
www.ijecs.in

International Journal of Engineering and Computer Science

Volume 14 Issue 03 March 2025, Page No. 27014- 27021

ISSN: 2319-7242 DOI: 10.18535/ijecs/v14i03.5049

Anatolii Tymoshchuk., IJECS Volume 14 Issue 03 March, 2025 Page 27014

The Role of Testing in Software Security Assurance

Anatolii Tymoshchuk 1*

1 Expert in automated testing of applications and websites. Architect of a framework for web application test

automation Glendale, California, United States

Abstract

The article examines the role of testing in ensuring software security, a topic of growing relevance due to the

increasing complexity of IT systems and the rise in cyber threats. Software has become a critical component

of enterprise infrastructure, government institutions, and everyday human life. Therefore, ensuring software

security through effective testing has become one of the key priorities in the modern IT industry. This study

explores contemporary security testing methods, encompassing both traditional approaches such as

functional testing, penetration testing, static and dynamic code analysis, as well as modern automation

techniques leveraging machine learning algorithms. A comprehensive analysis of publicly available

scientific publications was conducted, focusing on the integration of security testing into the software

development lifecycle (SDLC), with an emphasis on CI/CD practices, distributed testing, and continuous

monitoring. The practical significance of this research lies in the applicability of the examined approaches to

enhancing the security of information systems in a rapidly evolving IT landscape. The article will be of

interest to cybersecurity specialists, lead developers, testing methodology researchers, and academics

seeking to integrate advanced testing approaches into strategic cybersecurity measures for software systems.

Keywords: security testing; test automation; machine learning; SDLC; testing integration; cybersecurity;

software.

1. Introduction

Traditional testing methods often fail to detect

vulnerabilities in a timely manner due to

technological advancements and the increasing

complexity of software architectures. A

comprehensive approach that combines classical

quality control methods with modern automation

tools and machine learning techniques is

necessary. This approach not only enables the

timely detection of defects but also allows for the

prediction of potential security threats, which is

critical for preventing incidents.

Modern research in software testing for security

assurance demonstrates a variety of approaches,

influenced by both technical and methodological

factors. Ustimenko L. R., Bileka T. O., and

Safonov I. A. [1] illustrate that integrating

machine learning algorithms into testing processes

reduces the share of routine tasks and enhances

the adaptability of test scenarios. Koch M. [3]

provides fundamental principles and practical

recommendations for using machine learning in

software engineering, serving as a theoretical

foundation for further studies in test automation.

Menzies T. and Shen Y. [4] contribute by

applying machine learning to estimate software

development effort, which indirectly affects

testing quality and, consequently, the security of

the final product.

Redkin P. A. and Alyoshkin A. S. [2] propose a

software suite for distributed testing of web

applications, demonstrating increased defect

detection efficiency through parallel test execution.

Armando Y. and Rosalina R. [5] describe the use

of the OWASP Top 10 framework in software

http://www.ijecs.in/

Anatolii Tymoshchuk., IJECS Volume 14 Issue 03, March, 2025 Page 27015

security testing. A systematic review of testing

techniques conducted by Hanna S., Ahmad A. A.

S. [6], and Ali H. M., Hamza M. Y., Rashid T. A.

[7] explores a broad range of applied methods,

although a unified evaluation system for their

effectiveness remains lacking. Special attention is

given to emerging challenges posed by Web 3.0

technologies, as illustrated in the review by Li H.

et al. [8], where the authors analyze approaches

for detecting vulnerabilities in smart contracts,

emphasizing the need for specialized tools to test

next-generation applications. Sources [9-12],

published on platforms such as jit, builtin,

kaspersky, and anti-malware, highlight corporate

experiences in leveraging modern technologies for

security testing.

The objective of this article is to examine the

role of testing in software security assurance.

The scientific novelty of the study lies in the

analysis of publications, which has identified the

advantages and limitations of various testing

methods, offering new perspectives for developing

effective security assurance approaches. The

proposed hypothesis suggests that integrating

traditional testing methods with modern

automation tools and machine learning algorithms

enhances the efficiency of vulnerability detection

and cyber threat prevention. The research

methodology is based on a comprehensive

analysis of contemporary scientific literature and

an empirical approach to the development and

validation of the proposed testing model.

