
www.ijecs.in
International Journal Of Engineering And Computer Science ISSN:2319-7242
Volume 2 Issue 4 April, 2013 Page No. 853-863

Ayushi Pathak, IJECS Volume 2 Issue 4 April, 2013 Page No. 853-863 Page 853

Grid computing Issues, Challenges, Need And Practice

Ayushi Pathak1 and Nisha Kaushik2

Computer Science Department, Dronacharya College of Engineering
Greater Noida, Uttar Pradesh

India
ayushi112233@yahoo.in; thomson99kaushik@gmail.com

ABSTRACT- In the last few decades with the rapid improvement in the field of computer technology, data
and communication the concept of “GRID COMPUTING” have become more prominent. The popularity of
the Internet and availability of high-speed networks have gradually changed the way we do computing.
These technologies have enabled the cooperative use of a wide variety of geographically distributed
resources as a single more powerful computer. This new method of pooling resources for solving large-scale
problems is called as grid computing.

The concept of grid computing have not only evolved in terms of topology but have also included wide
spread data communication by the means of resource-sharing, however it is still lacking in terms of trust
and reliability. Since a major ratio of people are communicating and sharing data which thereby decreases
the trust of the users. It has not able to convince the user fully. This paper describes the concepts underlying
grid computing and the trust model on which the reliability factor totally depends.

KEYWORDS-Grid computing, problems,
need, challenges, applications.

I. INTRODUCTION

In the last few years there has been a rapid
exponential increase in computer processing
power, data storage and communication. But still
there are many different and computation
intensive problems, which cannot be solved by
supercomputers. These problems can only be met
with a vast variety of heterogeneous resources.
The use and increased popularity of the Internet
and the availability of high-speed networks have
gradually changed the way we do computing.
These technologies have enabled the cooperative
use of a wide variety of geographically distributed
resources as a single more powerful computer.
This new method of pooling resource and solving
large-scale problems called grid computing. Grid
computing is a form of distributed computing it

involves coordinating and sharing computing,
application, data and storage or network resources
across dynamic and geographically dispersed
organization. Grid technologies promise to change
the way Organizations tackle complex
computational problems. The vision of grid
computing was to allow access to computer based
resources (from CPU cycles to data servers) in the
samemanner as real world utilities. This gave rise
to the idea of Virtual Organizations (VOs).
Through the creation of VOs, it was possible to
access all resources as though all resources were
owned by a single organization.

Two key outcomes exist in grids: the Open Grid
Service Architecture (OGSA) and the Globus
Toolkit.

II. GRID CHARCTERSTICS-

http://www.ijecs.in/�
mailto:thomson99kaushik@gmail.com�

Ayushi Pathak, IJECS Volume 2 Issue 4 April, 2013 Page No. 853-863 Page 854

These characteristics may be described as follows:

Large scale: It must be able to deal with a number
of resources ranging from just a few to millions.
This raises the very serious problem of avoiding
potential performance degradation as the grid size
increases.

Geographical distribution:It’s resources may be
located at different places.

Heterogeneity: It hosts both s/w and h/w
resources that can be very varied ranging from
data, files, software components or programs to
sensors, VOL. 2, NO.5, MAY 2012 ISSN 2222-
9833 ARPN Journal of Systems and Software
©2009-2012 AJSS Journal. All rights
reserved http://www.scientificjournals.org

Consistent access: It must be built with standard
services, protocols and inter-faces thus hiding the
heterogeneity of the resources while allowing its
scalability. Without such standards, application
development and pervasive use would not be
possible.

Pervasive access: It must grant access to available
resources by adapting to a dynamic environment
in which resource failure is common place. This
does not imply that resources are everywhere or
universally available but that the grid must tailor
its behavior as to extract the maximum
performance from the available resources.

190
scientific instruments, display devices, personal
digital organizers, computers, super-computers
and networks.

Resource sharing: resources in a grid belong to
many different organizations that allow other
organizations (i.e. users) to use or access them.

Multiple administrations:each and every
organization may establish different security and
administrative policies under which their owned
resources can be accessed and used. As a result,
the already challenging network security problem
is complicated even more with the need of taking
into account all different policies.

Resource coordination: resources in a grid must
be coordinated in order to provide aggregated
computing capabilities.

Transparent access: It should be seen as a single
virtual computer.

