
www.ijecs.in 

International Journal of Engineering and Computer Science  

Volume 14 Issue 02 February 2025, Page No. 26819-26830 

ISSN: 2319-7242 DOI: 10.18535/ijecs/v14i02.4984 

  

 

Frank Edughom Ekpar., IJECS Volume 14 Issue 02 February, 2025 Page 26819 

Applying Prompt Engineering of Generative Artificial Intelligence to 

the Diagnosis of Diabetes 

Frank Edughom Ekpar 1* 

1 Scholars University Ltd; Rivers State University; Topfaith University, Nigeria 

Abstract 

This paper presents a system that relies on artificial intelligence models with enough sophistication built by 

rigorously adhering to the recommendations of generative artificial intelligence tools such as large language 

models when prompted to design a system for the automated diagnosis of diabetes. Actual source code for 

the construction of the artificial intelligence models is generated as part of the suggestions recommended by 

the generative artificial intelligence tools or large language models. By faithfully incorporating the source 

code into a module for the automated diagnosis of diabetes based on clinical measurements, adequately 

sophisticated artificial intelligence models are constructed, trained, tested and validated on publicly 

accessible diabetes datasets and then deployed in an automated diabetes diagnosis module. Results indicate 

that the resulting artificial intelligence models exhibit reasonable performance that compares favorably (in 

view of the fact that the resulting artificial intelligence models are not optimized) with the performance of 

systems designed from the ground up by artificial intelligence experts. 

Keywords: Diabetes Mellitus, Generative Artificial Intelligence, ChatGPT, DeepSeek, Artificial 
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1.  Introduction 

Diabetes mellitus afflicts millions of people around 

the world and is reported to exhibit increasing 

prevalence recently in low- and middle-income 

countries (LMICs), the regions with some of the 

most vulnerable populations characterized by some 

of the least equipped healthcare facilities and the 

lowest doctor-to-patient ratios [1]. This disease 

exerts a significant economic, physical and 

psychological toll on those affected. Given accurate 

diagnosis and prediction of likelihood of occurrence, 

the negative consequences can be significantly 

mitigated and more effective therapies and lifestyle 

changes can be implemented for improved health 

outcomes. 

There is no shortage of reports in the literature on 

systems for the automated diagnosis of a wide 

variety of health conditions including diabetes 

utilizing artificial intelligence (AI) algorithms and 

similar techniques [2] – [20]. These systems mainly 

cater to populations in developed countries since the 

data is primarily derived from sources within such 

environments without enrichment with local data 

from other environments such as LMICs, rendering 

the systems susceptible to bias and of restricted 

global relevance. 

Large language models (LLMs) in particular, and 

generative AI generally, provide an alternative 

pathway to the automated diagnosis of diseases 

since they can leverage AI models trained on vast 

quantities of data to draw inferences and are capable 

of learning structured representations of the 

underlying data [21] – [22]. Ekpar [23] – [24] 

leveraged generative AI tools such as LLMs to the 

synthesis and development of AI models for 

http://www.ijecs.in/


 

Frank Edughom Ekpar., IJECS Volume 14 Issue 02February, 2025 Page 26820 

automated diagnosis of a variety of health conditions.  

In order to help resolve the perennial and critical 

issues with the healthcare system in LMICs and to 

improve medical doctor productivity generally and 

mitigate healthcare professional burnout and staff 

shortages both in developed and developing 

countries, Ekpar introduced Scholar Medic, a 

modular and extensible comprehensive artificial 

intelligence-driven healthcare system [25] – [28], 

[23] – [24]. Brain computer interfaces (BCIs) based 

on various modalities including 

electroencephalography (EEG) offer opportunities 

for rehabilitation and efficient channels of 

communication with the environment [29]-[47]. 

Ekpar introduced a novel three-dimensional 

multilayer electroencephalography paradigm (Ekpar 

EEG) that could enable vastly improved BCI 

performance and potentially unlock hitherto 

unattainable applications of brain waves in a wide 

variety of fields ranging from medicine to 

computing [48] – [50]. 

