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Abstract 

This paper presents a system that generates artificial intelligence (AI) models for the automated diagnosis of 

liver disease (cirrhosis of the liver) based on the recommendations of generative AI tools such as large 

language models (LLMs). System architectures suggested by the LLMs via prompt engineering are 

implemented using the TensorFlow framework and trained, tested and validated on publicly accessible liver 

disease datasets comprising clinical or diagnostic measurements of factors such as age, gender, total 

bilirubin, direct bilirubin, total proteins, albumin, albumin and globulin ratio, alanine aminotransferase, 

aspartate aminotransferase and alkaline phosphatase. After fine-tuning for robustness and enhanced 

performance, the resulting AI models could be harnessed into modules for the automated diagnosis of liver 

disease within the framework of a comprehensive AI-driven healthcare system. 
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1.  Introduction 

The World Health Organization (WHO) indicates 

that millions of people suffer from liver diseases 

(including cirrhosis of the liver) worldwide [1] 

with attendant deleterious effects and deterioration 

of the quality of life. As is the case with a wide 

range of diseases, the burden of liver diseases 

weighs down disproportionately on the developing 

world or those living in low- and middle-income 

countries (LMICs) or the global south.  

Accurate and timely diagnosis could lead to vastly 

improved health outcomes and save lives. This is 

especially significant in LMICs where the 

required resources are scarce. 

Ekpar [2] introduced a comprehensive artificial 

intelligence-driven healthcare framework with a 

modular design that can provide clinical decision 

support in the early detection, diagnosis, 

prediction and management of a wide range of 

health conditions. This system [2] has unique 

features including support for novel three-

dimensional multilayer electroencephalography 

(Ekpar EEG) systems [3] – [5]. Refinement of the 

AI models developed in this study could permit 

incorporation into the comprehensive AI-powered 

framework [2] as modules for the automated 

diagnosis of liver disease. 

Systems for automated diagnosis and prediction of 

diseases employ a wide range of algorithms and 

methods [6] – [24]. Large language models 

(LLMs) could be pressed into service for the 

automated diagnosis and prediction of diseases 

owing to their ability to extract structured 

representations of data and generate data-based 

inferences [25] – [26]. 

http://www.ijecs.in/
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2. Materials and Methods 

Participant Recruitment 

Volunteers were recruited to participate in the 

research that culminated in the creation of the 

comprehensive AI-powered healthcare system. All 

participants gave informed consent for their roles 

in the studies. 

Ethical Approval 

The Health Research Ethics Committee at Rivers 

State University Teaching Hospital, situated 

within Rivers State University, approved the 

studies ethically. The research followed all 

relevant ethical and regulatory guidelines. 

Publicly accessible data were utilized in 

accordance with the licensing terms established by 

the original creators. 

3. Methodology 

Publicly available healthcare datasets can be 

enriched by incorporating data from local 

experiments and data collection initiatives. This 

combined dataset can then be used to train AI 

models capable of making actionable predictions 

based on new inputs. Sources for public healthcare 

datasets include the Centers for Disease Control, 

the University of California Irvine Machine 

Learning Repository, the American Epilepsy 

Society, and Kaggle. Integrating local data 

enhances the model, reduces bias, and ensures 

greater inclusivity and global relevance. A key 

feature of this project is the fusion of diagnostic 

data—such as electrocardiographic results—from 

local experiments with EEG data, using both 

traditional and innovative three-dimensional 

multilayer EEG systems. 

The local data collection efforts have been 

ethically approved by research ethics committees 

in the relevant regions, and partnerships have been 

established with licensed medical doctors who 

have direct access to patients and healthcare 

professionals. These doctors are contributing 

anonymized clinical data to validate the AI 

models. Once trained, the AI models will be 

incorporated into a comprehensive healthcare 

system to assist medical practitioners with clinical 

decision-making and support Brain-Computer 

Interfaces (BCIs). This system will provide 

actionable insights and predictions based on new 

clinical data from healthcare professionals, 

helping with the early detection, diagnosis, 

treatment, prediction, and prevention of conditions 

such as diabetes, heart disease, stroke, autism, and 

epilepsy. This project is committed to advancing 

open science, reproducibility, and collaboration, 

and the generated data will be shared on public 

platforms like GitHub. 

4. System Design and Implementation 

This paper presents a healthcare system with a 

modular design, where each health condition 

(such as liver disease, heart disease, preeclampsia, 

and so on) is handled by a distinct module. This 

design allows for future expansion to include 

additional conditions and facilitates the easy 

update of existing modules with new data. 

Modules for Brain-Computer Interfaces (BCIs), 

including those based on motor imagery, process 

EEG data to generate actionable commands and 

responses. 

