

www.ijecs.in

International Journal Of Engineering And Computer Science ISSN:2319-7242

Volume 3 Issue 1, Jan 2014 Page No. 3695-3699

R. Joseph Manoj
1 IJECS Volume3 Issue 1 Jan, 2014 Page No.3695-3699 Page 3695

An Approach to Detect and Prevent Tautology

Type SQL Injection in Web Service Based on

XSchema validation

 R. Joseph Manoj
1

Dr.A.Chandrasekhar
2
M.D.Anto Praveena

3

1Research Scholar, Manonmanium Sundaranar University, Tirunelveli, India &

Associate Professor, St.Joseph’s College of Engineering, Chennai, India, rjmanoj79@gmail.com.
2Professor, St.Joseph’s College of Engineering, Chennai, India, drchandrucse@gmail.com.

3Assistant Professor, Sathyabama University, Chennai, India, antopraveena@gmail.com.

Abstract: SQL injection is the most common attack for web applications and widely used attacking method by hackers all over the world.

This is an attacking method that aims the data stored in a database through the firewall that shield it. The poor input validation in code and

website administration leads SQL injection to attack the web resource. This proposed system exhibit a dynamic method to detect and prevent

tautology type SQL Injection from malicious web users who wants to access any resource in web related application. To detect malicious

attack and prevent malicious users from accessing web resources, this system uses an effective SQL Query processing based on XML

Schema validation. This proposed system can be used in web application logging and security. This work also concludes effectiveness and

performance of the system using the resultant data of proposed system.

Keywords: SQL injection, web services security, web service authentication.

1. Introduction

 Web applications are nowadays a strategic mean for

data exchange and systems integration as they afford a simple

interface between a web service provider and a web service

consumer [1]. However, web services are so widely exposed

that any existing security vulnerability will most probably be

revealed and oppressed by hackers.

The World Wide Web (WWW) has experienced

noteworthy growth in recent years. Business organizations,

individuals and government organizations have found that web

applications can offer effective, efficient and trustworthy

solutions to the challenges of communicating and conducting

commerce in the 21th century [2]. Various corporate bodies

like eBay, Google, Yahoo, Amazon business model entirely

focuses on the web. As more and more enterprise applications

dealing with responsive financial and confidential data turn

online, the security of such Web applications have come under

secure inspection. Compromise of these applications represents

a serious threat to the organizations that have deployed these

web applications as well as to the users that trust these systems

to store confidential data.

1.1 SQL Injection and techniques

 SQL injection is an attack in which malicious code is

inserted into strings that are later passed to an instance of SQL

Server for parsing and execution. Any process that constructs

SQL statements should be reviewed for injection

vulnerabilities because SQL Server will execute all

syntactically valid queries that it receives. It has become a

common issue with database-driven web sites. This flaw is

easily detected, and easily exploited, and as such, any web

related application with even a minimal user base is likely to

be subject to an attempted attack of this kind. This flaw

depends on the fact that SQL makes no real distinction

between the control and data planes. The fear of SQL injection

attacks has become increasingly frequent and serious. SQL-

Injection Attacks are a class of attacks that many of these

systems are highly vulnerable to, and there is no known fool-

proof defend against such attacks [3].

Example: Consider the following query in the ASP page is of

the form;

SELECT * FROM EMPLOYEE WHERE NAME='$login' AND

PASS='$pass'

If the login and password as provided by the user are used, the

query to be submitted to the database takes the form; SELECT

* FROM EMPLOYEE WHERE NAME='abc' AND PASS='xyz'

A web site that uses this asp would be vulnerable to

SQLIAs. If the user were to enter [' OR 1=1 --] and [] instead

of [abc] and [xyz], the query would take the form; SELECT

PROFILE FROM EMPLOYEE WHERE NAME=' ' OR 1=1 --

' AND PASS=' '. The characters “--" mark the beginning of a

comment in SQL, and everything after that is ignored The code

injected in the conditional (OR 1=1) transforms the entire

WHERE clause into a tautology the query evaluates to true for

each row in the table and returns all of them. Thus an attacker

R. Joseph Manoj
1 IJECS Volume3 Issue 1 Jan, 2014 Page No.3695-3699 Page 3696

can bypass all authentication modules in place and gain

unrestricted access.