A previous study [27] involved the development 

of custom-built artificial neural networks into AI 

models for the automated diagnosis of diabetes 

within the context of a comprehensive artificial 

intelligence-driven healthcare system. This study 

utilizes recommendations derived from generative 

artificial intelligence tools such as large language 

models through prompt engineering for 

instructions on the design of a system for the 

automated diagnosis of diabetes based on clinical 

measurements. 

2. Materials and Methods 

Participant Recruitment 

People volunteered to take part in the research 

aimed at developing the AI-driven healthcare 

system, and all participants gave their informed 

consent prior to joining the studies. 

Ethical Approval 

The Health Research Ethics Committee at Rivers 

State University Teaching Hospital provided 

ethical approval for the studies. All research 

followed the relevant ethical and regulatory 

guidelines. Publicly available data were utilized in 

accordance with the licensing terms established by 

their creators. 

3. Methodology 

Healthcare datasets that are publicly accessible 

can be enhanced by incorporating data from local 

experiments and data collection efforts. This 

combined dataset can then be utilized to train AI 

models that make actionable predictions based on 

new data. Public sources of healthcare datasets 

include organizations like the Centers for Disease 

Control, the University of California Irvine 

Machine Learning Repository, the American 

Epilepsy Society, and Kaggle. 

Adding local data improves model reliability, 

reduces biases, and promotes inclusivity and 

global relevance. A key focus of this project is 

merging diagnostic data, such as 

electrocardiographic readings, from local research 

with EEG data, including both traditional and 

advanced three-dimensional multilayer EEG 

systems (Ekpar EEG systems) [48] – [50]. 

Ethical approval for data collection has been 

granted by the relevant committees in the regions 

where experiments are being conducted. The 

project has also teamed up with licensed 

healthcare professionals who have direct access to 

patients and medical teams in the community, 

providing anonymized clinical data to help 

validate the AI models. 

Once trained, the AI models will be integrated 

into a comprehensive healthcare system designed 

to assist clinical decision-making and develop 

brain-computer interfaces (BCIs). This system 

will provide actionable insights and predictions 

from new clinical data, helping with early 

detection, diagnosis, treatment, prediction, and 

prevention of conditions such as diabetes, heart 

disease, stroke, autism, and epilepsy. 

The project is committed to advancing open 

science, reproducibility, and collaboration, 

ensuring that all generated data will be made 

publicly available on platforms like GitHub. 

4. System Design and Implementation 
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The comprehensive healthcare system outlined in 

this paper employs a modular design, with each 

health condition (like diabetes mellitus, heart 

disease, stroke, epilepsy, autism, etc.) assigned to 

its own dedicated module. This structure not only 

enhances flexibility in diagnosing and predicting 

potential health issues, but also makes it easier to 

update modules as new data is introduced.  

Furthermore, modules related to Brain-Computer 

Interfaces (BCIs), particularly those using the 

motor imagery paradigm, can process EEG data to 

generate actionable commands and responses.  

The system also provides guidelines for upgrading 

conventional EEG setups to more advanced three-

dimensional, multilayer EEG systems. These 

advanced systems, also known as Ekpar EEG 

systems, developed by Ekpar [48] - [50], are based 

on a conceptual framework that estimates specific 

bio-signal features to model or influence the 

biological systems involved. 

For each module, AI models are developed and 

trained using properly formatted data, as detailed 

in this paper. These AI models are capable of 

incorporating various factors, such as genetic, 

environmental, and lifestyle information, to offer a 

more accurate representation of participants' 

circumstances. 

Figure 1 depicts the schematic representation of 

the system with a subset of representative modules 

and their operational disposition within the system. 

 

Fig. 1: System Schematic Design Diagram for the 

Comprehensive AI-Driven Healthcare Solution and 

Brain Computer Interface System. The New Conditions 

component represents additional health conditions that 

can be incorporated into the solution via new modules. 