Modern methods of software security testing

Ensuring software security is a key priority in the

modern IT industry, as vulnerabilities often lead to

serious cybersecurity incidents. Contemporary

security testing methods encompass both

traditional approaches and modern techniques that

enable timely identification and mitigation of

potential threats. Classical security testing

methods rely on functional testing, penetration

testing, and vulnerability scanning. Functional

testing verifies whether a system meets

specification requirements, serving as a

fundamental step in security assurance. Figure 1

below presents the procedures used in software

security analysis.

Fig.1. Procedures used in the analysis of

software security [1].

These methods form the foundation for early

vulnerability detection; however, they often

require significant time and human resources,

limiting their applicability in rapidly evolving

development environments. To analyze software

security, static and dynamic code analysis

methods are widely used:

• Static code analysis involves automated

examination of source code without

execution. Tools such as SonarQube and

Fortify Static Code Analyzer help identify

potential defects and vulnerabilities in the

early stages of development. The primary

advantage of this method is the ability to

detect issues before system deployment [3].

• Dynamic code analysis is conducted in

conditions that closely resemble real-world

operations, allowing observation of an

application ’ s behavior under external

influences. This approach is particularly

Anatolii Tymoshchuk., IJECS Volume 14 Issue 03, March, 2025 Page 27016

useful for assessing a system’s resilience to

real-time attacks [4].

• Both methods complement each other:

static analysis detects potential issues

before execution, while dynamic analysis

evaluates vulnerabilities in a runtime

environment, which is particularly

important for security testing.

• Automated testing enables the following:

• Accelerated verification processes:

Specialized tools such as OWASP ZAP

and Burp Suite enable rapid scanning of

applications for known vulnerabilities.

• Continuous monitoring: Automated

systems integrate into CI/CD pipelines,

allowing security testing at every stage of

development and release updates [1, 5].

• Machine learning applications: Modern

solutions leverage machine learning

techniques to analyze large volumes of test

data, helping predict potential system

instability and detect anomalies that

traditional methods may overlook [2, 4].

At the same time, manual testing remains essential

for interpreting complex attack scenarios that

require expert analysis and unconventional

approaches. For a clearer comparison of the main

security testing methods, Table 1 below presents

an overview.

Table 1. Comparison of the main software

security testing methods [1, 4, 6, 7].

Testing

Method

Advantages Disadvantages

Manual Testing

(Penetration

Testing)

High

accuracy in

identifying

complex

exploits In-

depth expert

analysis of

specific

vulnerabilities

Time and

resource-

intensive

Dependence

on specialist

expertise

Automated

Testing

Rapid

detection of

Limited ability

to detect non-

Testing

Method

Advantages Disadvantages

known

vulnerabilities

Continuous

monitoring

through

CI/CD

integration

standard

attacks

Dependence

on updating

databases of

known

vulnerabilities

Static Code

Analysis

Early

detection of

potential

defects

Automation

and seamless

integration

into

development

processes

Potential for

false positives

Does not

account for

dynamic

system

behavior

Dynamic Code

Analysis

Evaluation of

system

behavior

under real-

world

conditions

Identification

of

vulnerabilities

that appear

only during

execution

Requires a test

infrastructure

that closely

replicates the

production

environment

High

computational

load

Modern software security testing methods

represent a comprehensive approach, where

traditional techniques (functional testing,

penetration testing, static and dynamic analysis)

are effectively complemented by automated

systems leveraging machine learning. This

integrated strategy enhances the accuracy of

vulnerability detection and ensures comprehensive

protection of software systems in an environment

of constantly evolving threats.

2. Automation of security testing and the

application of modern technologies

Modern automation technologies, particularly the

integration of specialized tools and machine

learning algorithms, enhance defect detection

Anatolii Tymoshchuk., IJECS Volume 14 Issue 03, March, 2025 Page 27017

efficiency, reduce time costs, and ensure

continuous monitoring of software security. This

section explores the main directions in security

testing automation and provides examples of

modern technologies applied in this field.

Contemporary automated security testing systems

rely on specialized scanners and frameworks that

enable regular checks for known vulnerabilities in

software products. Tools such as OWASP ZAP

and Burp Suite are widely used for dynamic

testing of web applications, simulating attacks and

identifying potential system configuration flaws.