There are many techniques that are used to perform SQL

Injection attacks in web related applications. Very few of the

techniques are given below [4]:

a. Tautologies

Tautology-based attack is to inject code in one or more

conditional statements so that they always assess to true. The

most common usages of this technique are to bypass

authentication pages and extract data. If the attack is successful

when the code either displays all of the returned records or

performs some action if at least one record is returned.

b. Union Query

In union-query attacks, Attackers do this by injecting a

statement of the form: UNION SELECT <rest of injected

query> because the attackers completely control the

second/injected query they can use that query to retrieve

information from a specified table. The result of this attack is

that the database returns a dataset that is the union of the

results of the original first query and the results of the injected

second query.

c. Stored Procedures

A stored procedure is an operation set that is stored. Typically,

stored procedures are written in SQL. Since stored procedures

are stored on the server side, they are available to all clients.

Once the stored procedure is modified, all clients automatically

get the new version.

d. Alternate Encodings

Alternate encodings do not provide any unique way to attack

an application they are simply an enabling technique that

allows attackers to evade detection and prevention techniques

and exploit vulnerabilities that might not otherwise be

exploitable. To evade this defence, attackers have employed

alternate methods of encoding their attack strings like

hexadecimal, ASCII, and Unicode character encoding.

Therefore, attackers have been very successful in using

alternate encodings to conceal their attack strings.

e. Deny Database service

This attack used in the websites to issue a denial of service by

shutting down the SQL Server [5]. A powerful command

recognized by SQL Server is SHUTDOWN WITH NOWAIT.

This causes the server to shutdown, immediately stopping the

Windows service.

The rest of the paper is organized as follows: The

related study of proposed work is discussed in section 2. In

Section 4 and 5, proposed system and implementation results

are discussed. Finally the paper concludes the paper in Section

6.

2. Related Study

Many works have been developed and different tools

are available to detect and prevent SQL Injection in web

related applications. Livshits and Lam [6] use static analysis

techniques to detect vulnerabilities in software. The basic

approach is to use information flow techniques to detect when

tainted input has been used to construct an SQL query. The

primary limitation of this approach is that it can detect only

known patterns of SQLI attack.

 Wassermann and Su have proposed an approach that

uses static analysis combined with automated reasoning to

verify that the SQL queries generated in the application layer

cannot contain a tautology [7]. The primary drawback of this

technique is that its scope is limited to detecting and preventing

tautologies and cannot detect other types of attacks.

AMNESIA [8] is a model-based technique that

combines static analysis and runtime monitoring. In its static

phase, AMNESIA uses static analysis to build models of the

different types of queries an application can legally generate at

each point of access to the database. In its dynamic phase,

AMNESIA intercepts all queries before they are sent to the

database and checks each query against the statically built

models. Queries that violate the model are identified as

SQLIAs and prevented from executing on the database. The

primary limitation of this technique is that its success is

dependent on the accuracy of its static analysis for building

query models

 Valeur and colleagues [9] propose the use of an

Intrusion Detection System (IDS) to detect SQLIA. It is based

on a machine learning technique that is trained using a set of

typical application queries. The technique builds models of the

typical queries and then monitors the application at runtime to

identify queries that do not match the model in that it builds

expected query models and then checks dynamically-generated

queries for compliance with the model. Their technique,

however, like most techniques based on learning, can generate

large number of false positive in the absence of an optimal

training set.

Cheng [10] presented user behavior surveillance

system, a novel Embedded Markov Model to detect various

Web application attacks. This model not only considers

injection attack but also captures the sequencing of user

behavior. Their model can detect unreasonable transition of

user behavior and mitigate authentication bypass attack.