The AI models to be incorporated into the 

comprehensive artificial intelligence-driven 

healthcare system under consideration are 

developed using four distinct approaches, as 

described below: 

1. Direct Use of LLMs: Large Language 

Models (LLMs) like GPT-4 and DeepSeek 

are used as inference engines to process 

the collected data, which is formatted as 

multidimensional input vectors. This step 

may include fine-tuning the LLM. 

2. Prompt Engineering with LLMs: LLMs, 

including DeepSeek, Bard and GPT-4 (and 

their future versions), are employed 

alongside prompt engineering to outline 

the necessary steps for AI system 

development. These steps are then 

executed by the developer, who applies 

expertise in AI, neural networks, deep 

learning, and tools such as Python, 

TensorFlow, Keras, and machine learning 

frameworks like Scikit-learn and 

Matplotlib. 

3. Automated Model Generation: AI 

models are created through an automated 

pipeline that leverages the capabilities of 

LLMs such as Deep Seek, Bard and GPT-

4 (and their future versions). 

4. Manual AI Architecture Design: The AI 

architecture is manually designed by the 

developer, who relies on in-depth 

knowledge of AI, neural networks, deep 

learning, and programming tools like 

Python, TensorFlow, Keras, Scikit-learn, 

and Matplotlib. 

Ultimately, all development processes and tools 

are thoroughly documented to ensure the solution 

can be easily transferred and reused.  

The AI models are then evaluated and compared 

based on performance metrics, such as specificity 

and sensitivity, to assess their effectiveness in 

solving the intended problems. 
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Automated Diabetes Diagnosis Module 

Prompt engineering of Chat GPT 4o mini – a 

widely used large language model (LLM) or 

prime example of a generative artificial 

intelligence tool – is leveraged to generate 

instructions for the design of a system for the 

automated diagnosis of diabetes based on clinical 

measurements. 

This corresponds to the second approach on the 

list of approaches outlined in the foregoing. 

An initial prompt that contains a generalized 

description of the task is entered and the 

peculiarities of the response of Chat GPT to the 

initial prompt are harnessed to generate a follow-

up prompt that drills down into a specific class of 

artificial intelligence system architectures that are 

then implemented and trained, validated and 

tested on publicly accessible diabetes datasets to 

synthesize artificial intelligence models for the 

automated diagnosis of diabetes based on a set of 

clinical measurements. 

The follow-up prompt is designed to account for 

the structure of the dataset in terms of input 

features and output vector characteristics. 

Dataset 

The Pima Indians Diabetes database was 

harnessed for the training, testing and validation 

of the AI models implemented in the course of 

this study. A total of 768 rows of data were 

utilized. Each data row contained 9 columns 

where the first 8 columns represented the clinical 

measurements for the patient or participant 

indicated by the selected row, namely, diastolic 

blood pressure, plasma glucose concentration 2 

hours in an oral glucose tolerance test, number of 

times pregnant, triceps skin fold thickness, 2-Hour 

serum insulin, body mass index, diabetes pedigree 

function and age. The last or ninth column 

indicated the diagnosis (a binary entity) where a 

value of 0 represented a normal outcome while a 

value of 1 represented the presence of diabetes 

mellitus. 

Data Availability 

Public access to the data supporting the findings 

of this study can be gained via GitHub at 

https://github.com/frankekpar/pima_indians_diabe

tes_dataset/blob/main/dataset.zip.The dataset was 

derived from the Pima Indians Diabetes Database 

publicly accessible from Kaggle at 

https://www.kaggle.com/datasets/uciml/pima-

indians-diabetes-database. 

Initial Chatgpt Prompt 

Design a system for automated diagnosis of 

diabetes mellitus based on clinical measurements 

such as diastolic blood pressure, plasma glucose 

concentration 2 hours in an oral glucose tolerance 

test, triceps skin fold thickness, 2-Hour serum 

insulin and body mass index. 

Initial Chatgpt Response 

Designing an automated system for the diagnosis 

of diabetes mellitus using clinical measurements 

can be approached through a machine learning-

based model. Here's an outline of the key steps 

and components for such a system: 

1. Data Collection: 

• Diastolic Blood Pressure (DBP): The 

lower value of blood pressure when the 

heart rests between beats. 