Their integration into continuous integration and

delivery (CI/CD) pipelines facilitates timely

updates of vulnerability databases and automated

testing of each software release [1]. This approach

reduces the time required for manual testing and

enables systematic security monitoring even in

high-speed development environments.

One promising area is the application of machine

learning in security testing processes.

Classification, clustering, and anomaly detection

algorithms analyze vast volumes of logs,

monitoring data, and test results to identify

patterns associated with potential vulnerabilities

[3]. Examples of companies implementing these

approaches include:

• Demisto, a company promoting the SOAR

(Security Orchestration, Automation, and

Response) approach in cybersecurity,

applies machine learning algorithms in its

visual monitoring panel to prioritize

potential threat alerts [10].

• Kaspersky Lab integrates machine learning

models into its antivirus products to reduce

false positives, enhance result

interpretability, and improve resistance to

attacker actions. It employs decision trees,

locally stable convolutions, behavioral

models, and clustering algorithms [11].

• Microsoft has developed its Windows

Advanced Threat Protection system for

proactive protection, threat detection,

automatic investigation, and incident

response. Integrated into all Windows 10-

based devices, this product is widely used

alongside the company’s cloud services

[10]. The Windows Defender ML system

performs daily behavioral analysis of

extensive datasets to prevent potential

attacks. For instance, when a malicious

cryptominer is installed in a user’s browser,

the system identifies and blocks the threat

within milliseconds. Similar threats at the

enterprise level are neutralized within

seconds due to the efficient application of

machine learning methods [12].

The use of neural networks for predicting system

instability and automated anomaly detection has

already proven effective in several studies [4, 6].

This approach accelerates the testing process

while improving the accuracy of identifying

previously unknown threats, adapting to changing

software operating conditions.

Integrating automated security testing tools into

the software development lifecycle requires the

formation of a specialized system architecture that

includes the following components:

• Data collection and storage: Establishing

centralized repositories for logs, metrics,

and test results to ensure access to

historical data for model training.

• Data preprocessing: Cleaning, normalizing,

and aggregating data for further analysis

using machine learning algorithms.

• Model training and updating: Developing

adaptive models capable of detecting

anomalies and predicting potential threats

based on historical data, followed by

integration into the testing process.

• CI/CD integration: Automated execution

of test scenarios with subsequent result

analysis and report generation for timely

decision-making. For instance, Jit employs

additional control points and filters in

CI/CD processes to ensure that every code

change undergoes vulnerability checks—

regardless of its size. Each code

Anatolii Tymoshchuk., IJECS Volume 14 Issue 03, March, 2025 Page 27018

modification triggers a scan, and if an

issue is detected, developers receive

immediate notifications, allowing them to

apply fixes without disrupting project

timelines [9].

This architecture facilitates continuous

improvement in testing quality through feedback

loops and model updates, which is particularly

critical in the rapidly evolving IT landscape [1, 3,

4]. For a comparative analysis of the discussed

technologies, Table 2 summarizes key aspects of

automated security testing.

Table 2. Comparison of modern security

testing automation technologies [1, 3, 4].

Technology / Tool Advantages Limitations

Automated Scanners

(OWASP ZAP, Burp

Suite)

Rapid

detection of

known

vulnerabilities

CI/CD

integration

capability

Regular

updates of

vulnerability

databases

Limited

ability to

detect

complex

exploits

Dependence

on the

accuracy of

vulnerability

databases

Machine Learning

Methods

Identification

of anomalies

and non-

standard

patterns

Prediction of

potential

threats

Adaptability

to changing

conditions

Requires

large

volumes of

high-quality

data

Complexity

of result

interpretation

Need for

continuous

model

updates

CI/CD Integration

(Automated Test

Scenarios)

Continuous

security

monitoring

Fast response

to changes

Reduction of

manual

workload

Initial

infrastructure

setup costs

Requires

expert

maintenance

Thus, the application of modern automation

technologies, particularly the integration of

specialized vulnerability scanners and machine

learning methods, expands the capabilities of

security testing. A comprehensive approach

combining dynamic monitoring, big data

processing, and continuous integration enhances

the efficiency of threat detection and ensures

robust system protection in a rapidly evolving IT

environment.