The system also offers guidelines for transitioning 

from traditional EEG setups to advanced three-

dimensional multilayer EEG systems. These 

cutting-edge systems, developed by Ekpar, are 

based on a conceptual framework that 

approximates key features of biosignals to analyze 

or influence biological processes. 

For each module, sophisticated AI models are 

trained on properly formatted data, as described in 

the paper. These models incorporate various 

factors such as genetic, environmental, and 

lifestyle information, ensuring more precise and 

personalized insights into each participant's 

situation. 

Figure 1 illustrates key elements of the system. 
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Fig. 1: System Schematic Design Diagram for the 

Comprehensive AI-Driven Healthcare Solution 

and Brain Computer Interface System. The New 

Conditions component represents additional health 

conditions that can be incorporated into the 

solution via new modules. 

The AI models are created through four distinct 

approaches: 

1. Leveraging LLMs like GPT-4 as inference 

engines, using data structured as 

multidimensional input vectors. This may 

include fine-tuning the model. 

2. Prompt Engineering applied to LLMs such 

as Bard and GPT-4 (and future versions) to 

outline a series of steps for building the AI 

system. These steps are then carried out 

with the creator’s expertise in AI, neural 

networks, deep learning, Python, 

TensorFlow, Keras, and other machine 

learning and visualization tools, including 

Scikit-learn and Matplotlib. 

3. Automated AI Model Generation using 

LLMs like Bard and GPT-4 (and 

upcoming versions) through an automated 

pipeline to develop specific models. 

4. Direct AI Architecture Design based on 

the creator’s extensive knowledge of AI, 

neural networks, deep learning, Python, 

TensorFlow, Keras, and other ML and 

visualization tools such as Scikit-learn and 

Matplotlib. 

All the methods and tools used in the development 

of the solution are carefully documented to 

facilitate easy transfer and reuse of the system. 

The generated AI models are assessed and 

compared based on performance metrics (like 

specificity and sensitivity) and their effectiveness 

in solving the relevant challenges. 

AUTOMATED LIVER DISEASE (CIRRHOSIS 

OF THE LIVER) DIAGNOSIS BASED ON 

CLINICAL MEASUREMENTS  

Towing the path of the second method for the 

development of AI models based on the responses 

generated through prompt engineering of 

generative AI systems like large language models 

(LLMs), recommendations are solicited from the 

generative AI on the steps required for the 

construction of the AI models for the automated 

diagnosis of liver disease (cirrhosis of the liver) 

based on diagnostic measurements such as 

bilirubin and albumin. 

Initially, the generative AI or LLM is prompted 

with a broad-based question on the development 

of the system. The response is examined and 

harnessed to craft a specialized prompt designed 

to generate specific steps for the construction of 

the system. The recommended AI model is then 

constructed and trained on the available dataset 

and wielded for the automated diagnosis of liver 

disease. Further refinement of the AI models 

could be carried out with a view to integrating 

them in a module for automated liver disease 

diagnosis in the comprehensive AI-driven 

healthcare framework created by Ekpar [2]. 

The dataset utilized will now be described and 

then the prompts sent to the generative AI or LLM 

– ChatGPT in this case – will be highlighted 

together with the responses of the generative AI. 

Dataset 

This study utilizes the publicly accessible liver 

disease dataset donated by Ramana et al [27] for 

the training, testing and validation of the AI 

models.  Altogether, 583 patients (416 with liver 

disease and 167 without liver disease) are 

captured in the dataset which contains one row of 

data for each patient. Consequently, there are 583 

rows of data in the dataset. Clinical measurements 

for 10 factors and the corresponding diagnosis 

comprise the 11 columns of each row of data, with 
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the first 10 columns representing the clinical 

measurement and the last or eleventh column 

representing the diagnostic outcome. The dataset 

contains a total of 583 rows of data – one for each 

of the 583 patients or participants – 416 of whom 

were diagnosed with liver disease while 167 

presented with normal liver condition or without 

liver disease.  The 10 clinical measurements 

captured in the first 10 columns of each data row 

for each patient are: age, gender, total Bilirubin, 

direct Bilirubin, total proteins, albumin, Albumin 

and Globulin Ratio, Alanine Aminotransferase, 

Aspartate Aminotransferase and Alkaline 

Phosphatase. 

Data Availability 

The dataset employed in this research was pulled 

from the publicly accessible University of 

California Irvine Machine Learning Repository at 

https://archive.ics.uci.edu/dataset/225/ilpd+indian

+liver+patient+dataset. 