Dependable access: It must assure that the
delivery of services under established Quality of
Service (QoS) requirements. The need for
dependable service is fundamental since users
require assurances that they will receive
predictable and often high levels of performance.

III. GRID ARCHITECTURE-

Computational grids have to be designed so as to
serve different communities with varying
characteristics and requirements. Because of this
reason we cannot have a uniform single
architecture. But in general we can identify basic
services that almost all the grids will provide
although different grids will use different
approaches for the realization of these services.
This description of grid architecture does not
provide a complete enumeration of all the required
protocols and services but it identifies the
requirements for general class of components.

Ayushi Pathak, IJECS Volume 2 Issue 4 April, 2013 Page No. 853-863 Page 855

This architecture organizes the components into
layers as shown in Figure.

The Layers of the grid are as follows:

• Fabric Layer

This layer provides the resources, which could
comprise computers (PCs running Windows NT
or UNIX), storage devices and databases. The
resource could also be a logical entity such as a
distributed file system or computer pool. Excellent
fabric functionality could mean that sophisticated
sharing operations can be accomplished. For this,
it should support enquiry mechanisms to discover
their state, structure and capabilities. It should also
have resource management mechanisms that
provide some control of delivered quality of
service.

• Connectivity Layer

This layer consists of the core communication and
authentication protocols required for transactions.
Communication protocols enable the exchange of
data between fabric layer resources.
Authentication protocols provide secure
cryptographic mechanisms for identifications of
users and resources. For communication transport,
naming and routing are required. These protocols
can be drawn from TCP/IP protocol stack.

• Resource Layer

This layer builds on the Connectivity layer
communication and authentication protocols to
define Application Program Interfaces (API) and
Software Development Kit (SDK) for secure
negotiation, initiation, monitoring, control,
accounting and payment of sharing operations.
The protocols, which the resource layers
implement to achieve the above functionality are
implemented with the functions provided by
fabric layer. Resource layer protocols can be
distinguished primarily into two classes, which are
Information Protocols and Management
Protocols.

1. Information Protocol -This protocol is used to
obtain the necessary information about the
structure and the state of the resource

2. Management Protocol -In order to negotiate the
access to the shared resources this protocol is
used.

• Collective Layer

This layer is different from the resource layer in
the sense, while resource layer concentrates on
interactions with single resource. This layer helps
in coordinating multiple resources. Its tasks can be
varied like Directory Services, Co-allocation and
scheduling, monitoring, diagnostic services, and
software discovery services.

• Application Layer

This layer consists of the user applications and
programs and which call upon another layer.

* Trust and Reliability

 The primary goal of grid computing is to
encourage the interaction between every domain
which is required for the user for communication
without losing the control over own resources

Ayushi Pathak, IJECS Volume 2 Issue 4 April, 2013 Page No. 853-863 Page 856

which would be needed for the communication
between the client and the domain and ensuring
that the communication between domain-to-
domain doesn’t hampers the confidentiality of the
user within the scope of the grid.

To achieve this the concept of “trust and
reliability” must be addressed in order to make the
grid computing more appealing. The concept of
trust is divided into two categories: - identity trust
and behavior trust.

Identity trust involves the verification of
authenticity of every single entity connected to the
network and further using various techniques in
order to authenticate the entity and thereby
increasing its reliability.

Behavioral trust covers he broader spectrum by
checking the overall “trustworthiness” of the
entity connected to the network and its further
intentions.

In this paper we deal with the broader spectrum of
trust and reliability aspect by concentrating of
trust model based on behavioral trust.

The definition of trust that we will use in this
paper is as follows:

Trust is the firm belief in the competence of an
entity to act as expected such that this firm belief
is not a fixed value associated with the entity but
rather it is subject to the entity’s behavior and
applies only within a specific context at a given
time.
With reference to [Mis96, GrS00, AbH00].

IV. Trust Model

4.1.1 Overview

The trust model primarily comprises of a grid
which is divided into several GRID DOMAINS
(GD). there exists two virtual domains with each
GD namely resource domain (RC) which signifies
the resources within the grid domain (GD) and a
client domain (CD) to signify the clients within
the grid domain (GD).Firstly, the resources and

clients within a grid domain inherit the parameters
of resource domain (RD) and client domain (CD)
they are associated with. Secondly, a value in the
trust level table is modified by a new trust level
value based on the computation on significant
amount of transactional data. Third, limiting the
number of contexts reduces the fragmentation of
trust management space. In our study the contexts
are limited to primary services such as printing,
storage and computing.