In the past, well known Machine Learning technique

like learning based anomaly [11] have been proposed to detect

and mitigate injection attacks. These techniques monitor the

input request and observe the values of an input attributes.

They check whether a given input attribute is valid by

comparing it against the legitimate model of an input attribute.

Based on the result of model, they detect attacks. However,

these techniques are only applicable to injection attacks. They

do not capture the sequencing of user behavior which leads to

more sophisticated attacks like authentication bypass.

Buehrer, G [12] is proposed a technique to avoid SQL

Injection attacks by comparing, in runtime, the parse tree of the

SQL statement before inclusion of user input with that

resulting after inclusion of input. The problem is that this

technique depends on changes in the source code and,

consequently, on its adoption by the programmers.

Web vulnerability scanners are well-known

penetration testing tools that allow checking applications

against security issues automatically. Vieira, M et.al (2009)

[13] used four commercial scanners to identify security flaws

in 300 publicly available web services. The differences in the

vulnerabilities detected by each scanner, the low coverage (less

than 20% for two of the scanners), and the high number of

false positives (35% and 40% in two cases) observed, highlight

the limitations of these tools.

Nuno Antunes et al (2009) [14] proposed a new

automatic approach for the detection of SQL and XPath

injection vulnerabilities in web services code. This approach is

based in two main steps. First we generate and run a workload

to exercise the web service and learn the profile of the

SQL/XPath commands issued. Afterwards it applies a set of

command injection attacks and observes the SQL/XPath

R. Joseph Manoj
1 IJECS Volume3 Issue 1 Jan, 2014 Page No.3695-3699 Page 3697

commands being executed. This allows us to detect existing

vulnerabilities by matching incoming commands during attacks

with the valid set of commands previously learned.

Indrani Balasundaram [15] paper proposes a novel

specification-based methodology for the prevention of SQL

injection Attacks. The two most important advantages are first,

it prevents all forms of SQL injection attacks; second, current

technique does not allow the user to access database directly in

database server.

Shanmughaneethi, V [16] proposed a new method for

the detection of XPath injection vulnerabilities in XML

database. In this method a XPATH query is converted into

XML document. This XML document will be checked with

already defined XML schema for validness. If the XML

document passes, XPATH query has no injection otherwise

will be considered as XPATH injection and the corresponding

user not be allowed to continue the process.

3. Proposed System

This Technique is used to detect and prevent SQL

Injection Attack with runtime monitoring. The proposed system

entails a new approach for detecting SQL injection

vulnerabilities in web application shown in Figure.1.This

approach incorporates SQL expression scanner, XML file

maker and XSchema validator. The below architecture

describes the SQL injection detection technique proposed in

this system. .The working of all these modules given as

follows:

Figure 1: Proposed System Architecture

3.1. SQL Scanner

Query scanner involves intercepting the SQL query

that is generated at run time. In order to detect SQL injection

vulnerabilities, this dynamically generated expression has to be

intercepted. Also intercepting the run time query can be used to

detect any type of injection, since the sink points for causing

the injections are these queries that are generated at run time.

Using SQL scanner, these run time generated queries can be

intercepted before they are executed in the database server.

3.2 XML File Maker

 In this module the intercepted SQL Query is analyzed

and XML file is created by obtaining the input parameters to

detect possible injections. After intercepting the query, the

analyzer obtains the inputs from the SQL query and stores

them in a XML document. This document is then further used

for validation in order to detect vulnerabilities. Consider the

SQL query for login mode: select * from user_Info where

username=’John’ OR 1=1 - -’password=’’

The below Figure 2 shows a sample XML file that

would be generated after the above SQL query is intercepted.

This XML file consists of only the input parameters that were

given as user inputs from the client application. Further this

can be used for validation in order to find if any injection is

present.

