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Abstract 

Generative artificial intelligence systems such as large language models are coaxed via prompt engineering 

into generating suggestions for the development of an automated system for the diagnosis of tuberculosis on 

the basis of chest radiography image sequences. The recommendations of the generative artificial 

intelligence are followed through to construct artificial intelligence models and then these models are trained, 

tested and validated on suitably formatted data and harnessed for the automated detection of tuberculosis via 

the analysis or processing of chest radiography images. The performance of the trained artificial intelligence 

models could be enhanced with a view to fielding them in modules for the automated image-based diagnosis 

of tuberculosis as part of a comprehensive artificial intelligence-powered healthcare system that could 

provide clinical decision support to medical doctors and healthcare professionals. 

Keywords: Tuberculosis, Artificial Intelligence (AI), Generative Artificial Intelligence, Large Language 

Model (LLM), Chat GPT, Deep seek, Convolutional Neural Network (CNN), Healthcare System, 

TensorFlow, Automated Disease Diagnosis and Prediction 

1.  Introduction 

According to the World Health Organization 

(WHO), tuberculosis, a bacterial infection that 

affects the lungs, afflicts a significant fraction of 

the global population and causes over a million 

deaths a year, taking its place as one of the top 

single causes of mortality worldwide [1] – [2]. 

The disease is present in all regions of the world 

and in all populations and age groups. Worst 

affected are those in low- and middle-income 

countries (LMIC) who have to grapple with severe 

constraints in the resource pool for healthcare 

service delivery. Early detection, especially in 

resource-limited settings, can lead to improved 

health outcomes. The processing of chest 

radiography image sequences provides a viable 

pathway for the detection or diagnosis of 

tuberculosis. 

In order to mitigate the effects of the resource 

constraints prevalent in LMICs by dramatically 

enhancing the productivity of medical doctors and 

other healthcare professionals and ameliorating 

the adverse consequences of the brain drain 

caused by the emigration of the already limited 

number of qualified healthcare professionals to 

more developed countries in search of greener 

pastures, as well as generally improve medical 

doctor productivity, save lives and improve living 

conditions in both developed and developing 

countries, Ekpar [3] – [6] introduced Scholar 

Medic, a comprehensive artificial intelligence-

driven healthcare system with a modular design 

that accommodates a wide range of health 

conditions and permits the refinement of existing 

modules and addition of new modules on the basis 

of fresh data. Scholar Medic [3]– [6] uniquely 

facilitates the utilization of novel three-

dimensional multilayer electroencephalography or 

Ekpar EEG [7] – [9] systems as well as support 

for the adaptation of traditional 

electroencephalography (EEG) systems to the 

advanced three-dimensional multilayer Ekpar 

EGG paradigm for greater insights and for 

http://www.ijecs.in/
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enabling hitherto unattainable applications of EEG 

in myriads of domains ranging from computing to 

medicine. 

Machine learning and artificial intelligence 

systems have been applied to the detection, 

diagnosis and prediction of health conditions [10] 

– [28]. Furthermore, large language models could 

also be utilized in this endeavor owing to their 

ability to learn knowledge representations and 

draw inferences from data [29] – [30]. Here, 

suggestions are extracted from generative artificial 

intelligence (AI) systems such as large language 

models (LLMs) and harnessed to develop two-

dimensional convolutional neural network models 

for the automated diagnosis of tuberculosis on the 

basis of chest radiography (x-ray) image 

sequences. 

2. Materials and Methods 

Participant Recruitment 

Individuals voluntarily participated in the research 

contributing to the development of the 

comprehensive AI-powered healthcare system. All 

participants provided informed consent before 

their involvement in the studies, ensuring their 

understanding of the research purpose, methods, 

and potential impacts. 

Ethical Approval 

The Health Research Ethics Committee at Rivers 

State University Teaching Hospital, located within 

Rivers State University, granted ethical clearance 

for the studies. The research complied with all 

relevant ethical and regulatory standards. Publicly 

available data were utilized in accordance with the 

licensing terms set by the original data creators. 

