concept of “GRID COMPUTING” have become more prominent. The popularity of 
the Internet and availability of high-speed networks have gradually changed the way we do computing. 
These technologies have enabled the cooperative use of a wide variety of geographically distributed 
resources as a single more powerful computer. This new method of pooling resources for solving large-scale 
problems is called as grid computing.   

The concept of grid computing have not only evolved in terms of topology but have also included wide 
spread data communication by the means of resource-sharing, however it is still lacking in terms of trust 
and reliability. Since a major ratio of people are communicating and sharing data which thereby decreases 
the trust of the users. It has not able to convince the user fully. This paper describes the concepts underlying 
grid computing and the trust model on which the reliability factor totally depends. 

KEYWORDS-Grid computing, problems, 
need, challenges, applications. 

I. INTRODUCTION 

In the last few years there has been a rapid 
exponential increase in computer processing 
power, data storage and communication.  But still 
there are many different and computation 
intensive problems, which cannot be solved by 
supercomputers. These problems can only be met 
with a vast variety of heterogeneous resources. 
The use and increased popularity of the Internet 
and the availability of high-speed networks have 
gradually changed the way we do computing. 
These technologies have enabled the cooperative 
use of a wide variety of geographically distributed 
resources as a single more powerful computer. 
This new method of pooling resource and solving 
large-scale problems called grid computing. Grid 
computing is a form of distributed computing it 

involves coordinating and sharing computing, 
application, data and storage or network resources 
across dynamic and geographically dispersed 
organization. Grid technologies promise to change 
the way Organizations tackle complex 
computational problems. The vision of grid 
computing was to allow access to computer based 
resources (from CPU cycles to data servers) in the 
samemanner as real world utilities. This gave rise 
to the idea of Virtual Organizations (VOs). 
Through the creation of VOs, it was possible to 
access all resources as though all resources were 
owned by a single organization.  

Two key outcomes exist in grids: the Open Grid 
Service Architecture (OGSA) and the Globus 
Toolkit.  

 

II. GRID CHARCTERSTICS- 
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These characteristics may be described as follows:  

Large scale: It must be able to deal with a number 
of resources ranging from just a few to millions. 
This raises the very serious problem of avoiding 
potential performance degradation as the grid size 
increases. 

Geographical distribution:It’s resources may be 
located at different places.  

Heterogeneity: It hosts both s/w and  h/w  
resources that can be very varied ranging from 
data, files, software components or programs to 
sensors, VOL. 2, NO.5, MAY 2012 ISSN 2222-
9833 ARPN Journal of Systems and Software 
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Consistent access: It must be built with standard 
services, protocols and inter-faces thus hiding the 
heterogeneity of the resources while allowing its 
scalability. Without such standards, application 
development and pervasive use would not be 
possible.  

Pervasive access: It must grant access to available 
resources by adapting to a dynamic environment 
in which resource failure is common place. This 
does not imply that resources are everywhere or 
universally available but that the grid must tailor 
its behavior as to extract the maximum 
performance from the available resources. 

 

190 
scientific instruments, display devices, personal 
digital organizers, computers, super-computers 
and networks.  

Resource sharing: resources in a grid belong to 
many different organizations that allow other 
organizations (i.e. users) to use or access them.  

Multiple administrations:each and every 
organization may establish different security and 
administrative policies under which their owned 
resources can be accessed and used. As a result, 
the already challenging network security problem 
is complicated even more with the need of taking 
into account all different policies.  

Resource coordination: resources in a grid must 
be coordinated in order to provide aggregated 
computing capabilities.  

Transparent access: It should be seen as a single 
virtual computer.  

Dependable access: It must assure that the 
delivery of services under established Quality of 
Service (QoS) requirements. The need for 
dependable service is fundamental since users 
require assurances that they will receive 
predictable and often high levels of performance.  

 

III. GRID ARCHITECTURE- 

Computational grids have to be designed so as to 
serve different communities with varying 
characteristics and requirements. Because of this 
reason we cannot have a uniform single 
architecture. But in general we can identify basic 
services that almost all the grids will provide 
although different grids will use different 
approaches for the realization of these services. 
This description of grid architecture does not 
provide a complete enumeration of all the required 
protocols and services but it identifies the 
requirements for general class of components. 
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This architecture organizes the components into 
layers as shown in Figure. 