<?xml version=”1.0” encoding= “utf-16”?>

<sqlxper>

<inp1>John</inp1>

<inp2>'1' ='1</inp2>

</sqlxper>

</xml>

Figure 2: Sample XML file for the SQL Query

3.3. XSchema Validator

 This validation process is to identify the injected

parameters with the help XSchema and the generated XML file

in previous phase. The schema is a generalized metadata which

define structure and type of user input. So in this approach, a

well defined XSchema is defined for detecting possible

injection characters in the input values provided by the user.

 The XML file which is generated from the previous

module that consists of the user input is now validated with a

well defined XML schema. If the validation passes then

injection is not present in the input parameters, in case of

failure the injection is logged in a log file. The log file clearly

indicates the attack input mismatch with the schema thereby

avoiding the injection to take place.

Figure 3: Sample XML Schema for the XML Validation

If the validation process is passed, then the operation

is allowed to access the desired resource and results are

obtained. The schema is vital in detecting injections in the

input. Input can be of any type and hence the schema restricts

values for each data type thereby providing an effective

validation process.

4. Performance Evaluation

To evaluate the proposed approach, a web based e-

library application was developed. Then performance of the

system based on the response time is analyzed for tautology

based SQL Injection. The response time in real web

environment is collected and tabulated is shown in Table1 [15].

The table concludes that proposed system execution time is

<xs:element name=”inp1”>

 <xs:simpletype>

 <xs:restriction base=”xs:string”>

 <xs:pattern value=”[a-zA-Z0-9]>

 <xs:restriction>

 <xs:simpletype>

<xs:element>

<xs:element name=”inp2”>

 <xs:simpletype>

 <xs:restriction base=”xs:string”>

 <xs:pattern value=”[a-zA-Z0-9]{8}>

 <xs:restriction>

 <xs:simpletype>

<xs:element>

Web User

XML File

Maker

XSchema

Validator

XML File

SQL

Scanner

XSchema File

Web Server

R. Joseph Manoj
1 IJECS Volume3 Issue 1 Jan, 2014 Page No.3695-3699 Page 3698

better than existing system. But it detected all tautology type

SQL Injection and prevents malicious attacks given by

different web users.

 TABLE 1: Execution Time Comparison of Proposed System

Number of

Test

Execution Time in seconds

Existing system Proposed System

1 27.33 25.44

2 23.66 22

3 17.33 16.55

4 20.16 19.75

5 27.83 26.33

 Table 1 illustrates that execution time of proposed

system is better than existing system. Since this proposed

system is a XML based approach which can be used widely in

web related security and logging, etc. The following graph in

Fig 4 shows the comparison of the execution time, between the

proposed system and without it. As shown in the graph, the

system does not bring an enormous difference in the execution

time. In the following graph X – Axis represents Number of

Test and Y – Axis represents Response Time. The pictorial

representation of performance evaluation is given in Figure 4

below

Figure 4: Execution Time comparison for proposed technique with

existing technique

5. Conclusion and Future Enhancement

This paper has proposed a new approach for detecting

tautology type SQL injection. This kind of approach is a very

effective method for detecting malicious attacks in web

applications. Comparing with previous approaches, there is a

significant improvement in execution time and also protect the

system from the tautology based SQL Injection in web related

logging system. In future, this paper will analyze other types of

SQL injection like Cross-site scripting and stored procedure.

Also this system can be extended as an efficient authentication

system which can authenticate web users and prevent

malicious users.

References

[1] Curbera, F. et al., “Unraveling the Web services web: an

introduction to SOAP, WSDL, and UDDI”, Internet

Computing, IEEE, vol. 6, pp. 86-93,2002.

[2] Structured query language (SQL) related tools-Ke Wei,

2012.