3. Methodology 

Publicly available healthcare datasets can be 

improved by incorporating data gathered from 

local experiments and data collection efforts. This 

combined dataset can then be used to train AI 

models to make actionable predictions based on 

new inputs. Examples of public healthcare data 

sources include the Centers for Disease Control, 

the University of California Irvine Machine 

Learning Repository, the American Epilepsy 

Society, and Kaggle. 

Incorporating local data enhances the model, 

reduces bias, and ensures greater inclusivity and 

global applicability. A key feature of this project 

is the integration of diagnostic data (such as 

electrocardiographic results) from local 

experiments with EEG data, using both traditional 

and advanced three-dimensional multilayer EEG 

(Ekpar EEG) systems [7] – [9]. Ethical approval 

has been obtained for local data collection efforts 

from research ethics committees in the respective 

regions. Furthermore, partnerships have been 

established with licensed medical doctors who 

have direct access to patients and healthcare 

professionals within the community. These 

doctors are providing anonymized clinical data to 

help validate the AI models. Once trained, the AI 

models will be incorporated into a comprehensive 

healthcare system designed to support medical 

professionals in clinical decision-making and to 

generate Brain-Computer Interfaces (BCIs). This 

system will provide actionable insights and 

predictions based on new clinical data from 

healthcare providers, aiding in the early detection, 

diagnosis, treatment, prediction, and prevention of 

various conditions such as tuberculosis, chronic 

kidney disease, diabetes mellitus, heart disease, 

stroke, autism, and epilepsy. 

This project is committed to promoting open 

science, reproducibility, and collaboration, and the 

resulting data will be shared on public platforms 

like GitHub. 

System Design and Implementation 

This paper presents a healthcare system with a 

modular design, where each health condition (e.g., 

tuberculosis, chronic kidney disease, liver disease, 

diabetes mellitus, heart disease, stroke, epilepsy, 

autism, etc.) is managed by its own dedicated 

module. This approach allows the system to be 

easily expanded in the future to include additional 

conditions, while also facilitating efficient updates 

to existing modules as new data becomes 

available. Modules tailored for Brain-Computer 

Interfaces (BCIs), including those that use the 
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motor imagery paradigm, are capable of 

processing EEG data to generate actionable 

commands and appropriate responses. 

The system also includes guidelines for upgrading 

traditional EEG systems to cutting-edge three-

dimensional multilayer EEG (Ekpar EEG) 

systems. These innovative systems, developed by 

Ekpar [7] – [9], are based on a conceptual 

framework that uses approximations of key bio-

signal features to analyze or influence the 

underlying biological systems. For each module, 

advanced AI models are developed and trained 

using well-structured data, as described in the 

paper. These models can integrate genetic, 

environmental, lifestyle, and other relevant factors 

to provide a more accurate understanding of the 

participants' circumstances. 

Figure 1 represents selected key components of 

the system visually. 

 

Fig. 1: System Schematic Design Diagram for the 

Comprehensive AI-Driven Healthcare Solution 

and Brain Computer Interface System. The New 

Conditions component represents additional health 

conditions that can be incorporated into the 

solution via new modules. 

The development of AI models involves four 

primary approaches: 

1. Leveraging Large Language Models 

(LLMs): This method utilizes models such 

as GPT-4 and Deepseek as inference 

engines, processing data formatted as 

multidimensional input vectors. Fine-

tuning may also be applied to the LLM to 

optimize performance. 

2. Prompt Engineering for LLMs: This 

approach applies prompt engineering to 

models like Deepseek, Bard, and GPT-4 

(including future versions) to outline a 

sequence of actions for building the AI 

system. These steps are then executed with 

expertise in AI, neural networks, deep 

learning, Python, TensorFlow, Keras, and 

other machine learning tools such as 

Scikit-learn and Matplotlib. 

3. Automated AI Model Generation: LLMs 

like Deepseek, Bard, and GPT-4 (and their 

future iterations) are used in an automated 

pipeline to generate specific AI models. 

4. Custom AI Architecture Design: In this 

method, the AI system is designed directly 

by leveraging the creator's deep knowledge 

of AI, neural networks, deep learning, 

Python, TensorFlow, Keras, and additional 

ML tools such as Scikit-learn and 

Matplotlib. 