• Direct and Reputation Trust Weights

Weights α and β are denoted as direct and
reputation trust relationships respectively ranging
between 0 to 1. Assigning values to these weights
is up to the individual domain. For example: (a)
Di might trust business partners or allies more
than other domains. Therefore, Diwill give more
weight to its business-partners and allies as
recommenders or as domains to directly interact
with, (b) Di might have a policy stating that Di
will only accept recommendations from domains
whom Di has a direct trust relationship with. I.e.
Di will assign a value of zero to recommenders
whom it does not have direct interaction with.

Description of required trust levels
TRUST LEVELS DESCRIPTION
A VERY LOW TRUST

LEVEL
B LOW TRUST LEVEL
C MEDIUM TRUST

LEVEL
D HIGH TRUST LEVEL
E VERY HIGH TRUST

LEVEL
F EXTREMELY HIGH

TRUST LEVEL

• Decay Function

The matter of fact is that trust decays with time.
For instance, if Di has not interacted with Dj for
five years, then the TL between them today is
likely to be weaker unless they have interacted
since. In our trust model we have introduced the
concept of decay functionto reflect the drop of
trust within the model. Here the decay function is
ϓ(t-tij , c), we look at how old (in terms of time) is
the

Ayushi Pathak, IJECS Volume 2 Issue 4 April, 2013 Page No. 853-863 Page 857

TL that resulted from the last transaction between
Di and Dj. Each domain might have different
decay function and might be looking at other
factors that accelerate or decelerate the TL decay.

• Evaluating Trust Function

TL resulting from a direct trust relationship means
Di is directly involved in a transaction with Dj.
There are two (RTLs) required trust levels which
are from client side and resource side. For
example if two domains Di and Dj are directly
involved in a transaction so there may be a case
where Di might not want the mapping of its
application onto the resources that are owned or
managed by the domain it does not trust. Similar
situation can stand for resource producer side
where Dj does not want its resources being
utilized by application which is not trustable.
Therefore eachDi andDjwill specify a RTL which
should not be violated.Dievaluates the direct trust
relationship with Djbased on the behavior of Dj
Violation of RTL can lead to many abuses which
are as follows:-
(a) using more resources than requested leading to
improper utilization of resources, (b) leaving
behind unused data and without doing “garbage
collection” after using the resources, (c) going out
of allocated boundary, and (d) instantiating tasks
they are not required to instantiate. Such
intrusions and violations can be detected by audit
data [HaC92].

• Trust Inheritance

There is a member weight associated with
every entity to indicate if the entityis a new,
recent, or an old member with its domain and
it is up to the individual domain to decide
whatconstitutes an entity to fall in one of
thesemember weights.

V. Problem Description

Scientists often seek specific data products, which
can be obtained by configuring available
application components and executing them on
the Grid.

As an example, suppose that the user’s goal is to
obtain a frequency spectrum of a signal S from
instrument Y and time frame X, placing the results

in location L. In addition, the user would like the
results of any intermediate filtering steps
performed to be available in location I, perhaps to
check the filter results for unusual phenomena or
perhaps to extract some salient features to the
metadata of the final results. The process of
mapping this type of user request into jobs to be
executed in a Grid environment can be
decomposed into two steps, as shown in Figure 1.

1. Generating an abstract workflow: Selecting and
configuring application components to form an
abstract workflow. The application components
are selected by looking at the specification of their
capabilities and checking if they can generate the
desired data products. They are configured by
assigning input files that exist or that can be
generated by other application components. The
abstract workflow specifies the order in which the
components must be executed. More specifically,
the following steps need to be performed:

a. Find which application components generate
the desired data products, in our example a
frequency spectrum of the desired characteristics.
Let one such component be C n. Find which
inputs that component takes, check if any inputs
are available and if so let the corresponding files
be I1 . . . Ij . If any input is required in formats
that are not already available then find application
components that can produce that input, let one
such component be C n − 1. This process is
iterated until the desired result can be generated
from a composition of available components that
can operate over available input data, namely C1 .
. . C n and I1 . . . I m respectively.

b. Formulate the workflow which specifies the
order of execution of the components C1 . . . C n.
This is what we call an abstract workflow. Pl ease
note that at this level the components and files are
referred to by their logical names which uniquely
identify the component in terms of their
functionality and the data files in terms of their
content, but a single logical name can correspond

Ayushi Pathak, IJECS Volume 2 Issue 4 April, 2013 Page No. 853-863 Page 858

to many actual executable and physical data files
in different locations.