[3] Li Sha Dong Xiaori RaoHong, “An Adaptive Method

Preventing Database from SQL Injection Attacks”, IEEE

International Conference on Services Computing 2010

[4] Rahul Shrivastava, Joy Bhattacharyji, Roopali Soni, “

Recognition and Deterrence of SQL injection attacks in

database using web service”, International Journal of

Software and Web Sciences (IJSWS), ISSN (Online):

2279- 0071 ,PP: 8-16

[5] Nils Gruschka, Norbert Luttenberger, “Protecting Web

Services from DoS Attacks by SOAP Message

Validation”, 2012

[6] V.B. Livshits and M. S. Lam. Finding Security Errors in

Java Programs with Static Analysis. In Proceedings of the

14
th

Usenix Security Symposium, pages 271–286,

Aug.2005.

[7] W. G. J. Halfond and A. Orso, “Combining Static

Analysis and Runtime Monitoring to Counter SQL

Injection Attacks,” 3rd Intl. Workshop on Dynamic

Analysis, 2005, pp.1- 7

[8] William G. J. Hal fond and Alessandro Orso, “AMNESIA:

Analysis and Monitoring for Neutralizing SQL Injection

attacks”.

[9] F.Valeur and D. Mutz and G. Vigna “A Learning-Based

Approach to the Detection of SQL Attacks,” In

Proceedings of the Conference on Detection of Intrusions

and Malware Vulnerability Assessment (DIMVA), July

2005.

[10] Cheng, Y., Laih, C., Lai, G., Chen, C., and Chen, T. 2008.

Defending On-Line Web Application Security with User-

Behavior Surveillance. Intl.Proceedings of the 2008 Third

international Conference on Availability, Reliability and

Security (March 04 - 07, 2008). ARES. IEEE Computer

Society, Washington, DC, 410-415.

[11] D. Q. Naiman, Statistical anomaly detection via httpd data

analysis, Computational Statistics & Data Analysis,

Vol.45, Issue.1, pp.51-67, 2004.

[12] Buehrer, G., Weide, B., Sivilotti, P., “Using Parse Tree

Validation to Prevent SQL Injection Attacks”,

International Workshop on Software Engineering

and Middleware, 2005.

[13] Vieira, M., Antunes, N., Madeira, H., “Using Web

Security Scanners to Detect Vulnerabilities in Web

Services”, Intl.Conf.on Dependable Systems and

Networks, Lisbon, 2009.

[14] Nuno Antunes, Nuno Laranjeiro, Marco Vieira, Henrique

Madeira “Effective Detection of SQL/XPath Injection

Vulnerabilities in Web Services”, IEEE International

Conference on Services Computing, 2009.

[15] Indrani Balasundaram, Dr. E. Ramaraj “An Approach to

Detect and Prevent SQL Injection Attacks in Database

Using Web Service”, IJCSNS International Journal of

Computer Science and Network Security, VOL.11 No.1,

January 2011.

[16] Shanmughaneethi, V., R. Ravichandran, and S.

Swamynathan. "PXpathV: Preventing XPath Injection

Vulnerabilities in Web Applications." International

Journal on Web Service Computing 2.3, 2011.

Author Profile

Joseph Manoj.R, received his MCA degree from

Annai Velankanni College affiliated to

Manonmanium Sundaranar University, Tirunelveli,

India. M.E(CSE) degree from Sathyabama

University, Chennai, India and Pursuing Ph.D in

Computer science & Engineering in Manonmanium

Sundaranar University, Tirunelveli, India. He is

currently working as a Associate Professor in the

R. Joseph Manoj
1 IJECS Volume3 Issue 1 Jan, 2014 Page No.3695-3699 Page 3699

Department of MCA in St.Joseph’s College of Engineering, Chennai. His

research area is web services security. He is a member of ACM.

Chandra Sekar A, received his B.E(CSE) degree

from Angala Amman College of Engineering and

Technology affiliated to Bharathidasan University,

M.E(CSE) degree from A.K. College of Engineering

affiliated to Madurai Kamaraj University, and Ph.D

in Information and Communication Faculty

(Computer science & Engineering) from Anna

University, Chennai, India. He is currently working

as a professor in the Department of Computer

Science & Engineering in St.Joseph’s College of Engineering, Chennai.

His area of interest includes Network Security, web services and Analysis

of Algorithms.