Thorough documentation of the methodologies 

and tools used in developing the solution is 

carried out, ensuring seamless transfer and reuse 

of the system. 

The generated AI models are then assessed and 

compared based on performance metrics (e.g., 

specificity, sensitivity) and their effectiveness in 

addressing the challenges at hand. 

4. Automated Image-Based Tuberculosis 

Diagnosis Module 

The second method of the four methods outlined 

above is adopted to get generative artificial 

intelligence tools such as large language models 

and in particular, ChatGPT, to generate 

instructions for the construction of convolutional 

neural networks for the automated diagnosis of 

tuberculosis on the basis of chest radiography 

image sequences. 

A generalized prompt is utilized to generate 

recommendations for the overall design of the 

system for automated image-based diagnosis of 
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tuberculosis. Then a more refined prompt follows 

for more precise steps and actual source code for 

the actual convolutional neural network models to 

be constructed in light of the dimensions of the 

input and/or pre-processed image datasets. 

5. Dataset 

Chest radiography image sequences in datasets 

provided by Rahman et al [31] were employed for 

the training, testing and validation of the AI 

models developed herein. Data augmentation, 

possibly through local data collection drives could 

enhance the original datasets, improve the 

performance, stability and robustness of the AI 

models and pave the way for incorporation into 

the comprehensive AI-powered healthcare system 

created by Ekpar [3] – [6] as a module for the 

automated diagnosis of tuberculosis based on 

image processing. 

Figure 2 shows a set of randomly selected images 

from the dataset with their corresponding classes, 

that is, normal or with tuberculosis present. The 

original images had dimensions of 512 pixels by 

512 pixels and were pre-processed to 180 pixels 

by 180 pixels for faster processing. 

 

Fig. 2: Sample images from dataset indicating the 

presence or absence of tuberculosis. 

Data Availability 

The data collections that support the conclusions 

of this study are contained in the chest 

radiography image dataset publicly available from 

the Kaggle dataset repository at 

https://www.kaggle.com/datasets/tawsifurrahman/

tuberculosis-tb-chest-xray-dataset. 

First Chatgpt Prompt 

Design a system for automated image-based 

diagnosis of tuberculosis. 

First Chatgpt Response 

Designing a system for automated image-based 

diagnosis of tuberculosis (TB) involves creating a 

pipeline that processes chest X-ray (CXR) images, 

analyzes them using machine learning algorithms, 

and provides diagnostic results. The goal is to 

identify signs of tuberculosis in the images with 

high accuracy and efficiency, supporting 

healthcare providers with a fast and reliable 

diagnosis. 

Here’s a step-by-step approach to designing 

such a system: 

________________________________________ 

1. Data Collection and Preprocessing 

The system needs a diverse dataset of chest X-rays, 

including both TB-positive and TB-negative cases. 

The quality and diversity of the dataset will 

directly impact the system's performance. 

Data Sources: 

• Public datasets such as NIH Chest X-ray 

Dataset, Kaggle's Chest X-ray Images 

(Pneumonia), or TBX11K. 

• Medical institutions could also provide 

anonymized X-ray data. 

Preprocessing: 

• Normalization: Standardize the image size 

and resolution (e.g., 224x224 pixels). 

• Data Augmentation: Use techniques like 

rotation, flipping, and scaling to increase 

dataset diversity and make the model more 

robust. 

• Image Enhancement: Apply contrast 

enhancement or edge detection to improve 

the visibility of lung areas and abnormal 

regions. 

https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-chest-xray-dataset
https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-chest-xray-dataset
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• Normalization: Standardize pixel values 

(e.g., to a range of 0-1 or -1 to 1). 

• Segmentation: Apply lung segmentation 

techniques to focus the analysis on lung 

areas, ignoring irrelevant parts of the 

image. 

____________________________________ 

2. Model Development (Deep Learning-Based 

Approach) 

2.1 Convolutional Neural Network (CNN) 

A CNN can be used for feature extraction from 

chest X-ray images. Transfer learning from pre-

trained models such as ResNet, DenseNet, or 

VGG19 can be a good approach, as they have 

been trained on large datasets and can recognize 

complex patterns. 