2. Generating concrete workflow : Selecting
specific resources, files, and additional jobs
required to form a concrete workflow that can be
executed in the grid environment. Each
component in the abstract workflow is turned into
an executable job by specifying the locations of
the physical files of the component and data as
well as the resources assigned to it in the
execution environment. Additional jobs may be
included in the concrete workflow. For example,
jobs that transfer files to the appropriate locations
where resources are available to execute the
application components. More specifically, the
following steps need to be performed:

a. Find the physical locations (i.e., physical files)
of each component C1 . . . C n: C1-pf . . . C n-pf.

b. Check the computational requirements of C1-
pf. . . . C n-p f and specify locations L1 . . . L n to
execute them according to the required and
available resources.

c. Determine the physical locations of the input
data files I1 -pf . . . I m-p f, select locations that
seem more appropriate given L1 . . . L n.

d. Augment the workflow description to include
jobs K1 . . . Km + n to move component and input
data files (C1-pf . . . C n-p f and I1-pf . . . I m-p f)
to the appropriate target locations L1 . . . L n.
Although Grid middleware allows for discovery
of the available resources and of the locations of
the replicated data, users are currently responsible
for carrying out all of these steps manually. There
are several important factors that make
automating this process not only desirable but
necessary:

• Usability: Users are required to have extensive
knowledge of the Grid computing environment
and its middleware functions. For example, the
user needs to understand how to query an
information service such as the Monitoring and

Discovery Service (MDS), to find the available
and appropriate computational resources for the
computational requirements of a component (step
2b).

The user also needs to query the Replica Location
Service (RLS) [13] to find the physical locations
of the data (step 2c).

• Complexity: In addition to requiring scientists to
become Grid-enabled users, the process may be
complex and time consuming. Notice that in each
step, the user makes choices when alternative
application components, files, or locations are
available. The user may reach a dead end where
no solution can be found, which would require
backtracking to undo some previous choice. Many
different interdependencies may occur among
components, and as a result it may even be hard to
determine which choice to change and what would
be a better option that leads to a feasible solution.

• Solution cost: Lower cost solutions are highly
desirable in light of the high cost of some of the
computations and the user’s limitations in terms of
resource access. Because finding any feasible
solution is already time consuming, users are
unlikely to explore alternative workflows that may
reduce execution cost.

• Global cost: Because many users are competing
for resources, minimizing cost within a
community or a virtual organization (VO) is
desirable. This requires reasoning about individual
user’s choices in light of other user’s choices,
such as possible common jobs that could be
included across user’s workflows and e xecuted
only once. While addressing the first three points
would enable wider accessibility of the Grid to
users, the last point of handling global cost simply
cannot be handled by individual users and will
likely need to be addressed at the architecture
level. In addition, there are many policies that
limit user’s access to resources, and that needs to
be taken into account in order to accommodate as
many users as possible while they are contending
for limited resources.

Ayushi Pathak, IJECS Volume 2 Issue 4 April, 2013 Page No. 853-863 Page 859

An additional issue is the reliability of execution.
In today’s Grid framework, when the execution of
a job fails the recovery consists of resubmitting
that job for execution on the same resources. (In
Figure 1 this is shown as the “retry”.) However, it
is also desirable to be able to choose a different
set of resources when tasks fail. This process
needs to be performed at the abstract workflow
level. Currently, there is no mechanism for
opportunistically redoing the remaining tasks in
the workflow to adapt to the dynamic situation of
the environment. Moreover, if any job fails
repeatedly it would be desirable for the system to
assign an alternative component to achieve the
same overall user goals. This would need to be
performed at the application level, where there is
an understanding of how different application
components relate to each other. In Table 1 we
describe three different levels of abstraction that a
user can use to specify a workflow.

 Table 1. Levels of abstraction used to describe
workflows.