• Plasma Glucose Concentration (2-Hour 

Oral Glucose Tolerance Test): Blood 

glucose levels measured two hours after 

ingesting a glucose solution. Elevated 

levels can indicate insulin resistance or 

diabetes. 

• Triceps Skin Fold Thickness: An indicator 

of body fat percentage, measured using 

calipers. 

• 2-Hour Serum Insulin: Insulin levels 

measured two hours after consuming 

glucose, reflecting insulin resistance or 

insufficient insulin production. 

• Body Mass Index (BMI): A measure of 

body fat based on height and weight. 

https://github.com/frankekpar/pima_indians_diabetes_dataset/blob/main/dataset.zip
https://github.com/frankekpar/pima_indians_diabetes_dataset/blob/main/dataset.zip
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
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These variables can be used to create a diagnostic 

model to classify individuals as having normal 

glucose tolerance, prediabetes, or diabetes. 

2. Preprocessing and Feature Engineering: 

• Normalization/Scaling: Each feature (e.g., 

glucose concentration, BMI) should be 

normalized to ensure equal importance 

across features, especially when using 

distance-based algorithms like KNN or 

support vector machines. 

• Handling Missing Data: Use imputation 

techniques or discard incomplete entries, 

depending on the dataset's nature and 

missingness. 

• Feature Selection/Engineering: Evaluate 

feature importance and remove irrelevant 

or redundant features. 

3. Model Selection: 

Machine learning models can be trained to predict 

the likelihood of diabetes based on the clinical 

measurements: 

a. Logistic Regression: 

A simple and interpretable model that can predict 

probabilities of a class (diabetes or not) based on 

the clinical measurements. 

b. Random Forest / Decision Trees: 

These models are more complex and can capture 

nonlinear relationships between features. They 

also offer feature importance analysis. 

c. Support Vector Machine (SVM): 

SVM is effective for binary classification tasks 

and works well with high-dimensional data, 

making it a good choice for this system. 

d. Neural Networks: 

For more complex models and large datasets, 

neural networks can be employed to learn intricate 

patterns in the data. 

e. K-Nearest Neighbors (KNN): 

A non-parametric model that works well if you 

have a small dataset. It predicts the class of a new 

sample based on the majority class of its 

neighbors. 

4. Model Training: 

• Train-Test Split: Split your data into 

training and testing sets (commonly 

80%/20%). 

• Cross-Validation: Use cross-validation to 

evaluate the model's performance and 

prevent overfitting, especially when you 

have a small dataset. 

• Hyperparameter Tuning: For models like 

SVM and Random Forest, perform 

hyperparameter tuning (e.g., grid search) 

to find optimal parameters. 

5. Evaluation Metrics: 

• Accuracy: Percentage of correct 

classifications. 

• Precision, Recall, and F1-Score: Given the 

potential imbalance between classes (e.g., 

more people without diabetes), these 

metrics provide deeper insights into 

performance. 

• Area Under ROC Curve (AUC-ROC): 

Evaluates how well the model 

differentiates between the classes. 

6. Prediction: 

Once the model is trained and validated, it can be 

used to predict the likelihood of diabetes in new 

individuals based on their clinical measurements. 

7. User Interface and Integration: 

• Web/Mobile Interface: Create an easy-to-

use front end where a user can input the 

clinical measurements, and the model 

returns the prediction (normal, prediabetes, 

or diabetes). 

• Real-time Diagnosis: Use the model to 

provide real-time predictions and visualize 

the likelihood of diabetes. 

• Alerts/Recommendations: Based on the 

prediction, the system could also provide 
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lifestyle or medical recommendations, 

such as dietary changes, exercise, or 

further testing. 

8. Ethical Considerations: 

• Bias: Ensure the model does not unfairly 

categorize certain populations (e.g., race, 

gender) based on skewed data. 

• Data Privacy: Ensure the system complies 

with data privacy laws (e.g., HIPAA in the 

U.S.) when handling personal health 

information. 