Model Architecture: 

• Input Layer: The chest X-ray image 

(224x224 pixels, 1 or 3 channels 

depending on grayscale or color input). 

• Convolutional Layers: Extract low-level 

features such as edges, textures, and 

shapes. 

• Pooling Layers: Reduce dimensionality 

and retain important features. 

• Fully Connected Layers: Combine features 

from convolutional layers to classify the 

image as TB-positive or TB-negative. 

• Softmax Output Layer: Outputs the 

probabilities for TB-positive and TB-

negative. 

Example CNN Models: 

• ResNet50: Known for its residual blocks, 

allowing deep networks to avoid vanishing 

gradient problems. 

• EfficientNet: A model designed to be 

efficient in terms of parameters and 

computational resources. 

• 2.2 Pre-trained Model & Fine-tuning 

Start with a model like ResNet or EfficientNet, 

pre-trained on ImageNet, and fine-tune it on the 

chest X-ray dataset. Fine-tuning allows the model 

to leverage learned features and specialize in TB 

diagnosis. 

2.3 Data Augmentation & Regularization 

• Augmentation: Rotate, scale, and crop X-

ray images to create more training data. 

• Dropout: Prevent overfitting in the fully 

connected layers. 

2.4 Transfer Learning (optional) 

For more robust performance, a hybrid model 

could use a pre-trained architecture and fine-tune 

it using a TB-specific dataset. This approach helps 

improve accuracy, especially with limited TB 

datasets. 

________________________________________ 

3. Model Evaluation and Validation 

3.1 Performance Metrics 

To evaluate the model’s accuracy, use metrics 

such as: 

• Accuracy: Percentage of correct 

classifications. 

• Precision: Measure of positive prediction 

correctness (important in a medical 

context). 

• Recall (Sensitivity): Measure of detecting 

actual TB cases (important for patient 

safety). 

• F1-Score: Harmonic mean of precision and 

recall, balancing both metrics. 

• ROC-AUC Curve: To evaluate the 

classification thresholds. 

3.2 Cross-validation 

Use cross-validation techniques like k-fold cross-

validation to assess the model's generalizability 

and avoid overfitting. 

________________________________________ 

4. Post-Processing & Result Explanation 

4.1 Heatmap Generation (Grad-CAM) 

To explain the model’s decision, use Grad-CAM 

(Gradient-weighted Class Activation Mapping) to 
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generate heatmaps that highlight areas in the chest 

X-ray where the model detected signs of TB. 

4.2 Risk Score 

In addition to a binary classification (TB-positive 

or TB-negative), the system can generate a risk 

score that quantifies the probability of TB being 

present, helping healthcare professionals make 

more informed decisions. 

4.3 Multiclass Classification (Optional) 

For further categorization, the system can classify 

TB severity or types (e.g., active TB, latent TB, or 

no TB). 

________________________________________ 

5. User Interface and Integration 

5.1 Web or Mobile Application 

• Upload: The user uploads chest X-ray 

images through a web or mobile interface. 

• Prediction: The system processes the 

image and returns the TB diagnosis, along 

with the heatmap and risk score. 

• Feedback: Healthcare professionals can 

provide feedback on the results to further 

fine-tune the model. 

• 5.2 Cloud Integration 

• The system could be cloud-based to allow 

access from remote clinics and hospitals 

with minimal infrastructure. 

• Provide an API for integration with 

existing hospital management systems 

(HMS) for seamless patient data flow. 

5.3 Error Handling and Confidence Scores 

• Provide users with confidence scores to 

indicate the certainty of the diagnosis. 

• In cases of low confidence or ambiguous 

results, the system should request a second 

opinion from a human radiologist. 

________________________________________ 

6. Deployment and Monitoring 

6.1 Deployment 

The trained model can be deployed on a cloud 

server or edge device, depending on infrastructure 

needs. Cloud servers are scalable, while edge 

devices (e.g., mobile phones or local servers) are 

more suitable for remote areas with limited 

internet connectivity. 