 Concrete
workflow
domain

Abstrac
t
workfl
ow
domain

Applica
tion
domain

specifica
tion

Gridftp
Host1://home/fil
ea
Host2://home/fil
e1/user/
Local/bin/fft-
i/home/file/

Fftfilea Frequen
cy
spectru
m of a
signal s
from
instrum
ent y
and
time
frame x

Specifica
tion
details

Resource level
physical file
execution

Logical
file
name,
logical
compo
nent
name

Applica
tion
specific
metadat
a

The lowest level (concrete workflow) the user
needs to specify explicit data movements and the
exact executable and resources to be used. At the
abstract workflow level the u ser needs only
specify the workflow using logical files and
logical component names. Finally at the top level,
the application level, the user needs to specify
only the metadata describing the desired data
products.

In Section 3 we describe the implementation of a
Concrete Workflow Generator (CWG). CWG
performs the mapping from an abstract workflow
to a concrete workflow. The system automatically
locates physical locations for both components
and data; finds appropriate resources to execute
the components and generates an executable
workflow of jobs that can be submitted to the
Grid. Although this implementation isolates the
user from many details about the Grid
infrastructure, it still requires the user to spell out
all the components and input files required. In
addition, whenever several alternatives are
possible (e.g., alternative physical files, alternative
resources) it makes a random choice, so the final
result is a feasible solution and not necessarily a
low-cost one.

In Section 4, we describe the implementation of
an Abstract & Concrete Workflow Generator
(ACWG) which only requires from users an
abstract description of the desired data products in
terms of application specific metadata. The
approach we used was to exploit Artificial
Intelligence planning techniques that explore the
solution space with search algorithms guided with
informed heuristics.

Ayushi Pathak, IJECS Volume 2 Issue 4 April, 2013 Page No. 853-863 Page 860

VI. Application Experiences

As part of this work we have developed a
configurable system, Pegasus (Planning for
execution in Grids) and integrated it into Chimera.
In Chimera the user specifies the abstract
descriptions of a component (the arguments it
takes etc., the number of input and output files),
which is defined using the Chimera Virtual Data
Language (VDL). The language also defines
derivations which are invocations of a particular
component and contain logical file names (LFN)
and parameters used to run that component. The
derivations are used to construct abstract
workflows. In the Chimera-driven configuration
Pegasus receives an abstract workflow description
from Chimera and uses CWG to produce a
concrete workflow. Pegasus then submits the
concrete workflow to DAG Man for execution and
monitors the jobs described in the concrete
workflow. We have used this configuration to map
CMS workflows onto the Grid.

6.1. Applying CWG to CMS

The Compact Muon Solenoid (CMS) is a
multipurpose particle physics detector currently
being constructed at the European Center for
Nuclear Research (CERN) in Geneva,
Switzerland. When it begins operation in 2007,
the CMS detector is expected to record data,
produced by high-energy proton-proton collisions
occurring within CERN’s Large Hadron Collider
(LHC), at a rate of 100 MB/s. After the data is
recorded, it will be passed through various filter

stages which transform and reduce the data into
formats which are more easily analyzed by
physicists. In order to better understand the
response of the detector to different input signals,
large scale, Monte Carlo simulations are
performed which typically involve several
different computational stages. These simulations
are long-running, parallel, multi-stage processes
that are ideally suited for Grid computation.
Typically, a single workflow creates
approximately 1 GB of data and requires 10 to 20
CPU/hours depending on the type of simulation.
A typical production run may include thousands
of workflows.

A variety of different use-cases exist for simulated
CMS data production. One of the simpler use-
cases is known as an n-tuple only production
which consists of a five stage computational
pipeline shown in Figure 4.

 The first is a generation stage that simulates the
underlying physics of each event. The second
stage is a simulation stage that models the CMS
detector’s response to the events created in the
generation stage. The third stage, or formatting
stage, copies the simulated detector data into an
object-oriented database (OODB). The next stage,
or reconstruction stage, transforms the data in the
database, producing a “picture” of what a
physicist would “see” as if the simulated data
were actual data recorded by the experimental
apparatus. The final stage, an analysis stage,
selects user-specific information from the database
and creates a convenient, easy to use file that can
be analyzed by a researching physicist.

In an n-tuple only production, the last file, an n -
tuple, is the only important piece of data and the
intermediate data may be discarded. However, the
log files for the intermediate data products are
needed for quality assurance validation. Several
small scale tests of CMS n-tuple only production
pipelines have been successfully performed using
CWG. CWG was also used for a large scale test
which involved two- stage pipelines (generation

Ayushi Pathak, IJECS Volume 2 Issue 4 April, 2013 Page No. 853-863 Page 861

and simulation). CWG scheduled this work to be
performed at a University of Florida computing
cluster consisting of 25 dual- processor Pentium
(1 GHz) machines. Over the course of 7 days, 678
jobs of 250 events each were submitted using
CWG. From these jobs, 167,500 events were
successfully produced using approximately 350
CPU/days of computing power and producing
approximately 200 GB of simulated data.