 

The Layers of the grid are as follows: 

 

 

• Fabric Layer  

This layer provides the resources, which could 
comprise computers (PCs running Windows NT 
or UNIX), storage devices and databases. The 
resource could also be a logical entity such as a 
distributed file system or computer pool. Excellent 
fabric functionality could mean that sophisticated 
sharing operations can be accomplished. For this, 
it should support enquiry mechanisms to discover 
their state, structure and capabilities. It should also 
have resource management mechanisms that 
provide some control of delivered quality of 
service.  

• Connectivity Layer  

This layer consists of the core communication and 
authentication protocols required for transactions. 
Communication protocols enable the exchange of 
data between fabric layer resources. 
Authentication protocols provide secure 
cryptographic mechanisms for identifications of 
users and resources. For communication transport, 
naming and routing are required. These protocols 
can be drawn from TCP/IP protocol stack.  

 

• Resource Layer  

This layer builds on the Connectivity layer 
communication and authentication protocols to 
define Application Program Interfaces (API) and 
Software Development Kit (SDK) for secure 
negotiation, initiation, monitoring, control, 
accounting and payment of sharing operations. 
The protocols, which the resource layers 
implement to achieve the above functionality are 
implemented with the functions provided by 
fabric layer. Resource layer protocols can be 
distinguished primarily into two classes, which are 
Information Protocols and Management 
Protocols. 

1. Information Protocol -This protocol is used to 
obtain the necessary information about the 
structure and the state of the resource  

2. Management Protocol -In order to negotiate the 
access to the shared resources this protocol is 
used.  

• Collective Layer  

This layer is different from the resource layer in 
the sense, while resource layer concentrates on 
interactions with single resource. This layer helps 
in coordinating multiple resources. Its tasks can be 
varied like Directory Services, Co-allocation and 
scheduling, monitoring, diagnostic services, and 
software discovery services.  

 

• Application Layer 

This layer consists of the user applications and 
programs and which call upon another layer.   

* Trust and Reliability 

 The primary goal of grid computing is to 
encourage the interaction between every domain 
which is required for the user for communication 
without losing the control over own resources 
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which would be needed for the communication 
between the client and the domain and ensuring 
that the communication between domain-to-
domain doesn’t hampers the confidentiality of the 
user within the scope of the grid. 

To achieve this the concept of “trust and 
reliability” must be addressed in order to make the 
grid computing more appealing. The concept of 
trust is divided into two categories: - identity trust 
and behavior trust. 

Identity trust involves the verification of 
authenticity of every single entity connected to the 
network and further using various techniques in 
order to authenticate the entity and thereby 
increasing its reliability. 

Behavioral trust covers he broader spectrum by 
checking the overall “trustworthiness” of the 
entity connected to the network and its further 
intentions. 

In this paper we deal with the broader spectrum of 
trust and reliability aspect by concentrating of 
trust model based on behavioral trust. 

The definition of trust that we will use in this 
paper is as follows: 
 
Trust is the firm belief in the competence of an 
entity to act as expected such that this firm belief 
is not a fixed value associated with the entity but 
rather it is subject to the entity’s behavior and 
applies only within a specific context at a given 
time. 
With reference to [Mis96, GrS00, AbH00]. 

IV. Trust Model 

4.1.1    Overview 

The trust model primarily comprises of a grid 
which is divided into several GRID DOMAINS 
(GD). there exists two virtual domains with each 
GD namely resource domain (RC) which signifies 
the resources within the grid domain (GD) and a 
client domain (CD) to signify the clients within 
the grid domain (GD).Firstly, the resources and 

clients within a grid domain inherit the parameters 
of resource domain (RD) and client domain (CD) 
they are associated with. Secondly, a value in the 
trust level table is modified by a new trust level 
value based on the computation on significant 
amount of transactional data. Third, limiting the 
number of contexts reduces the fragmentation of 
trust management space. In our study the contexts 
are limited to primary services such as printing, 
storage and computing. 