6.2 Continuous Learning 

The system can be designed to continuously learn 

from new annotated X-ray images, retraining 

periodically to improve performance as more data 

becomes available. 

________________________________________ 

7. Ethical Considerations & Regulations 

• Privacy & Security: Ensure compliance 

with medical data privacy laws like 

HIPAA (Health Insurance Portability and 

Accountability Act) or GDPR (General 

Data Protection Regulation). 

• Bias Mitigation: Use a diverse dataset to 

minimize demographic bias in TB 

diagnosis. 

• Clinical Validation: Before full 

deployment, conduct clinical trials and 

obtain regulatory approval (e.g., from the 

FDA or CE certification) to ensure the 

system meets medical standards. 

________________________________________ 

8. Future Enhancements 

• Multimodal Diagnosis: Combine X-ray 

images with other medical data (e.g., 

patient history, lab results) for a more 

comprehensive diagnosis. 

• Mobile Deployment: Adapt the system for 

use in low-resource settings, enabling 

healthcare workers in remote areas to 

conduct diagnoses. 

• Integration with AI-Assisted Tools: Use 

AI to automate the reporting process, such 

as automatically generating diagnostic 

reports and suggestions for treatment. 

________________________________________ 
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This system can greatly enhance early detection of 

tuberculosis, particularly in resource-limited 

settings where radiologists may not be readily 

available. By automating the image-based 

diagnostic process, the system helps increase 

efficiency, reduce diagnostic errors, and improve 

overall TB care outcomes. 

Second Chatgpt Prompt 

Design a two-dimensional convolutional neural 

network for classification of images into two 

classes where each image is 180 pixels by 180 

pixels. 

Second Chatgpt Response 

Designing a two-dimensional convolutional neural 

network (CNN) for image classification into two 

classes (binary classification) with input images of 

size 180×180180 \times 180 pixels involves the 

following layers: 

1. Input Layer: 

o Input shape is (180,180,3) (180, 180, 3) 

because the images are colored (RGB), so 

there are three channels. 

2. Convolutional Layers: 

o Convolutional layers are used to extract 

features from the image. 

o We use several filters (kernels) that slide 

over the image to detect patterns like edges, 

textures, and more complex features in 

deeper layers. 

3. Pooling Layers: 

o After convolutional layers, pooling layers 

(usually max-pooling) are used to reduce 

the spatial dimensions (height and width) 

while retaining important information. 

4. Flattening Layer: 

o After applying convolution and pooling 

layers, the resulting feature maps are 

flattened into a one-dimensional vector to 

feed into the fully connected layers (dense 

layers). 

5. Fully Connected Layers (Dense Layers): 

o These layers are used to make final 

predictions based on the extracted features. 

o Typically, we use one dense layer 

followed by a final output layer. 

o Output Layer: 

o The output layer is a sigmoid activation 

function, which gives us a probability of 

belonging to one of the two classes. 

Here’s an example design in Keras: 

import tensor flow as tf 

from tensor flow. keras import layers, models 

# Define the model 

model = models. Sequential () 

# First Convolutional Layer 

model. add (layers. Conv2D (32, (3, 3), 

activation='relu', input_shape= (180, 180, 3))) 

model. Add (layers. MaxPooling2D ((2, 2))) 

# Second Convolutional Layer 

model. Add (layers. Conv2D (64, (3, 3), 

activation='relu')) 

model. Add (layers. MaxPooling2D ((2, 2))) 

# Third Convolutional Layer 

model. Add (layers. Conv2D (128, (3, 3), 

activation='relu')) 

model. Add (layers. MaxPooling2D ((2, 2))) 

# Flattening Layer 

model. Add (layers. Flatten ()) 

# Fully Connected Layer 

model. Add (layers. Dense (128, activation='relu')) 

# Output Layer 

model. add (layers. Dense (1, 

activation='sigmoid')) # For binary classification 

# Compile the model 

model. compile (optimizer='adam', 

              loss='binary_crossentropy', 

              metrics=['accuracy']) 

# Model summary 

model. Summary () 

Explanation: 

1. Conv2D Layers: 

o The first Conv2D layer has 32 filters with 

a kernel size of 3×33 \times 3, and the 

activation function is ReLU (Rectified 

Linear Unit). 
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o Each subsequent Conv2D layer increases 

the number of filters (64 and 128) to 

capture more complex features as the 

network deepens. 