6.2. Applying ACWG to the LIGO Pulsar Search

LIGO (Laser Interferometer Gravitational-Wave
Observatory, www.ligo.caltech.edu

EXTRACT FREQUENCY-----CONSTRUCT
IMAGE-----FINAL CANDIDATE--STORE
EVENT DB

) is a
distributed network of interferometers whose
mission is to detect and measure gravitational
waves predicted by general relativity, Einstein’s
theory of gravity. One well-studied source of
gravitational waves is the motion of dense,
massive astrophysical objects such as neutron
stars or black holes. Other signals may come from
supernova explosions, quakes in neutron stars, and
pulsars. Gravitational waves interact extremely
weakly with matter, and the measurable effects
produced in terrestrial instruments by their
passage are expected to be miniscule. In order to
establish a confident detection or measurement, a
large amount of auxiliary data will be acquired
(including data from seismometers, microphones,
etc.) and analyzed (for example, to eliminate
noise) along with the strain signal that measures
the passage of gravitational waves.

The raw data collected during experiments is a
collection of continuous time series at various
sample rates. The amount of data that will be
acquired and cataloged each year is on the order
of tens to hundreds of terabytes. The gravitational
wave strain channel is less than 1% of all data
collected. Analysis on the data is performed in
both time and frequency domains.

FIG: -The LIGO pulsar search

Requirements are to be able to perform single
channel analysis over a long period of time as well
as multi-channel analysis over a short time period.

To investigate the capability of ACWG to
generate complex, metadata driven workflows, we
integrated ACWG into Pegasus and applied it to a
specific LIGO analysis, the pulsar search. In the
ACWG-driven configuration, Pegasus is driven by
the metadata of the search, which can be
implemented as a pipeline depicted in Figure 5.
The first element in Figure 5 is data archiving as
instrumental data is stored into an archive. Next,
since, the raw data comes from the instrument as
short (16 second duration) Frames (a data
structure used in the gravitational wave
community) with all the channels, some
processing geared towards the removal (cleaning)
of certain instrumental signatures needs to be
done. For example, naturally occurring seismic
vibration can be subtracted from the data using the
channels from the sensitive seismometer that is
part of the LIGO data stream. For the pulsar
search, the gravitational wave strain channel is
extracted. The pulsar search is conducted in the
frequency domain; thus Fourier Transforms are
performed on the long duration time frames to
produce datasets known as Short Fourier
Transforms (SFTs). Since the pulsars are expected
to be found in a small frequency range, the
frequency interval of interest is extracted from the
STFs. The resulting power spectra are used to
build the time-frequency image, which is analyzed
for the presence of pulsar signatures. If a
candidate signal with a good signal to noise ratio
is found, it is placed in LIGO’s event database.

VII. Future Directions

Ayushi Pathak, IJECS Volume 2 Issue 4 April, 2013 Page No. 853-863 Page 862

Finding good abstract and concrete workflows
involves a wide range of issues that have been
investigated in Artificial Intelligence planning,
including hierarchical planning, temporal
reasoning and scheduling, reasoning about
resources, planning under uncertainty and
interleaving planning and execution. In the near
future we plan to evaluate approaches such as plan
reuse and planning under uncertainty to increase
the level of ACWG’s performance and
sophistication.

We also plan to investigate the applicability of our
approach to service-level composition. In this
section we describe some of our ideas.

7.1. Solution Reuse

One important research area that is likely to be
effective for this problem is the reuse of solutions
that were previously computed. Case-based
planning is a powerful technique to retrieve and
modify existing plans that need slight changes to
be adapted to the current situation. These
approaches have potential for ACWG because the
network topology and resource characteristics are
likely to be fairly stable and therefore high-quality
solutions, which may take time to generate from
first principles, will be good starting points for
similar problems in the future.