3. Integration of security testing into the

software development lifecycle

Modern software development approaches based

on Agile, DevOps, and continuous

integration/continuous delivery (CI/CD) principles

require the implementation of comprehensive

security measures at all stages of the software

development lifecycle (SDLC). Given the constant

emergence of new threats and rapid functional

updates, traditional security testing methods no

longer meet the demands of an ever-changing

development environment. In this context,

integrating security testing into SDLC becomes

essential for timely vulnerability detection and

rapid response to emerging cyber risks [1].

In the initial stages of development (requirement

analysis and design), particular attention is given

to risk assessment and threat modeling.

Techniques such as architectural vulnerability

analysis and preliminary security requirement

evaluations help identify potential attack vectors

before system implementation. During the

development and coding phase, procedures such

as static code analysis, security code reviews, and

unit testing are implemented to detect defects that

could lead to security breaches [3]. During

integration and system testing, dynamic analysis,

penetration testing, and automated vulnerability

scanning (using tools such as OWASP ZAP or

Burp Suite) are employed to assess system

performance under conditions close to real-world

operation [6]. Finally, in the deployment and

operational phases, continuous monitoring with

SIEM systems, intrusion detection systems (IDS),

and log analysis ensures rapid incident response

and maintains an up-to-date security posture [1].

Anatolii Tymoshchuk., IJECS Volume 14 Issue 03, March, 2025 Page 27019

In modern CI/CD environments, automated

security testing plays a key role. Every code

change automatically triggers test scenarios that

include static and dynamic analysis as well as

penetration testing. Test results are fed into a

feedback system, enabling prompt adjustments to

the development process and rapid mitigation of

identified vulnerabilities. This approach reduces

the accumulation of defects and enhances the

reliability of the final product. Moreover,

integrating automated security testing tools

significantly reduces the time spent on routine

checks and ensures more frequent and detailed

security assessments [4, 7].

Effective integration of security testing requires

seamless information exchange between

development, testing, and security teams. Test

results are used to refine system architecture,

improve code quality, and strengthen resilience

against external attacks. In many modern projects,

distributed testing is employed, where test

scenarios are executed in environments that

closely resemble real-world conditions (using

cloud solutions and containerization), increasing

data representativeness and minimizing the impact

of the test environment on verification results [1,

6].

For a clearer representation of the main stages of

security testing integration into the software

development lifecycle, Table 3 presents a

comparison of SDLC stages, applicable methods,

tools used, as well as key advantages and

limitations of each approach.

Table 3. Main stages of integration of security

testing in SDLC [1, 4, 7].

SDLC

Stage

Securit

y

Testing

Metho

ds

Tools/App

roaches

Advanta

ges

Limitat

ions

Require

ment

Analysi

s and

Design

Threat

modeli

ng,

security

require

Microsoft

Threat

Modeling

Tool,

OWASP

Early

identific

ation of

potential

threats;

Depend

ence on

analyst

expertis

e

SDLC

Stage

Securit

y

Testing

Metho

ds

Tools/App

roaches

Advanta

ges

Limitat

ions

ment

assess

ment,

risk

analysi

s

SAMM architect

ure

refineme

nt

Develo

pment

and

Coding

Static

code

analysi

s,

security

code

reviews

, unit

testing

SonarQube,

Fortify

SCA,

integration

with

GitLab

CI/CD

Detectio

n of

vulnerab

ilities

before

system

build;

reductio

n of

defects

at the

coding

stage

Potentia

l false

positive

s;

requires

expert

interpre

tation

Integrat

ion and

System

Testing

Dynam

ic

analysi

s,

penetra

tion

testing,

automa

ted

vulnera

bility

scannin

g

OWASP

ZAP, Burp

Suite,

Selenium

Rapid

identific

ation of

vulnerab

ilities in

integrate

d

systems;

automati

on of

testing

processe

s

Depend

ence on

the

accurac

y of

vulnera

bility

databas

es;

comple

x

configu

ration

Deploy

ment

and

Operati

ons

Contin

uous

monitor

ing, log

analysi

s, real-

time

vulnera

bility

assess

ment

SIEM

systems,

IDS,

monitoring

platforms

(Splunk,

ELK Stack)

Continuo

us

security

improve

ments;

rapid

incident

response

Require

s

ongoing

updates;

high

personn

el

qualific

ation

require

ments

Integrating security testing at all stages of the

software development lifecycle enables the

creation of a multi-layered protection system that

ensures timely vulnerability detection and

Anatolii Tymoshchuk., IJECS Volume 14 Issue 03, March, 2025 Page 27020

remediation. Automating processes within CI/CD,

distributed testing, and a well-established

feedback system between development

participants enhance the overall reliability and

resilience of software products. This approach,

supported by numerous studies, is essential for

meeting modern security requirements in the

rapidly evolving IT landscape.