2. MaxPooling2D Layers: 

o These layers reduce the spatial dimensions 

by pooling over a 2×22 \times 2 region. 

This helps reduce the computational 

complexity and control overfitting. 

3. Flatten Layer: 

o This layer flattens the 3D output (from the 

convolutional and pooling layers) into a 

1D vector to be passed to the dense layers. 

4. Dense Layer: 

o A fully connected layer with 128 neurons 

and ReLU activation to learn complex 

patterns. 

5. Output Layer: 

o A single neuron with a sigmoid activation 

function for binary classification (output 

between 0 and 1). 

o Model Compilation: 

• The model is compiled with the Adam 

optimizer and binary cross-entropy loss 

function, which is typically used for binary 

classification tasks. 

• Accuracy is used as the evaluation metric. 

Example Training Code: 

# Assuming you have your dataset loaded into 

X_train, Y_train, X_val, Y_val 

# X_train and X_val should have shape 

(num_samples, 180, 180, 3), Y_train and Y_val 

should have shape (num_samples, 1) 

history = model. Fit (X_train, Y_train,  

epochs=10,  

batch_size=32,  

 validation_data=(X_val, Y_val)) 

Key Considerations: 

• Data Augmentation: If your dataset is 

small, using data augmentation (e.g., 

rotations, flips, and zooms) can help 

improve the model's ability to generalize. 

• Regularization: Techniques like dropout or 

L2 regularization can be added to the 

dense layers to prevent overfitting, 

especially if you have a small dataset. 

• Training: The number of epochs and batch 

size should be tuned based on the specific 

dataset and hardware. 

This architecture can be a good starting point, and 

you can adjust the number of filters, layers, and 

other hyperparameters based on the performance 

and the size of your dataset. 

Two-Dimensional (2d) Convolutional Neural 

Network (Cnn) Architecture 

Based on the recommended of ChatGPT 

reproduced above, the 2D CNN was designed. 

The detailed architecture is contained in the 

recommendations above.  

Figure 3 illustrates the graphical representation of 

a 2D CNN along the lines of the architecture 

suggested by ChatGPT. 

 

Fig. 3: Schematic Graphical Representation of 

Two-dimensional (2D) Convolutional Neural 

Network (2D CNN) Architecture. 

5. Results  

This study implemented the suggested 2D CNN 

architecture using the source code generated by 

the generative artificial intelligence system or 

large language model (ChatGPT) in the Python 

programming language by leveraging the 
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TensorFlow platform and the associated Keras 

Application Programming Interface (API) [32] – 

[33]. Partitioning of the dataset resulted in a split 

into a training dataset with 80% of the data and a 

testing/validation dataset with 20% of the data. 

Training proceeded for 10 epochs with the Adam 

Optimizer [34] – [35] and binary cross-entropy 

loss function with a batch size of 32.  

Figure 4 depicts a plot of the traces of the training 

and validation accuracy and training and 

validation loss pairs over the training cycles.  

The performance of the model can be gleaned 

from the plot which demonstrates convergence of 

the training and validation performance metrics 

over the epochs. 

 

 

Fig. 4: Performance Metrics – Training and 

Validation Accuracy and Loss Traces. 

6. Conclusion 

The work reported in this paper relied on the 

recommendations of generative artificial 

intelligence tools such as large language models to 

develop artificial intelligence models, and more 

specifically, convolutional neural networks for the 

automated diagnosis of tuberculosis by examining 

chest radiography image sequences. Enhancement 

of the resulting artificial intelligence models could 

permit their inclusion in modules for the 

automated chest radiography image-based 

detection of tuberculosis within the framework of 

a comprehensive artificial intelligence-driven 

healthcare system capable of proffering insights 

for clinical decision support in actual healthcare 

settings including those with limited resources. 
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