• Model Transparency: Given the 

importance of medical decisions, ensure 

the model’s decisions are interpretable, 

with an explanation of how predictions are 

made. 

Example: Flow of System Interaction 

1. User Input: The user inputs their diastolic 

blood pressure, plasma glucose 

concentration, triceps skin fold thickness, 

serum insulin, and BMI into the system. 

2. Data Preprocessing: The system 

normalizes and scales the input values. 

3. Prediction: The trained machine learning 

model predicts whether the individual is 

likely to have normal glucose levels, 

prediabetes, or diabetes. 

4. Recommendation: Based on the prediction, 

the system gives advice on next steps (e.g., 

consult a healthcare provider, follow up 

tests). 

5. Conclusion: 

This system will use clinical data to provide a 

rapid and automated diagnosis of diabetes mellitus, 

allowing for early detection and intervention. 

Integrating a user-friendly interface with machine 

learning models will make this a valuable tool in 

healthcare systems, especially in regions where 

access to specialized care is limited. 

Follow-Up Chatgpt Prompt 

Design an artificial neural network for binary 

classification of a set of 8 inputs. 

FOLLOW-UP ChatGPT RESPONSE 

To design an artificial neural network (ANN) for 

binary classification with 8 input features, you 

would generally follow these steps: 

1. Input Layer: 

• Number of neurons: Since there are 8 input 

features, the input layer will have 8 

neurons (one for each feature). 

• Activation function: No activation function 

is typically used in the input layer. The 

raw input values are fed into the network. 

2. Hidden Layers: 

The number of hidden layers and neurons per 

layer can vary, but let's assume a basic 

architecture to start with: 

• Layer 1 (First hidden layer):  

o Number of neurons: 16 (you could start 

with more or fewer depending on the 

complexity of the task). 

o Activation function: ReLU (Rectified 

Linear Unit), which helps avoid the 

vanishing gradient problem. 

• Layer 2 (Second hidden layer):  

o Number of neurons: 8 (this layer typically 

has fewer neurons as you get deeper). 

o Activation function: ReLU. 

• You can add more hidden layers as needed 

depending on the complexity of the 

problem, but for simplicity, we'll use two 

hidden layers here. 

3. Output Layer: 

• Number of neurons: 1 (since it's binary 

classification, the output should be a single 

value representing the probability of the 

positive class). 

• Activation function: Sigmoid, which 

outputs a value between 0 and 1, 

representing the probability that the input 

belongs to the positive class (e.g., class 1). 

4. Loss Function: 
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• Binary Cross-Entropy Loss: This is 

typically used for binary classification 

problems because it measures the 

difference between the predicted 

probability and the actual class label. 

5. Optimizer: 

• Adam Optimizer: This is a popular 

optimizer due to its adaptive learning rates for 

each parameter, often yielding better results in 

practice. 

6. Model Summary: 

Here’s a summary of the architecture: 

• Input layer: 8 neurons (no activation 

function). 

• Hidden Layer 1: 16 neurons, ReLU 

activation. 

• Hidden Layer 2: 8 neurons, ReLU 

activation. 

• Output layer: 1 neuron, Sigmoid activation. 

• Loss function: Binary Cross-Entropy. 

• Optimizer: Adam. 

________________________________________ 

7. Code Implementation (Using Python and 

TensorFlow/Keras): 

import tensor flow as tf 

from tensor flow. keras. models import Sequential 

from tensor flow. keras. layers import Dense 

# Define the model 

model = Sequential () 

# Input layer (implicitly included when you define 

input_shape in the first hidden layer) 

model.add(Dense(16, input_dim=8, 

activation='relu'))  # First hidden layer with 16 

neurons 

model. add (Dense (8, activation='relu')) # Second 

hidden layer with 8 neurons 

model.add(Dense(1, activation='sigmoid'))            

# Output layer with 1 neuron for binary 

classification 

# Compile the model 

model.compile(optimizer='adam',  

              loss='binary_crossentropy',  

              metrics=['accuracy']) 

# Summary of the model 

model.summary() 

8. Model Training: 

To train this model, you would provide it with 

your dataset, where X_train is a matrix of shape 

(num_samples, 8) and y_train is the binary target 

vector of shape (num_samples,). You can fit the 

model like this: 

# Assuming X_train and y_train are your training 

data 

model.fit(X_train, y_train, epochs=10, 

batch_size=32) 

This simple architecture can be extended with 

additional hidden layers, dropout for 

regularization, or other modifications based on the 

complexity of your dataset. 