First Chatgpt Promp 

Design a system for automated diagnosis of liver 

disease based on diagnostic measurements such as 

albumin, bilirubin and alanine aminotransferase. 

First Chatgpt Response 

Designing a system for the automated diagnosis of 

liver disease using diagnostic measurements like 

albumin, bilirubin, and alanine aminotransferase 

(ALT) involves several steps: data collection, 

preprocessing, model training, and integration into 

a user-friendly system. Below is a step-by-step 

outline of how such a system could be designed: 

1. Data Collection & Preprocessing 

Data Inputs: 

The system will rely on the following diagnostic 

measurements: 

• Albumin (ALB): A protein produced by 

the liver, typically low in liver disease. 

• Bilirubin (BILI): A byproduct of red blood 

cell breakdown, elevated in liver 

dysfunction. 

• Alanine Aminotransferase (ALT): An 

enzyme released into the bloodstream 

when liver cells are damaged. 

These values, alongside other possible relevant lab 

results (e.g., AST, GGT), can be used to assess 

liver function. 

Data Preprocessing: 

• Normalization: Normalize the input data 

(e.g., scale values between 0-1 or use Z-

score normalization) to ensure the model 

interprets the measurements consistently 

across different patients and labs. 

• Missing Data: Use imputation techniques 

(e.g., median imputation) for missing 

values or discard cases with missing data. 

• Outlier Detection: Check for outliers using 

statistical methods (e.g., IQR or z-scores) 

to ensure the data is within a reasonable 

range. 

2. Feature Engineering 

• Ratios and Derived Features: Some useful 

derived features include:  

• Albumin/Bilirubin ratio: This ratio can 

help distinguish between different types of 

liver disease (e.g., cirrhosis vs. acute 

hepatitis). 

• ALT/AST ratio: Can help identify the type 

of liver injury (e.g., viral vs. alcoholic). 

These features may improve diagnostic accuracy. 

3. Model Selection 

• Supervised Machine Learning: For the 

model to diagnose liver disease, supervised 

learning algorithms will be appropriate. 

The system will need a labeled dataset 

with outcomes (i.e., liver disease vs. 

healthy control).  

• Logistic Regression: A simple, 

interpretable model suitable for binary 

classification (e.g., liver disease or not). 

• Random Forest: A more robust model for 

classification, especially for capturing non-

linear relationships in data. 



Frank Edughom Ekpar., IJECS Volume 14 Issue 02February, 2025 Page 26901 

• Gradient Boosting (XGBoost, LightGBM): 

Often provides high performance for 

binary classification tasks. 

• Neural Networks: If the dataset is large 

and complex enough, deep learning could 

be an option, though it’s generally more 

data-hungry. 

Model Training: 

• Split the dataset into training, validation, 

and test sets (e.g., 70%, 15%, 15%). 

• Use cross-validation to ensure that the 

model generalizes well to new data. 

• Evaluate the model using common 

classification metrics:  

• Accuracy 

• Precision and Recall 

• F1 Score 

• Area under the ROC curve (AUC) 

4. Interpretation of Results 

• The model can output a probability score 

(for instance, a probability of liver disease), 

which is helpful for clinicians to make a 

diagnosis. For binary classification, a 

threshold can be set to classify a patient as 

diseased or healthy. 

• Threshold Selection: Adjust the decision 

threshold (default is 0.5) depending on the 

clinical needs. For example, you may want 

to optimize for minimizing false negatives, 

especially for detecting liver disease at an 

early stage. 

5. User Interface 

• Input Form: A simple web-based or 

mobile interface for clinicians to input 

patient lab results (albumin, bilirubin, 

ALT). This could be integrated with 

Electronic Health Records (EHR) systems. 

• Results Output: The system should display 

a clear diagnosis based on the input values, 

such as:  

• Predicted diagnosis: E.g., "No liver 

disease," "Fatty liver disease," "Hepatitis," 

"Cirrhosis," etc. 

• Confidence score: Probability or 

percentage of certainty that the diagnosis is 

correct. 

• Additional Recommendations: Suggest 

further diagnostic tests (e.g., liver biopsy, 

imaging studies) or monitoring intervals. 

6. Model Explain ability 

• Since medical decisions should be 

interpretable, it's critical that the model is 

explainable to clinicians. This can be 

achieved by:  

• Feature Importance: Use model-agnostic 

explainability tools like SHAP (Shapley 

Additive Explanations) or LIME to show 

how each feature (albumin, bilirubin, ALT) 

contributed to the final prediction. 

• Decision Rules: In simpler models like 

logistic regression, the coefficients could 

help clinicians understand how each 

feature affects the result. 

7. Validation & Clinical Trials 

• The system should undergo extensive 

validation in collaboration with medical 

professionals to ensure accuracy and 

clinical utility. 