• Direct and Reputation Trust Weights 

Weights α and β are denoted as direct and 
reputation trust relationships respectively ranging  
between 0 to 1. Assigning values to these weights 
is up to the individual domain. For example: (a) 
Di might trust business partners or allies more 
than other domains. Therefore, Diwill give more  
weight to its business-partners and allies as 
recommenders or as domains to directly interact 
with, (b) Di might have a policy stating that Di 
will only accept recommendations from domains 
whom Di has a direct trust relationship with. I.e. 
Di will assign a value of zero to recommenders 
whom it does not have direct interaction with. 
 
Description of required trust levels 
TRUST LEVELS DESCRIPTION 
A VERY LOW TRUST 

LEVEL 
B LOW TRUST LEVEL 
C MEDIUM TRUST 

LEVEL 
D HIGH TRUST LEVEL 
E VERY HIGH TRUST 

LEVEL 
F EXTREMELY HIGH 

TRUST LEVEL 
 
• Decay Function 

The matter of fact is that trust decays with time. 
For instance, if Di has not interacted with Dj for 
five years, then the TL between them today is 
likely to be weaker unless they have interacted 
since. In our trust model we have introduced the 
concept of  decay functionto reflect the drop of 
trust within the model. Here the decay function is 
ϓ(t-tij , c), we look at how old (in terms of time) is 
the 
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TL that resulted from the last transaction between 
Di and Dj. Each domain might have different 
decay function and might be looking at other 
factors that accelerate or decelerate the TL decay. 
 
• Evaluating Trust Function 
 
TL resulting from a direct trust relationship means 
Di is directly involved in a transaction with Dj. 
There are two (RTLs)  required trust levels which 
are from client side and resource side. For 
example if two domains Di  and Dj are directly 
involved in a transaction so there may be a case 
where Di might not want the mapping of its 
application onto the resources that are owned or 
managed by the domain it does not trust. Similar 
situation can stand for resource producer side 
where Dj does not want its resources being 
utilized by application which is not trustable. 
Therefore eachDi  andDjwill specify a RTL which 
should not be violated.Dievaluates the direct trust 
relationship with Djbased on the behavior of Dj 
Violation of RTL can lead to many abuses which 
are as follows:- 
(a) using more resources than requested leading to 
improper utilization of resources, (b) leaving 
behind unused data and without doing  “garbage 
collection” after using the resources, (c) going out 
of allocated boundary, and (d) instantiating tasks 
they are not required to instantiate. Such 
intrusions and violations can be detected by audit 
data [HaC92]. 
 
• Trust Inheritance 
 
There is a member weight associated with 
every entity to indicate if the entityis a new, 
recent, or an old member with its domain and 
it is up to the individual domain to decide 
whatconstitutes an entity to fall in one of 
thesemember weights. 

V. Problem Description 

Scientists often seek specific data products, which 
can be obtained by configuring available 
application components and executing them on 
the Grid.  

As an example, suppose that the user’s goal is to 
obtain a frequency spectrum of a signal S from 
instrument Y and time frame X, placing the results 

in location L. In addition, the user would like the 
results of any intermediate filtering steps 
performed to be available in location I, perhaps to 
check the filter results for unusual phenomena or 
perhaps to extract some salient features to the 
metadata of the final results. The process of 
mapping this type of user request into jobs to be 
executed in a Grid environment can be 
decomposed into two steps, as shown in Figure 1. 

1. Generating an abstract workflow: Selecting and 
configuring application components to form an 
abstract workflow. The application components 
are selected by looking at the specification of their 
capabilities and checking if they can generate the 
desired data products. They are configured by 
assigning input files that exist or that can be 
generated by other application components. The 
abstract workflow specifies the order in which the 
components must be executed. More specifically, 
the following steps need to be performed: 

a. Find which application components generate 
the desired data products, in our example a 
frequency spectrum of the desired characteristics. 
Let one such component be C n. Find which 
inputs that component takes, check if any inputs 
are available and if so let the corresponding files 
be I1 . . . Ij . If any input is required in formats 
that are not already available then find application 
components that can produce that input, let one 
such component be C n − 1. This process is 
iterated until the desired result can be generated 
from a composition of available components that 
can operate over available input data, namely C1 . 
. . C n and I1 . . . I m respectively. 

b. Formulate the workflow which specifies the 
order of execution of the components C1 . . . C n. 
This is what we call an abstract workflow. Pl ease 
note that at this level the components and files are 
referred to by their logical names which uniquely 
identify the component in terms of their 
functionality and the data files in terms of their 
content, but a single logical name can correspond 
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to many actual executable and physical data files 
in different locations. 