7.2. Fault Avoidance

In the simple case, the planner creates a plan that
is subsequently executed without a hitch. Often,
however, runtime failures may result in the need
to repair the plan during its execution. Planning
systems can also design plans that either reduce
the risk of execution failure or are more likely to
be salvageable when failures take place. They can
explicitly reason about the risks during planning
and searching for reliable plans, possibly
including conditional branches in their execution.
Some planners delay building parts of the plan
until execution, in order to maintain a lower

commitment to certain actions until key
information becomes available. These approaches
are likely to have high impact in the Grid
computing domain, since its decentralized nature
means many factors are beyond the control of the
planning agent. However current techniques for
handling uncertainty have high complexity, and
are not useable when more than a few potential
failure points need to be considered.

7.3. Relevance to Open Grid Services Architecture

Although much work needs to be done in the area
of workflow generation, we believe that the
framework we designed is a good foundation for
developing ever more sophisticated techniques,
which will take into account an ever greater
amount of information about the applications and
the execution environment. Above Figure
illustrates additional sources of information that
we would like to integrate in the future within the
workflow generation process. At the application
level, we can describe the application components
as services, which would facilitate the integration
of our work with the new Open Grid Services
Architecture (OGSA). These services can be
composed into new more sophisticated services.
Although OGSA provides a syntactic description
of the services (via WSDL) it does not assign any
semantic meaning to them. We propose to
augment service-based component descriptions by
developing ontologies of application components
and data, which will describe the service behavior
and add semantic meaning to the service
interactions. Ontologies will allow us to generate
abstract workflows more flexibly from user
requirements that may be partially complete or
specified at higher levels of abstraction than the
current service descriptions. Additional
information provided by performance models of
the services can guide the initial composition.

We also see ontologies playing a very important
role in generating concrete workflows. Ontologies
of Grid resources would allow the system to
evaluate the suitability of given resources to

Ayushi Pathak, IJECS Volume 2 Issue 4 April, 2013 Page No. 853-863 Page 863

provide a particular application service instance.
The resources that are to be allocated to various
tasks can often be characterized in a domain-
independent way by how they are used.

For example, a computer system becomes
available again once a task has been completed
but a user’s allocation of time on a particular
machine is permanently depleted. Ontologies of
resources capture these qualities. Such ontologies,
along with others which can capture computer
system capabilities and job requirements, are key
in building planning domains for ACWG quickly
and reliably from generic components. However,
there has been little work in this area of
engineering planning domains.

7.4. Incorporating Policy Descriptions

In addition, in order to generate a feasible
workflow, information such as policies governing
the members of a Virtual Organization must be
provided. For example, given an allotment of
resources, the VO might decide to grant more
resources to particular individuals. At the same
time resources themselves need to provide
information about the policies that they enforce
both at the VO and user levels. The resources also
have to provide information about their current
state. Given a feasible solution, CWG also needs

to provide an optimal solution, considering
policies in part but also the overall behavior of the
application.

VIII.Conclusions

In this paper we addressed the issue of composing
complex applications and mapping them on the
Grid resources. We have identified two important
steps that need to take place. The first step is to
map application requirements in terms of desired
data products to an abstract workflow that
specifies what application components can
generate the data. The second step maps the
workflow onto Grid resources.

We described two mappings: CWG, which takes
an abstract workflow, generates a random feas ible
solution and performs modest optimizations, and
ACWG which can perform both steps. We have
exploited and adapted AI planning techniques in
ACWG to express the mapping problem using
application-specific metadata. ACWG makes use
of operator-based plan generation and combines
local heuristics and a global measure to look for
high-quality plans. We applied CWG to an
important

Application domain – the high energy physics
experiment

References

[1].Farag Azzedin and Muthucumaru
MaheswaranEvolving and Managing Trust in
GridComputing Systems*, University of
Manitoba and TRLabsWinnipeg, Manitoba,
Canada.

[2]. Ewa Deelman1, James Blythe1, Yolanda
Gil1, Carl Kesselman1, Gaurang Mehta1,
Karan Vahi1, Kent Blackburn2, Albert
Lazzarini2, Adam Arbree3, Richard Cavanaugh3
And Scott Koranda,Mapping Abstract Complex
Workflows onto Grid Environments

1Information Sciences Institute, University of
Southern California, Marina Del Rey, CA 90292,
US.

[3]. Sunil Taneja*and Ashwani Kush†, A Survey
of Routing Protocols in Mobile Ad Hoc
Networks
International Journal of Innovation, Management
and Technology, Vol. 1, No. 3, August 2010
ISSN: 2010-0248