Figure 2 features a generalized graphical depiction 

of the recommended artificial neural network. In 

Fig. 2, CM1, CM2, CMN are the relevant clinical 

measurements (N=8) numbering 8 in this case 

while CD represents the clinical decision 

corresponding to the output of the artificial neural 

network. 
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Fig. 2: Schematic Graphical Representation of 

Artificial Neural Network (ANN) Architecture. 

CM1, CM2, ..., CMN represent the inputs while 

CD represents the output indicating the 

suggested clinical diagnosis. 

6. Results  

Attention has been given to matters related to 

system design such as ethics and data 

management in the design of the comprehensive 

artificial intelligence-driven healthcare system [25] 

– [28], [23] – [24]. 

Combining the TensorFlow framework with the 

Keras Application Programming Interface (API), 

the suggested AI models were implemented in the 

Python programming language [51] – [52]. 

First, the dataset is shuffled randomly to minimize 

bias and then partitioned by applying an 80% - 20% 

split for training and validation datasets, 

respectively. Optimization was accomplished via 

the Adam Optimizer [53] – [54] while the AI 

model was trained using the binary cross-entropy 

loss function, a learning rate of 0.001 and a batch 

size of 32 over 300 epochs. 

The performance metrics of the trained AI model 

was as follows: Specificity – 82%, Sensitivity – 

63%, Precision – 67%. Although the observed 

performance metrics were not on par with those 

obtained from custom-designed AI models [27], 

the performance could be further improved 

through refinement or finetuning on the basis of 

AI expertise. 

Figure 3 illustrates a screenshot from the Diabetes 

Diagnosis Module in the Scholar Medic featuring 

a selection of clinical measurements the associated 

suggested diagnosis from the trained AI model. 

 

Fig. 3: Diabetes Diagnosis Module of Scholar 

Medic Showing Clinical Measurements and 

Corresponding Suggested Diagnosis. 

The performance metrics were computed on the 

basis of the following equations where TN refers 

to true positives, FP refers to false positives, FN 

refers to false negatives, and TN refers to true 

negatives. Negative refers to the normal diabetes-

free condition while positive refers to the presence 

of diabetes mellitus. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏          =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚       =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚       =  
𝑻𝑵

𝑻𝑵 + 𝑭𝑷
 

Implementing the comprehensive AI system 

outlined here will provide actionable insights to 

support clinical decision-making, ultimately 

saving lives and improving quality of life. It will 

help reduce the economic, social, psychological, 

and physical burdens associated with conditions 

that could be predicted, prevented, detected early, 

diagnosed, treated, and managed more effectively. 

Electronic Health Records (EHRs), which include 

clinical diagnostic data and EEG information, will 

be created by participating doctors and their 

associated teams. EEG data may also be collected 

through experiments involving Brain-Computer 
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Interfaces (BCIs). These data will be gathered 

following ethical approval, anonymized, and 

shared in publicly accessible repositories 

alongside relevant research publications. 

7. Conclusion 

This paper presented a system that achieved 

automated diagnosis of diabetes on the basis of 

clinical measurements by leveraging artificial 

intelligence models constructed, trained, tested 

and validated on public diabetes datasets wherein 

the artificial intelligence models were synthesized 

from the recommendations of generative artificial 

intelligence tools or large language models 

responding to well-crafted prompts. The 

performance of the system compared favorably (in 

light of the fact that the resulting artificial 

intelligence models are not optimized) with that of 

artificial intelligence models developed by experts. 

Consequently, the system could be further refined 

for incorporation into a modular, extensible 

comprehensive artificial intelligence-driven 

healthcare system. 
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