2. Generating concrete workflow :  Selecting 
specific resources, files, and additional jobs 
required to form a concrete workflow that can be 
executed in the grid environment. Each 
component in the abstract workflow is turned into 
an executable job by specifying the locations of 
the physical files of the component and data as 
well as the resources assigned to it in the 
execution environment. Additional jobs may be 
included in the concrete workflow. For  example, 
jobs that transfer files to the appropriate locations 
where resources are available to execute the 
application components. More specifically, the 
following steps need to be performed: 

a. Find the physical locations (i.e., physical files) 
of each component C1 . . . C n: C1-pf . . . C n-pf. 

b. Check the computational requirements of C1-
pf. . . . C n-p f and specify locations L1 . . . L n to 
execute them according to the required and 
available resources. 

c. Determine the physical locations of the input 
data files I1 -pf . . . I m-p f, select locations that 
seem more appropriate given L1 . . . L n. 

d. Augment the workflow description to include 
jobs K1 . . . Km + n to move component and input 
data files (C1-pf . . . C n-p f and I1-pf . . . I m-p f) 
to the appropriate target locations L1 . . . L n. 
Although Grid middleware allows for discovery 
of the available resources and of the locations of 
the replicated data, users are currently responsible 
for carrying out all of these steps manually. There 
are several important factors that make 
automating this process not only desirable but 
necessary: 

• Usability: Users are required to have extensive 
knowledge of the Grid computing environment 
and its middleware functions. For example, the 
user needs to understand how to query an 
information service such as the Monitoring and 

Discovery Service (MDS), to find the available 
and appropriate computational resources for the 
computational requirements of a component (step 
2b). 

The user also needs to query the Replica Location 
Service (RLS) [13] to find the physical locations 
of the data (step 2c). 

• Complexity: In addition to requiring scientists to 
become Grid-enabled users, the process may be 
complex and time consuming. Notice that in each 
step, the user makes choices when alternative 
application components, files, or locations are 
available. The user may reach a dead end where 
no solution can be found, which would require 
backtracking to undo some previous choice. Many 
different interdependencies may occur among 
components, and as a result it may even be hard to 
determine which choice to change and what would 
be a better option that leads to a feasible solution. 

• Solution cost: Lower cost solutions are highly 
desirable in light of the high cost of some of the 
computations and the user’s limitations in terms of 
resource access. Because finding any feasible 
solution is already time consuming, users are 
unlikely to explore alternative workflows that may 
reduce execution cost. 

• Global cost: Because many users are competing 
for resources, minimizing cost within a 
community or a virtual organization (VO) is 
desirable. This requires reasoning about individual 
user’s choices in light of other user’s choices, 
such as possible common jobs that could be 
included across user’s workflows and e xecuted 
only once. While addressing the first three points 
would enable wider accessibility of the Grid to 
users, the last point of handling global cost simply 
cannot be handled by individual users and will 
likely need to be addressed at the architecture 
level. In addition, there are many policies that 
limit user’s access to resources, and that needs to 
be taken into account in order to accommodate as 
many users as possible while they are contending 
for limited resources. 
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An additional issue is the reliability of execution. 
In today’s Grid framework, when the execution of 
a job fails the recovery consists of resubmitting 
that job for execution on the same resources. (In 
Figure 1 this is shown as the “retry”.) However, it 
is also desirable to be able to choose a different 
set of resources when tasks fail. This process 
needs to be performed at the abstract workflow 
level. Currently, there is no mechanism for 
opportunistically redoing the remaining tasks in 
the workflow to adapt to the dynamic situation of 
the environment. Moreover, if any job fails 
repeatedly it would be desirable for the system to 
assign an alternative component to achieve the 
same overall user goals. This would need to be 
performed at the application level, where there is 
an understanding of how different application 
components relate to each other. In Table 1 we 
describe three different levels of abstraction that a 
user can use to specify a workflow. 

 Table 1. Levels of abstraction used to describe 
workflows. 