Thus, the comprehensive inclusion of security

testing in SDLC not only helps identify and

address existing vulnerabilities but also prevents

new ones from emerging, ensuring a high level of

protection for information systems throughout

their lifecycle.

4. Conclusion

The findings indicate that integrating security

testing at all stages of the software development

lifecycle is critically important for ensuring the

reliable protection of information systems. The

analysis of modern methods has shown that

traditional approaches, such as functional testing,

penetration testing, and static/dynamic code

analysis, combined with innovative automation

techniques and machine learning algorithms,

enhance the accuracy and speed of vulnerability

detection. Particular emphasis is placed on

integrating security testing into CI/CD processes,

enabling continuous monitoring and rapid

response to emerging threats.

The examined model demonstrates the feasibility

of establishing a multi-layered security system

where automated tools, specialized scanners, and

analytical algorithms operate in close coordination

with software development and operational

processes. Future research may focus on

optimizing machine learning algorithms for

predicting new types of vulnerabilities, expanding

the functionality of automated testing systems,

and further integrating security assurance into

agile development methodologies. Such a

comprehensive approach will contribute to the

development of highly reliable and cyber-resilient

software products capable of meeting the demands

of the modern market.

References

1. Ustimenko L. R., Bileka T. O., Safonov I.

A. Application of machine learning in

software testing automation //Scientific

research of students and students: a

collection of articles XI. – 2024. – pp. 34.

– 38.

2. Redkin P. A., Alyoshkin A. S. Software

package for distributed testing of web

applications //International Journal of

Open Information Technologies. - 2024. –

Vol. 12 (4). – pp. 125-132

3. Koch M. "Machine learning for software

engineers". Packt Publishing. – 2018.

4. Menzies T., Shen Y. Automated

assessment of efforts in software

development using machine learning

//Journal "Systems and Software. – 2016. –

Vol. 120. – pp. 162-178.

5. Armando Y., Rosalina R. Penetration

Testing Tangerang City Web Application

With Implementing OWASP Top 10 Web

Security Risks Framework //JISA (Jurnal

Informatika dan Sains). – 2023. – Vol. 6

(2). – pp. 105-109.

6. Hanna S., Ahmad A. A. S. Web

applications testing techniques: a

systematic mapping study //International

Journal of Web Engineering and

Technology. – 2022. – Vol. 17 (4). – pp.

372-412.

7. Ali H. M., Hamza M. Y., Rashid T. A. A

Comprehensive Study on Automated

Testing with The Software Lifecycle //

arXiv preprint arXiv:2405.01608. – 2024.

– pp.1-13.

8. Li H. et al. A Review of Approaches for

Detecting Vulnerabilities in Smart

Contracts within Web 3.0 Applications

//Blockchains. – 2023. – Vol. 1 (1). – pp.

3-18.

9. 5 A practical way to use security

automation in developers. [Electronic

resource] Access mode:

https://www.jit.io/resources/devsecops/5-

Anatolii Tymoshchuk., IJECS Volume 14 Issue 03, March, 2025 Page 27021

practical-use-cases-to-automate-security-

in-devsecops (date of request: 02/14/2025).

10. Machine Learning in Cybersecurity: How

It Works and Companies to Know.

[Electronic resource] Access mode:

https://builtin.com/artificial-

intelligence/machine-learning-

cybersecurity (accessed: 02/14/2025).

11. Machine learning in information security.

[Electronic resource] Access mode:

https://www.kaspersky.ru/enterprise-

security/wiki-section/products/machine-

learning-in-cybersecurity(date of request:

02/14/2025).

12. Application of machine learning and

artificial intelligence technologies in

information security [Electronic resource]

Access mode: https://www.anti-

malware.ru/analytics/Technology_Analysi

s/machine-learning-and-artificial-

intelligence-in-is(date of request:

02/14/2025).