• Clinical Testing: Conduct prospective 

studies to test the system in a real-world 

setting, comparing predictions against 

clinician diagnosis and patient outcomes. 

• 8. Continuous Improvement 

• The system should be designed to improve 

over time with more data. This could be 

done through:  

• Model Retraining: Periodically retrain the 

model with new patient data to account for 

changes in population health or testing 

methods. 

• User Feedback: Collect feedback from 

clinicians using the system, and improve 

the interface or the model based on real-

world use cases. 

9. Data Privacy & Security 

• Ensure the system complies with data 

privacy regulations like HIPAA (in the 
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U.S.) or GDPR (in the EU) for the 

protection of patient data. 

• Use encryption and secure protocols for 

transmitting patient information. 

________________________________________ 

Summary of Key Components: 

1. Data Inputs: Albumin, Bilirubin, ALT 

(along with other related biomarkers if 

necessary). 

2. Preprocessing: Normalize, handle missing 

data, detect outliers. 

3. Modeling: Machine learning models (e.g., 

Random Forest, XGBoost) trained on 

labeled data. 

4. Output: Diagnosis prediction with 

confidence scores and suggested next steps. 

5. Explainability: Feature importance and 

model explainability to clinicians. 

6. Deployment: Integrated into a user-

friendly interface for clinicians, ensuring 

fast and accurate diagnosis. 

With the right dataset and clinical input, such a 

system could help clinicians make faster and more 

accurate liver disease diagnoses, especially for 

diseases like cirrhosis, hepatitis, and fatty liver. 

5. System Design Considerations 

Note that the comprehensive AI-driven healthcare 

system created by Ekpar [2] tackles many issues 

some of which are listed in the foregoing 

ChatGPT response and features a modular design 

permitting improvements to existing modules and 

incorporation of new modules. Some of the issues 

tackled in the design of system include ethical, 

security and privacy considerations. 

The use of artificial neural networks 

recommended by ChatGPT will be adopted since 

the available data is large and complex enough. 

Specific prompting of ChatGPT will indicate the 

number of inputs to the artificial neural network as 

10 given the fact that there are 10 clinical or 

diagnostic measurements under consideration. 

Second Chatgpt Prompt 

Design an artificial neural network for binary 

classification of a set of 10 inputs. 

Second Chat Gpt Response 

Designing an artificial neural network (ANN) for 

binary classification with 10 input features 

typically involves the following components: 

1. Input Layer: 10 neurons (corresponding to 

the 10 input features). 

2. Hidden Layer(s): One or more hidden 

layers. The number of neurons can vary, 

but typically you'd start with something 

like 10 to 20 neurons. 

3. Output Layer: 1 neuron with a sigmoid 

activation function, as it’s a binary 

classification problem. 

Here’s an outline for the network architecture: 

1. Input Layer 

• Number of input neurons: 10 

• Each neuron represents a feature in the 

dataset. 

2. Hidden Layer 

• Number of hidden layers: 1 or more (for 

simplicity, let's start with 1 hidden layer). 

• Number of neurons in the hidden layer: 

You can start with 10 or 20 neurons. You 

can experiment with this number. 

• Activation function: ReLU (Rectified 

Linear Unit) for the hidden layer neurons 

to introduce non-linearity. 

3. Output Layer 

• Number of neurons: 1 (since it’s binary 

classification). 

• Activation function: Sigmoid, which 

outputs a value between 0 and 1. The 

output is interpreted as the probability of 

the positive class (1). If the value is greater 

than 0.5, the model classifies the instance 

as class 1; otherwise, it classifies it as class 

0. 

4. Loss Function 

• Binary Cross-Entropy is typically used for 

binary classification problems. 
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5. Optimizer 

• Adam Optimizer or SGD (Stochastic 

Gradient Descent), which will help 

minimize the loss function during training. 

6. Model Evaluation 

• After training the model, you would 

evaluate the performance using metrics 

like accuracy, precision, recall, F1-score, 

or ROC-AUC. 

Here’s how the architecture would look in code, 

for example using Keras (TensorFlow): 

from keras.models import Sequential 

from keras.layers import Dense 

# Initialize the neural network 

model = Sequential () 

# Input layer with 10 features and the first hidden 

layer 

model. Add (Dense (units=20, input_ dim=10, 

activation='relu')) 

# Output layer with 1 neuron (for binary 

classification) 

model.add(Dense(units=1, activation='sigmoid')) 

# Compile the model 

model.compile(optimizer='adam', 

loss='binary_crossentropy', metrics=['accuracy']) 

# Summarize the model architecture 

model.summary() 

Key Notes: 

• Input Layer: Defined by input_dim=10 

because you have 10 features. 