 Concrete 
workflow 
domain 

Abstrac
t 
workfl
ow 
domain 

Applica
tion 
domain  

specifica
tion 

Gridftp 
Host1://home/fil
ea 
Host2://home/fil
e1/user/ 
Local/bin/fft-
i/home/file/ 

Fftfilea Frequen
cy 
spectru
m of a 
signal s 
from 
instrum
ent y 
and 
time 
frame x 

Specifica
tion 
details 

Resource level 
physical file 
execution 

Logical 
file 
name, 
logical 
compo
nent 
name 

Applica
tion 
specific 
metadat
a 

 

The lowest level (concrete workflow) the user 
needs to specify explicit data movements and the 
exact executable and resources to be used. At the 
abstract workflow level the u ser needs only 
specify the workflow using logical files and 
logical component names. Finally at the top level, 
the application level, the user needs to specify 
only the metadata describing the desired data 
products. 

In Section 3 we describe the implementation of a 
Concrete Workflow Generator (CWG). CWG 
performs the mapping from an abstract workflow 
to a concrete workflow. The system automatically 
locates physical locations for both components 
and data; finds appropriate resources to execute 
the components and generates an executable 
workflow of jobs that can be submitted to the 
Grid. Although this implementation isolates the 
user from many details about the Grid 
infrastructure, it still requires the user to spell out 
all the components and input files required. In 
addition, whenever several alternatives are 
possible (e.g., alternative physical files, alternative 
resources) it makes a random choice, so the final 
result is a feasible solution and not necessarily a 
low-cost one. 

In Section 4, we describe the implementation of 
an Abstract & Concrete Workflow Generator 
(ACWG) which only requires from users an 
abstract description of the desired data products in 
terms of application specific metadata. The 
approach we used was to exploit Artificial 
Intelligence planning techniques that explore the 
solution space with search algorithms guided with 
informed heuristics. 
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VI. Application Experiences 

As part of this work we have developed a 
configurable system, Pegasus (Planning for 
execution in Grids) and integrated it into Chimera. 
In Chimera the user specifies the abstract 
descriptions of a component (the arguments it 
takes etc., the number of input and output files), 
which is defined using the Chimera Virtual Data 
Language (VDL). The language also defines 
derivations which are invocations of a particular 
component and contain logical file names (LFN ) 
and parameters used to run that component. The 
derivations are used to construct abstract 
workflows. In the Chimera-driven configuration 
Pegasus receives an abstract workflow description 
from Chimera and uses CWG to produce a 
concrete workflow. Pegasus then submits the 
concrete workflow to DAG Man for execution and 
monitors the jobs described in the concrete 
workflow. We have used this configuration to map 
CMS workflows onto the Grid. 

 

6.1. Applying CWG to CMS 

The Compact Muon Solenoid (CMS) is a 
multipurpose particle physics detector currently 
being constructed at the European Center for 
Nuclear Research (CERN) in Geneva, 
Switzerland. When it begins operation in 2007, 
the CMS detector is expected to record data, 
produced by high-energy proton-proton collisions 
occurring within CERN’s Large Hadron Collider 
(LHC), at a rate of 100 MB/s. After the data is 
recorded, it will be passed through various filter 

stages which transform and reduce the data into 
formats which are more easily analyzed by 
physicists. In order to better understand the 
response of the detector to different input signals, 
large scale, Monte Carlo simulations are 
performed which typically involve several 
different computational stages. These simulations 
are long-running, parallel, multi-stage processes 
that are ideally suited for Grid computation. 
Typically, a single workflow creates 
approximately 1 GB of data and requires 10 to 20 
CPU/hours depending on the type of simulation. 
A typical production run may include thousands 
of workflows. 

A variety of different use-cases exist for simulated 
CMS data production. One of the simpler use-
cases is known as an n-tuple only production 
which consists of a five stage computational 
pipeline shown in Figure 4. 

 The first is a generation stage that simulates the 
underlying physics of each event. The second 
stage is a simulation stage that models the CMS 
detector’s response to the events created in the 
generation stage. The third stage, or formatting 
stage, copies the simulated detector data into an 
object-oriented database (OODB). The next stage, 
or reconstruction stage, transforms the data in the 
database, producing a “picture” of what a 
physicist would “see” as if the simulated data 
were actual data recorded by the experimental 
apparatus. The final stage, an analysis stage, 
selects user-specific information from the database 
and creates a convenient, easy to use file that can 
be analyzed by a researching physicist. 

In an n-tuple only production, the last file, an n -
tuple, is the only important piece of data and the 
intermediate data may be discarded. However, the 
log files for the intermediate data products are 
needed for quality assurance validation. Several 
small scale tests of CMS n-tuple only production 
pipelines have been successfully performed using 
CWG. CWG was also used for a large scale test 
which involved two- stage pipelines (generation 
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and simulation). CWG scheduled this work to be 
performed at a University of Florida computing 
cluster consisting of 25 dual- processor Pentium 
(1 GHz) machines. Over the course of 7 days, 678 
jobs of 250 events each were submitted using 
CWG. From these jobs, 167,500 events were 
successfully produced using approximately 350 
CPU/days of computing power and producing 
approximately 200 GB of simulated data. 

 

6.2. Applying ACWG to the LIGO Pulsar Search 

LIGO (Laser Interferometer Gravitational-Wave 
Observatory, www.ligo.caltech.edu

EXTRACT FREQUENCY-----CONSTRUCT 
IMAGE-----FINAL CANDIDATE--STORE 
EVENT DB 

) is a 
distributed network of interferometers whose 
mission is to detect and measure gravitational 
waves predicted by general relativity, Einstein’s 
theory of gravity. One well-studied source of 
gravitational waves is the motion of dense, 
massive astrophysical objects such as neutron 
stars or black holes. Other signals may come from 
supernova explosions, quakes in neutron stars, and 
pulsars. Gravitational waves interact extremely 
weakly with matter, and the measurable effects 
produced in terrestrial instruments by their 
passage are expected to be miniscule. In order to 
establish a confident detection or measurement, a 
large amount of auxiliary data will be acquired 
(including data from seismometers, microphones, 
etc.) and analyzed (for example, to eliminate 
noise) along with the strain signal that measures 
the passage of gravitational waves. 

The raw data collected during experiments is a 
collection of continuous time series at various 
sample rates. The amount of data that will be 
acquired and cataloged each year is on the order 
of tens to hundreds of terabytes. The gravitational 
wave strain channel is less than 1% of all data 
collected. Analysis on the data is performed in 
both time and frequency domains.  

FIG: -The LIGO pulsar search 

 

Requirements are to be able to perform single 
channel analysis over a long period of time as well 
as multi-channel analysis over a short time period. 

To investigate the capability of ACWG to 
generate complex, metadata driven workflows, we 
integrated ACWG into Pegasus and applied it to a 
specific LIGO analysis, the pulsar search. In the 
ACWG-driven configuration, Pegasus is driven by 
the metadata of the search, which can be 
implemented as a pipeline depicted in Figure 5. 
The first element in Figure 5 is data archiving as 
instrumental data is stored into an archive. Next, 
since, the raw data comes from the instrument as 
short (16 second duration) Frames (a data 
structure used in the gravitational wave 
community) with all the channels, some 
processing geared towards the removal (cleaning) 
of certain instrumental signatures needs to be 
done. For example, naturally occurring seismic 
vibration can be subtracted from the data using the 
channels from the sensitive seismometer that is 
part of the LIGO data stream. For the pulsar 
search, the gravitational wave strain channel is 
extracted. The pulsar search is conducted in the 
frequency domain; thus Fourier Transforms are 
performed on the long duration time frames to 
produce datasets known as Short Fourier 
Transforms (SFTs). Since the pulsars are expected 
to be found in a small frequency range, the 
frequency interval of interest is extracted from the 
STFs. The resulting power spectra are used to 
build the time-frequency image, which is analyzed 
for the presence of pulsar signatures. If a 
candidate signal with a good signal to noise ratio 
is found, it is placed in LIGO’s event database. 

 

VII. Future Directions 



 

Ayushi Pathak, IJECS Volume 2 Issue 4 April, 2013 Page No. 853-863 Page 862 
 

Finding good abstract and concrete workflows 
involves a wide range of issues that have been 
investigated in Artificial Intelligence planning, 
including hierarchical planning, temporal 
reasoning and scheduling, reasoning about 
resources, planning under uncertainty and 
interleaving planning and execution. In the near 
future we plan to evaluate approaches such as plan 
reuse and planning under uncertainty to increase 
the level of ACWG’s performance and 
sophistication. 

We also plan to investigate the applicability of our 
approach to service-level composition. In this 
section we describe some of our ideas. 