• Hidden Layer: 20 neurons in this example 

with ReLU activation. 

• Output Layer: 1 neuron with a sigmoid 

activation function for binary classification. 

• Optimizer: Adam optimizer is used for 

efficient training. 

• Loss Function: Binary cross-entropy is 

used because this is a binary classification 

problem. 

Training the Model: 

# Train the model 

model.fit(X_train, y_train, epochs=100, 

batch_size=32) 

Where X_train is your training input data (shape: 

(num_samples, 10)) and y_train is the binary 

labels (shape: (num_samples,)). 

Evaluation: 

# Evaluate the model on the test set 

test_loss, test_accuracy = model.evaluate(X_test, 

y_test) 

print (f" Test Loss: {test_loss}") 

print (f" Test Accuracy: {test_accuracy}") 

The model's architecture is simple yet effective for 

binary classification tasks, and you can adjust the 

number of hidden layers or neurons based on the 

complexity of your problem and dataset. 

Artificial Neural Network (Ann) Architecture 

As shown in the ChatGPT response above, an 

artificial neural network (ANN) with 10 input 

layer neurons, 10 to 20 hidden layer neurons with 

ReLU (Rectified Linear Unit) activation and 1 

output layer with sigmoid activation is 

recommended. Figure 2 graphically depicts the 

schematic representation of the artificial neural 

network. In Fig. 2, CM1, CM2, ..., CMN indicate 

clinical measurements (a total of N=10 to account 

for all the diagnostic measurements taken from 

each patient and recorded in the dataset available 

to this study) while CD indicates the clinical 

diagnosis which maps to the output of the artificial 

neural network. 

 
Fig. 2: Schematic Graphical Representation of 

Artificial Neural Network (ANN) Architecture. 

CM1,  
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CM2, ..., CMN represent the inputs while CD 

represents the output indicating the suggested 

clinical diagnosis. 

6. Results  

Development of the recommended artificial neural 

network proceeded with the TensorFlow platform 

and the Keras API in the Python programming 

language [28] - [29]. The 583 data rows were first 

shuffled at random to avoid bias and then 

partitioned with 80% for training and 20% for 

testing and validation. Binary cross entropy loss 

function was utilized in training with the Adam 

Optimizer [30] – [31].  Training was sustained for 

a total of 150 epochs using the default batch size 

and default learning rate. The performance of the 

resulting AI model approximated a specificity of 

88%, a precision of 74% and a sensitivity of 75%. 

These results could be improved via optimization 

of the ANN suggested by ChatGPT and tweaking 

of hyperparameters. In order to calculate the 

specificity, sensitivity and precision performance 

metrics, the following equations were utilized. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏          =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚       =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚       =  
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 

In the equations above, TN stands for true 

negatives, FP for false positives, FN for false 

negatives, and TN for true negatives. "Negative" 

here refers to normal kidney function or the 

absence of liver disease, while "positive" indicates 

the presence of liver disease. Implementing the AI 

system described here will offer valuable insights 

to aid clinical decision-making, ultimately saving 

lives and improving quality of life. This is 

achieved by minimizing the economic, social, 

psychological, and physical impacts of conditions 

that can be predicted, prevented, detected early, 

diagnosed, treated, and managed more efficiently. 

Electronic Health Records (EHR), including 

clinical diagnostic data and EEG information, can 

be generated by participating medical 

professionals and their teams. EEG data may also 

be collected during experiments with Brain-

Computer Interfaces (BCIs). All data will be 

collected following ethical standards, anonymized, 

and made publicly accessible in repositories 

alongside related research publications. 

7. Conclusion 

The recommendations elicited from generative 

artificial intelligence (AI) systems such as large 

language models (LLMs) were relied on to 

construct artificial intelligence models for the 

automated diagnosis of liver disease (cirrhosis of 

the liver) on the basis of clinical measurements 

comprising electronic health records and 

biochemical markers and enzymes such as age, 

gender, total bilirubin, direct bilirubin, total 

proteins, albumin, albumin and globulin ratio, 

alanine aminotransferase, aspartate 

aminotransferase and alkaline phosphatase. 

Training, testing and validation of the AI models 

was accomplished by utilizing publicly accessible 

data containing the required clinical or diagnostic 

measurements. These could be augmented to 

reduce bias and enhance global relevance. The 

trained AI models could be further refined for 

performance improvements and robustness and 

incorporated into a comprehensive AI-powered 

healthcare system for clinical decision support via 

the prediction, diagnosis and management of a 

wide range of health conditions. 
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