7.1. Solution Reuse 

One important research area that is likely to be 
effective for this problem is the reuse of solutions 
that were previously computed. Case-based 
planning is a powerful technique to retrieve and 
modify existing plans that need slight changes to 
be adapted to the current situation. These 
approaches have potential for ACWG because the 
network topology and resource characteristics are 
likely to be fairly stable and therefore high-quality 
solutions, which may take time to generate from 
first principles, will be good starting points for 
similar problems in the future. 

 

7.2. Fault Avoidance 

In the simple case, the planner creates a plan that 
is subsequently executed without a hitch. Often, 
however, runtime failures may result in the need 
to repair the plan during its execution. Planning 
systems can also design plans that either reduce 
the risk of execution failure or are more likely to 
be salvageable when failures take place. They can 
explicitly reason about the risks during planning 
and searching for reliable plans, possibly 
including conditional branches in their execution. 
Some planners delay building parts of the plan 
until execution, in order to maintain a lower 

commitment to certain actions until key 
information becomes available. These approaches 
are likely to have high impact in the Grid 
computing domain, since its decentralized nature 
means many factors are beyond the control of the 
planning agent. However current techniques for 
handling uncertainty have high complexity, and 
are not useable when more than a few potential 
failure points need to be considered. 

7.3. Relevance to Open Grid Services Architecture 

Although much work needs to be done in the area 
of workflow generation, we believe that the 
framework we designed is a good foundation for 
developing ever more sophisticated techniques, 
which will take into account an ever greater 
amount of information about the applications and 
the execution environment. Above Figure 
illustrates additional sources of information that 
we would like to integrate in the future within the 
workflow generation process. At the application 
level, we can describe the application components 
as services, which would facilitate the integration 
of our work with the new Open Grid Services 
Architecture (OGSA). These services can be 
composed into new more sophisticated services. 
Although OGSA provides a syntactic description 
of the services (via WSDL) it does not assign any 
semantic meaning to them. We propose to 
augment service-based component descriptions by 
developing ontologies of application components 
and data, which will describe the service behavior 
and add semantic meaning to the service 
interactions. Ontologies will allow us to generate 
abstract workflows more flexibly from user 
requirements that may be partially complete or 
specified at higher levels of abstraction than the 
current service descriptions. Additional 
information provided by performance models of 
the services can guide the initial composition. 

We also see ontologies playing a very important 
role in generating concrete workflows. Ontologies 
of Grid resources would allow the system to 
evaluate the suitability of given resources to 
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provide a particular application service instance. 
The resources that are to be allocated to various 
tasks can often be characterized in a domain-
independent way by how they are used. 

For example, a computer system becomes 
available again once a task has been completed 
but a user’s allocation of time on a particular 
machine is permanently depleted. Ontologies of 
resources capture these qualities. Such ontologies, 
along with others which can capture computer 
system capabilities and job requirements, are key 
in building planning domains for ACWG quickly 
and reliably from generic components. However, 
there has been little work in this area of 
engineering planning domains. 

7.4. Incorporating Policy Descriptions 

In addition, in order to generate a feasible 
workflow, information such as policies governing 
the members of a Virtual Organization must be 
provided. For example, given an allotment of 
resources, the VO might decide to grant more 
resources to particular individuals. At the same 
time resources themselves need to provide 
information about the policies that they enforce 
both at the VO and user levels. The resources also 
have to provide information about their current 
state. Given a feasible solution, CWG also needs 

to provide an optimal solution, considering 
policies in part but also the overall behavior of the 
application. 

VIII.Conclusions 

In this paper we addressed the issue of composing 
complex applications and mapping them on the 
Grid resources. We have identified two important 
steps that need to take place. The first step is to 
map application requirements in terms of desired 
data products to an abstract workflow that 
specifies what application components can 
generate the data. The second step maps the 
workflow onto Grid resources.  

We described two mappings: CWG, which takes 
an abstract workflow, generates a random feas ible 
solution and performs modest optimizations, and 
ACWG which can perform both steps. We have 
exploited and adapted AI planning techniques in 
ACWG to express the mapping problem using 
application-specific metadata. ACWG makes use 
of operator-based plan generation and combines 
local heuristics and a global measure to look for 
high-quality plans. We applied CWG to an 
important

Application domain – the high energy physics 
experiment 
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